首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The difficulties and costs of measuring individual feed intake in dairy cattle are the primary factors limiting the genetic study of feed intake and utilisation, and hence the potential of their subsequent industry-wide applications. However, indirect selection based on heritable, easily measurable, and genetically correlated traits, such as conformation traits, may be an alternative approach to improve feed efficiency. The aim of this study was to estimate genetic and phenotypic correlations among feed intake, production, and feed efficiency traits (particularly residual feed intake; RFI) with routinely recorded conformation traits. A total of 496 repeated records from 260 Holstein dairy cows in different lactations (260, 159 and 77 from first, second and third lactation, respectively) were considered in this study. Individual daily feed intake and monthly BW and body condition scores of these animals were recorded from 5 to 305 days in milk within each lactation from June 2007 to July 2013. Milk yield and composition data of all animals within each lactation were retrieved, and the first lactation conformation traits for primiparous animals were extracted from databases. Individual RFI over 301 days was estimated using linear regression of total 301 days actual energy intake on a total of 301 days estimated traits of metabolic BW, milk production energy requirement, and empty BW change. Pair-wise bivariate animal models were used to estimate genetic and phenotypic parameters among the studied traits. Estimated heritabilities of total intake and production traits ranged from 0.27±0.07 for lactation actual energy intake to 0.45±0.08 for average body condition score over 301 days of the lactation period. RFI showed a moderate heritability estimate (0.20±0.03) and non-significant phenotypic and genetic correlations with lactation 3.5 % fat-corrected milk and average BW over lactation. Among the conformation traits, dairy strength, stature, rear attachment width, chest width and pin width had significant (P<0.05) moderate to strong genetic correlations with RFI. Combinations of these conformation traits could be used as RFI indicators in the dairy genetic improvement programmes to increase the accuracy of the genetic evaluation of feed intake and utilisation included in the index.  相似文献   

2.
Health traits are of paramount importance for economic dairy production. Improvement in liability to diseases has been made with better management practices, but genetic aspects of health traits have received less attention. Dairy producers in Canada have been recording eight health traits (mastitis (MAST), lameness (LAME), cystic ovarian disease (COD), left displaced abomasum (LDA), ketosis (KET), metritis (MET), milk fever (MF) and retained placenta (RP)) since April 2007. Genetic analyses of these traits were carried out in this study for the Holstein breed. Edits on herd distributions of recorded diseases were applied to the data to ensure a sufficient quality of recording. Traits were analysed either individually (MAST, LAME, COD) or were grouped according to biological similarities (LDA and KET, and MET, MF and RP) and analysed with multiple-trait models. Data included 46 104 cases of any of the above diseases. Incidence ranged from 2.3% for MF to 9.7% for MAST. MET and KET also had an incidence below 4.0%. Variance components were estimated using four different sire threshold models. The differences between models resulted from the inclusion of days at risk (DAR) and a cow effect, in addition to herd, parity and sire effects. Models were compared using mean squared error statistic. Mean squared error favoured, in general, the sire and cow within sire model with regression on DAR included. Heritabilities on the liability scale were between 0.02 (MET) and 0.21 (LDA). There was a moderate, positive genetic correlation between LDA and KET (0.58), and between MET and RP (0.79).  相似文献   

3.
The objective of this study was to estimate heritabilities for and genetic correlations among different pathogen-specific mastitis traits. The traits were unspecific mastitis, which is all mastitis treatments regardless of the causative pathogen as well as mastitis caused by Streptococcus dysgalactiae, Escherichia coli, coagulase-negative staphylococci (CNS), Staphylococcus aureus and Streptococcus uberis. Also groups of pathogens were investigated, Gram-negative v. Gram-positive and contagious v. environmental pathogens. Data from 168 158 Danish Holstein cows calving first time between 1998 and 2006 were used in the analyses. Variances and covariances were estimated using uni- and bivariate threshold models via Gibbs sampling. Posterior means of heritabilities of pathogen-specific mastitis were lower than the heritability of unspecific mastitis, ranging from 0.035 to 0.076 for S. aureus and S. uberis, respectively. The heritabilities of groups of pathogen ranged from 0.053 to 0.087. Genetic correlations among the pathogen-specific mastitis traits ranged from 0.45 to 0.77. These estimates tended to be lowest for bacteria eliciting very different immune responses, which can be considered as the overall pleiotropic effect of genes affecting resistance to a specific pathogen, and highest for bacteria sharing characteristics regarding immune response. The genetic correlations between the groups of pathogens were high, 0.73 and 0.83. Results showed that the pathogen-specific traits used in this study should be considered as different traits. Genetic evaluation for pathogen-specific mastitis resistance may be beneficial despite lower heritabilities than unspecific mastitis because a pathogen-specific mastitis trait is a direct measure of an udder infection, and because the cost of a mastitis case caused by different pathogens has been shown to differ greatly. Sampling bias may be present because there were not pathogen information on all mastitis treatments and because some farms do not record pathogen information. Therefore, improved recording of pathogen information and mastitis treatments in general is critical for a successful genetic evaluation of udder health. Also, economic values have to be specified for each pathogen-specific trait separately.  相似文献   

4.
The aim of this study was to estimate genetic correlations between milk yield, somatic cell score (SCS), mastitis, and claw and leg disorders (CLDs) during first lactation in Holstein cows by using a threshold–linear random regression test-day model. We used daily records of milk, fat and protein yields; somatic cell count (SCC); and mastitis and CLD incidences from 46 771 first-lactation Holstein cows in Hokkaido, Japan, that calved between 2000 and 2009. A threshold animal model for binary records (mastitis and CLDs) and linear animal model for yield traits were applied in our multiple trait analysis. For both liabilities and yield traits, additive genetic effects were used as random regression on cubic Legendre polynomials of days on milk. The highest positive genetic correlations between yields and disease incidences (0.36 for milk and mastitis, 0.56 for fat and mastitis, 0.24 for protein and mastitis, 0.32 for milk and CLD, 0.44 for fat and CLD and 0.31 for protein and CLD) were estimated at about the time of peak milk yield (36 to 65 days in milk). Selection focused on early lactation yield may therefore increase the risk of mastitis and CLDs. The positive genetic correlations of SCS with mastitis or CLD incidence imply that selection to reduce SCS in the early stages of lactation would decrease the incidence of both mastitis and CLD.  相似文献   

5.
Relationships between genetic merit for milk production and animal parameters and various parameters of reproductive performance were examined using multilevel binary response analysis in a study of 19 dairy herds for three successive years, representing approximately 2500 cows per year. The proportion of cows intended for rebreeding that were back in-calf again within 100 days of calving (ICR-100) and the proportion of cows that reappeared again with 365 (RR-365) and 400 days (RR-400) of a previous calving were considered in addition to the traditional measures of reproductive performance. Each 100-kg increase in genetic merit for milk yield was associated with an increased interval to first service (IFS) and calving index (CI) of 1.4 ( P < 0.001) and 1.8 days ( P < 0.001), respectively, a 0.5% increase ( P < 0.05) in calving rate to first insemination (CR-1) and 0.8% increase in RR-400. Each £10 increase in £PIN (the economically weighted yield selection index used in the UK that takes account of butterfat and protein yields) was associated with an increased IFS and CI of 1.5 ( P < 0.001) and 3.0 days ( P < 0.001), respectively. Cows with increased genetic merit for milk yield and £PIN were more likely to re-calve (RR-overall; P < 0.001). Each 1000-kg increase in 305-day milk yield was associated with an increased IFS and CI of 3.2 ( P < 0.001) and 7.8 days ( P < 0.001), respectively, and a 13.6 ( P < 0.001), 22.4 ( P < 0.001), 19.9 ( P < 0.001) and 19.0% ( P < 0.001) decrease in CR-1, ICR-100, RR-365 and RR-400, respectively. A 10-kg increase in maximum yield was associated with a 6.6-day increase in CI ( P < 0.001) and a 14.9 ( P < 0.001), 18.3 ( P < 0.001), 9.6 ( P < 0.05) and 14.2% ( P < 0.001) decrease in CR-1, ICR-100, RR-365 and RR-400, respectively. Fertility performance was also associated with season of calving, lactation number and dystocia score. Level of production had a larger effect on fertility performance than genetic merit for milk production suggesting that infertility at an individual cow level is more likely to be associated with increased production and an inability to meet the nutritional requirements of the cow.  相似文献   

6.
The objective of this study was to quantify the genetic association of body energy assessed throughout lactation with a cow's fertility. Nine direct and indirect body energy traits were defined at different stages of lactation. Four were daily records of energy balance, energy content, cumulative effective energy (CEE) and body condition score (BCS) calculated between lactation days 4 and 311. The other five traits included duration of negative energy balance (DNEB), rate of recovery during DNEB (RNEB), sum of negative energy balance (SNEB), nadir of energy content (NEC) and number of days from calving to NEC. Of these traits, energy balance, DNEB, RNEB and SNEB were primarily based on individual cow feed intake and milk yield, and considered direct measures of body energy. The other traits were calculated from body lipid and protein changes, predicted from BCS and live weight profiles, and were considered indirect measures of body energy. Fertility was defined by number of days between calving and commencement of luteal activity (DLA), first observed oestrus (DH) and conception (DC), and number of services per conception. A total of 957 cows in their first four lactations were considered in the study. Genetic models fitted cubic splines to define longitudinal traits (energy balance, energy content, CEE and BCS) and calculate heritability and genetic correlation with fertility. Daily heritability estimate ranges were 0.10 to 0.34, 0.35 to 0.61, 0.32 to 0.53 and 0.24 to 0.56 for energy balance, energy content, CEE and BCS, respectively, and, in most cases, tended to increase towards the middle of lactation and remain relatively stable thereafter. Of the other body energy traits, heritability of NEC (0.44) was the most notable. Statistically significant (P < 0.05) genetic correlations of DH with daily energy balance, energy content, CEE and BCS ranged from -0.16 to -0.28, -0.35 to -0.48, -0.16 to -0.26 and -0.37 to -0.44, respectively. For DC, respective estimates were -0.28 to -0.64, -0.37 to -0.60, -0.30 to -0.48 and -0.29 to -0.53. For DLA, they ranged from -0.47 to -0.56 with energy content and from -0.50 to -0.74 with BCS. Of special interest was the genetic correlation of NEC with DH (-0.54) and DC (-0.48). Results suggest that indirect measures of body energy have the strongest genetic association with cow fertility. NEC and early lactation (circa day 50) BCS and energy content are the most useful traits for selection in terms of the correlated improvement in a cow's capacity to resume her reproductive activity post partum.  相似文献   

7.
We used a bivariate animal model to investigate the genetic correlations between yield traits or days open (DO) as characters measured in cows and semen production traits as characters measured in bulls. Lactation records of 305-day milk, fat, and protein yields, and DO, from 386 809 first-lactation Holstein cows in Hokkaido, Japan, that calved between 2008 and 2014 were used. Semen production records were collected between 2005 and 2014 and included volume per ejaculate (VOL), sperm concentration (CON), number of sperm per ejaculate (NUM), progressive motility index of sperm (MOT), and MOT after freeze-thawing (A-MOT). Number of sperm per ejaculate was log-transformed into a NUM score (NUMS). A total of 30 373 semen production records from 1196 bulls were obtained. The pedigree file used for analysing the records was involving 885 345 animals. Heritability was estimated for VOL (0.42), CON (0.12), NUMS (0.37), MOT (0.08), and A-MOT (0.11). Weak and negative genetic correlations were recorded between yield traits measured in cows and VOL, CON or NUMS measured in bulls. Moderate and negative genetic correlations were obtained between DO and MOT (–0.42) or A-MOT (–0.43). Selection focused on MOT or A-MOT measured in bulls may therefore improve DO measured in cows.  相似文献   

8.
This study investigated the profile of locomotion score and lameness before the first calving and throughout the first (n=237) and second (n=66) lactation of 303 Holstein cows raised on a commercial farm. Weekly heritability estimates of locomotion score and lameness, and their genetic and phenotypic correlations with milk yield, body condition score, BW and reproduction traits were derived. Daughter future locomotion score and lameness predictions from their sires’ breeding values for conformation traits were also calculated. First-lactation cows were monitored weekly from 6 weeks before calving to the end of lactation. Second-lactation cows were monitored weekly throughout lactation. Cows were locomotion scored on a scale from one (sound) to five (severely lame); a score greater than or equal to two defined presence of lameness. Cows’ weekly body condition score and BW was also recorded. These records were matched to corresponding milk yield records, where the latter were 7-day averages on the week of inspection. The total number of repeated records amounted to 12 221. Data were also matched to the farm’s reproduction database, from which five traits were derived. Statistical analyses were based on uni- and bivariate random regression models. The profile analysis showed that locomotion and lameness problems in first lactation were fewer before and immediately after calving, and increased as lactation progressed. The profile of the two traits remained relatively constant across the second lactation. Highest heritability estimates were observed in the weeks before first calving (0.66 for locomotion score and 0.54 for lameness). Statistically significant genetic correlations were found for first lactation weekly locomotion score and lameness with body condition score, ranging from −0.31 to −0.65 and from −0.44 to −0.76, respectively, suggesting that cows genetically pre-disposed for high body condition score have fewer locomotion and lameness issues. Negative (favourable) phenotypic correlations between first lactation weekly locomotion score/lameness and milk yield averaged −0.27 and −0.17, respectively, and were attributed to management factors. Also a phenotypic correlation between lameness and conception rate of −0.19 indicated that lame cows were associated with lower success at conceiving. First-lactation daughter locomotion score and/or lameness predictions from sires’ estimated breeding values for conformation traits revealed a significant linear effect of rear leg side view, rear leg rear view, overall conformation, body condition score and locomotion, and a quadratic effect of foot angle.  相似文献   

9.
Leptin concentrations in body fluids and tissues undergo dynamic changes during the periparturient period. Polymorphisms in the leptin gene have been shown to be associated with differences in leptin concentration during late pregnancy but not during lactation. As the promoter of leptin regulates the expression of leptin, polymorphisms in this region could play an important role in the differences in leptin expression observed during the periparturient period. We sequenced the leptin promoter and discovered 20 SNP in a 1.6-kbp region of the bovine leptin promoter. Fourteen of these SNP were genotyped for all animals and these were found to be associated with leptin concentrations during late pregnancy but not during lactation. Three of these SNP are located in a 135-bp promoter region and together explained 14.3% of the variance in prepartum leptin concentrations which indicates that this region might be important for pregnancy-induced leptin synthesis. In the association study of the 14 SNP with dairy traits three were separately found to be associated with fertility, energy balance and protein yield. These might serve as markers for future breeding programmes for better fertility and energy balance without significantly influencing milk yield in dairy cattle.  相似文献   

10.
The variability in dairy cow gait characteristics, determined by measurements of footprints (trackway measurements), was analysed. Seven gait parameters were determined from 32 non-lame dairy cows during free-speed walking on a slatted concrete walkway. The footprints were revealed by application of a thin lime powder-slurry layer to the walkway surface. The cows were observed on two test occasions with a 3-week interval, with measurements from four consecutive strides used within each test session. The variance components for cow, test and cow-test interaction were estimated by a residual (restricted) maximum likelihood method. The percentage of each variance component was calculated to assess the relative impact of each factor on total variance. Between-test variation was generally low, suggesting that cows maintain the same average gait pattern, at least over a 3-week period. The proportion of within-test variation was considerable for most trackway measurements. Stride length, step angle, step width and tracking (overlap) showed low to moderate within-test variation (12% to 27%), whereas for mediolateral displacement of rear feet and step length it was rather high (54% and 62%, respectively). Within-test variation in step asymmetry was very high (77%), suggesting the occurrence of natural, non-systematic changes in inter-limb coordination in non-lame cows. For better understanding the gait pattern in non-lame cows, linear associations between the trackway measurements and with body size were assessed. It was concluded that trackway measurements were able to describe the gait pattern in walking cows under dairy farm conditions. However, considering the relatively high within-test variation in gait, several strides should be used to obtain a representative gait pattern.  相似文献   

11.
For several decades, breeding goals in dairy cattle focussed on increased milk production. However, many functional traits have negative genetic correlations with milk yield, and reductions in genetic merit for health and fitness have been observed. Herd management has been challenged to compensate for these effects and to balance fertility, udder health and metabolic diseases against increased production to maximize profit without compromising welfare. Functional traits, such as direct information on cow health, have also become more important because of growing concern about animal well-being and consumer demands for healthy and natural products. There are major concerns about the impact of drugs used in veterinary medicine on the spread of antibiotic-resistant strains of bacteria that can negatively impact human health. Sustainability and efficiency are also increasingly important because of the growing competition for high-quality, plant-based sources of energy and protein. Disruptions to global environments because of climate change may encourage yet more emphasis on these traits. To be successful, it is vital that there be a balance between the effort required for data recording and subsequent benefits. The motivation of farmers and other stakeholders involved in documentation and recording is essential to ensure good data quality. To keep labour costs reasonable, existing data sources should be used as much as possible. Examples include the use of milk composition data to provide additional information about the metabolic status or energy balance of the animals. Recent advances in the use of mid-infrared spectroscopy to measure milk have shown considerable promise, and may provide cost-effective alternative phenotypes for difficult or expensive-to-measure traits, such as feed efficiency. There are other valuable data sources in countries that have compulsory documentation of veterinary treatments and drug use. Additional sources of data outside of the farm include, for example, slaughter houses (meat composition and quality) and veterinary labs (specific pathogens, viral loads). At the farm level, many data are available from automated and semi-automated milking and management systems. Electronic devices measuring physiological status or activity parameters can be used to predict events such as oestrus, and also behavioural traits. Challenges concerning the predictive biology of indicator traits or standardization need to be solved. To develop effective selection programmes for new traits, the development of large databases is necessary so that high-reliability breeding values can be estimated. For expensive-to-record traits, extensive phenotyping in combination with genotyping of females is a possibility.  相似文献   

12.
There is increasing interest in the use of continuous housing systems for dairy cows, with various reasons put forward to advocate such systems. However, the welfare of dairy cows is typically perceived to be better within pasture-based systems, although such judgements are often not scientifically based. The aim of this review was to interrogate the existing scientific literature to compare the welfare, including health, of dairy cows in continuously housed and pasture-based systems. Although summarising existing work, knowledge gaps and directions for future research are also identified. The scope of the review is broad, examining relevant topics under three main headings; health, behaviour and physiology. Regarding health, cows on pasture-based systems had lower levels of lameness, hoof pathologies, hock lesions, mastitis, uterine disease and mortality compared with cows on continuously housed systems. Pasture access also had benefits for dairy cow behaviour, in terms of grazing, improved lying/resting times and lower levels of aggression. Moreover, when given the choice between pasture and indoor housing, cows showed an overall preference for pasture, particularly at night. However, the review highlighted the need for a deeper understanding of cow preference and behaviour. Potential areas for concern within pasture-based systems included physiological indicators of more severe negative energy balance, and in some situations, the potential for compromised welfare with exposure to unpredictable weather conditions. In summary, the results from this review highlight that there remain considerable animal welfare benefits from incorporating pasture access into dairy production systems.  相似文献   

13.
Li C  Sun DX  Jiang L  Liu JF  Zhang Q  Zhang Y  Zhang SL 《遗传》2012,34(5):545-550
产奶性状是奶牛最重要的生产性状,随着平衡育种理念的提出和发展,繁殖性状、体型性状、健康性状和长寿性等功能性状也逐渐被重视并纳入育种规划中。鉴定产奶性状和功能性状主效基因或遗传标记并将之应用于奶牛标记辅助选择可望加快遗传进展。随着高密度SNP标记的高通量检测技术的发展,全基因组关联分析已成为鉴定畜禽重要经济性状基因的重要途径。文章对奶牛产奶性状和功能性状全基因组关联分析研究进展进行综述。  相似文献   

14.
李聪  孙东晓  姜力  刘剑锋  张勤  张沅  张胜利 《遗传》2012,34(5):545-550
产奶性状是奶牛最重要的生产性状, 随着平衡育种理念的提出和发展, 繁殖性状、体型性状、健康性状和长寿性等功能性状也逐渐被重视并纳入育种规划中。鉴定产奶性状和功能性状主效基因或遗传标记并将之应用于奶牛标记辅助选择可望加快遗传进展。随着高密度SNP标记的高通量检测技术的发展, 全基因组关联分析已成为鉴定畜禽重要经济性状基因的重要途径。文章对奶牛产奶性状和功能性状全基因组关联分析研究进展进行综述。  相似文献   

15.
The aim of this study was to investigate the effect of including milk yield data in the international genetic evaluation of female fertility traits to reduce or eliminate a possible bias because of across-country selection for milk yield. Data included two female fertility traits from Great Britain, Italy and the Netherlands, together with milk yield data from the same countries and from the United States, because the genetic trends in other countries may be influenced by selection decisions on bulls in the United States. Potentially, female fertility data had been corrected nationally for within-country selection and management biases for milk yield. Using a multiple-trait multiple across-country evaluation (MT-MACE) for the analysis of female fertility traits with milk yield, across-country selection patterns both for female fertility and milk yield can be considered simultaneously. Four analyses were performed; one single-trait multiple across-country evaluation analysis including only milk yield data, one MT-MACE analysis including only female fertility traits, and one MT-MACE analysis including both female fertility and milk yield traits. An additional MT-MACE analysis was performed including both female fertility and milk yield traits, but excluding the United States. By including milk yield traits to the analysis, female fertility reliabilities increased, but not for all bulls in all the countries by trait combinations. The presence of milk yield traits in the analysis did not considerably change the genetic correlations, genetic trends or bull rankings of female fertility traits. Even though the predicted genetic merits of female fertility traits hardly changed by including milk yield traits to the analysis, the change was not equally distributed to the whole data. The number of bulls in common between the two sets of Top 100 bulls for each trait in the two analyses of female fertility traits, with and without the four milk yield traits and their rank correlations were low, not necessarily because of the absence of the US milk yield data. The joint international genetic evaluation of female fertility traits with milk yield is recommended to make use of information on several female fertility traits from different countries simultaneously, to consider selection decisions for milk yield in the genetic evaluation of female fertility traits for obtaining more accurate estimating breeding values (EBV) and to acquire female fertility EBV for bulls evaluated for milk yield, but not for female fertility.  相似文献   

16.
The major objective of this study was to evaluate, using survival analysis and multivariable regression models, the relationship of sire predicted transmitting ability (PTA) for production traits with their daughters' milk production, fat, and protein percentage (PROPCT), reproductive performance, postpartum disease incidence, and survivability. Data were collected from six large commercial dairy farms, and data analysis included 22,205 cows. Information regarding each sire's genetic evaluation included the following: PTA for fat yield (FAT), fat percentage (FATPCT), milk yield (MILK), protein yield, and PROPCT. Sire PTA was categorized into quartiles to facilitate data analysis and interpretation. Retained placenta, metritis, displaced abomasum, and clinical mastitis were diagnosed and treated by farm personnel. The overall average daily milk production, milk fat and PROPCT during the first 10 months of lactation was higher for the cows in the highest quartile of sire PTA, and cows in the lowest quartile had lower averages. There was no significant association between sire PTA for production traits and first test day fat to protein ratio or the incidence of postpartum disease. Sire PTA for MILK, FATPCT, and PROPCT were significantly associated with the hazard of pregnancy. The median days from calving to conception were 159, 155, 170, and 181 days for cows in the sire PTA for MILK quartiles 1, 2, 3, and 4, respectively. Sire PTA for PROPCT and FATPCT were also significantly associated with the hazard of pregnancy. The median days from calving to conception were 175, 189, 152, and 145 for cows in the sire PTA for PROPCT groups 1, 2, 3, and 4, respectively. Additionally, cows in the highest quartile for sire PTA for FATPCT had the lowest median days from calving to conception (144 days) and cows in lowest quartile had the highest median interval (177 days). Sire PTA for FAT was the only sire PTA significantly associated with the hazard of death/culling. When compared with the cows in the highest sire PTA for FAT quartile cows in the first, second, and third quartiles were at 1.51, 1.30, and 1.13 times higher hazard of death/culling, respectively. In conclusion, this study shows that high sire PTA for MILK and low sire PTA for milk fat and PROPCT are associated with decreased daughters' reproductive performance. Sire PTA for production traits were not found to be associated with postpartum disease incidence.  相似文献   

17.
High-yielding cows may suffer from negative energy balance during early lactation, which can lead to ketosis and delayed ability of returning to cyclicity after calving. Fast recovery after calving is essential when breeding for improved fertility. Traditionally used fertility traits, such as the interval from calving to first insemination (CFI), have low heritabilities and are highly influenced by management decisions. Herd Navigator™ management program samples and analyses milk progesterone and β-hydroxybutyrate (BHB) automatically during milking. In this study, the genetic parameters of endocrine fertility traits (measured from milk progesterone) and hyperketonemia (measured from milk BHB) in early lactation were evaluated and compared with traditional fertility traits (CFI, interval from calving to the last insemination and interval from first to last insemination) and the milk yield in red dairy cattle herds in Finland. Data included observations from 14 farms from 2014 to 2017. Data were analyzed with linear animal models using DMU software and analyses were done for first parity cows. Heritability estimates for traditional fertility traits were low and varied between 0.03 and 0.07. Estimated heritabilities for endocrine fertility traits (interval from calving to the first heat (CFH) and commencement of luteal activity (C-LA)) were higher than for traditional fertility traits (0.19 to 0.33). Five slightly different hyperketonemia traits divided into two or three classes were studied. Linear model heritability estimates for hyperketonemia traits were low, however, when the threshold model was used for binary traits the estimates became slightly higher (0.07 to 0.15). Genetic correlation between CFH and C-LA for first parity cows was high (0.97) as expected since traits are quite similar. Moderate genetic correlations (0.47 to 0.52) were found between the endocrine fertility traits and early lactation milk yield. Results suggest that the data on endocrine fertility traits measured by automatic systems is a promising tool for improving fertility, specifically when more data is available. For hyperketonemia traits, dividing values into three classes instead of two seemed to work better. Based on the current study and previous studies, where higher heritabilities have been found for milk BHB traits than for clinical ketosis, milk BHB traits are a promising indicator trait for resistance to ketosis and should be studied more. It is important that this kind of data from automatic devices is made available to recording and breeding organizations in the future.  相似文献   

18.
Morphologically normal embryos were transferred surgically into uteri of normal and repeat-breeder cows at seven days post-estrus to compare embryo survival rates in the two kinds of cows. All cows were less than ten years of age and had no abnormal genital discharges, cystic ovarian follicles, or anatomical abnormalities of the reproductive tract. Normal cows had not been inseminated after last calving. Repeat-breeders had at least four infertile services within the past six months (average of 6.2 services after calving). To test fertility of repeat-breeders at synchronized estrus, 22 anatomically-normal repeat-breeders were treated by intramuscular (i.m.) injection with prostaglandin F(2)alpha (PGF(2)alpha) on day 11 of an estrous cycle (estrus = day 0) and inseminated at induced estrus; 11 cows (50%) had a normal fetus at necropsy on day 60. Twenty-three repeat-breeders and 23 normal cows were assigned as embryo recipients and treated i.m. with PGF(2)alpha to synchronize estrus. All embryo donors were normal cows. Donors were treated with FSH and PGF(2)alpha and inseminated at estrus. On day 7 after estrus, embryos were recovered nonsurgically from donors and one embryo was transferred through a flank incision to the anterior end of the uterine horn adjacent to the corpus luteum of each recipient. Recipients that did not return to estrus were necropsied at day 60. Of 28 normal and 23 repeat-breeder recipients, 23 normal cows (82%) and 16 repeat breeders (70%) were pregnant at day 60 (P=0.235). Thus, at seven days post-estrus, the maternal environment of most of these repeat-breeders was satisfactory for maintaining pregnancy.  相似文献   

19.
Application of test-day models for the genetic evaluation of dairy populations requires the solution of large mixed model equations. The size of the (co)variance matrices required with such models can be reduced through the use of its first eigenvectors. Here, the first two eigenvectors of (co)variance matrices estimated for dairy traits in first lactation were used as covariables to jointly estimate genetic parameters of the first three lactations. These eigenvectors appear to be similar across traits and have a biological interpretation, one being related to the level of production and the other to persistency. Furthermore, they explain more than 95% of the total genetic variation. Variances and heritabilities obtained with this model were consistent with previous studies. High correlations were found among production levels in different lactations. Persistency measures were less correlated. Genetic correlations between second and third lactations were close to one, indicating that these can be considered as the same trait. Genetic correlations within lactation were high except between extreme parts of the lactation. This study shows that the use of eigenvectors can reduce the rank of (co)variance matrices for the test-day model and can provide consistent genetic parameters.  相似文献   

20.
Polymorphism of casein genes was studied in half-sib families of artificial insemination bulls of the Finnish Ayrshire dairy breed. Ten grandsires and 300 of their sons were genotyped for the following polymorphisms: αS1-casein (B, C), β-casein (A1, A2), the microsatellite within the K-casein gene (ms5, ms4) and K-casein (A, B, E). Nine different combinations of these alleles, casein haplotypes, were found. Associations between casein haplotypes and milk production traits (milk and protein yield, fat and protein percentage and milking speed) were studied with ordinary least-squares analysis to find a direct effect of the haplotypes or an association within individual grandsire families using the granddaughter design. Estimated breeding values of sons were obtained from cow evaluation by animal model. No direct effect of the casein haplotypes on the traits was found. Within grandsire families, in one out of four families the chromosomal segment characterized by haplotype 3 (B-A2-ms4-A) was associated with an increase in milk yield ( P <0.01) and a decrease in fat percentage ( P < 0.01) when contrasted with haplotype 8 (B-A1-ms4-E). The results provide evidence that in the Finnish Ayrshire breed at least one quantitative trait locus affecting the genetic variation in yields traits is segregating linked to either haplotype 3 (B-A2-ms4-A) or 8 (B-A1-ms4-E).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号