首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Dairy cows are commonly fed compound feed concentrates, whose accurate formulation relies on the additivity of ruminal degradation characteristics of single feeds, and the absence of associative effects. The main aim of this study was to evaluate the additivity of single feeds in compound feeds made thereof. Twelve single feeds were used to produce eight compound feeds in mash and pelleted form. Samples of single and compound feeds were incubated in situ in three ruminally fistulated dairy cows, and effective ruminal degradation (ED) of CP and starch (ST) was computed. The ED values of examined compound feeds could be, in most cases, accurately calculated from ED values of single feeds. Observed EDCP values were significantly lower than that calculated, but differences were overall small and not exceeded 5% points. No significant differences were observed between calculated and observed EDST. The study also examined the effects of pelleting of compound feeds on in situ degradation. Pelleting significantly increased EDCP (up to 8% points), and EDST (up to 4% points) of most compound feeds. This could have been caused by the pelleting process increasing the proportion of fine feed particles with fast disappearance from the bags. It was concluded that small associative effects between the examined single feeds could be disregarded when formulating compound feeds for dairy cows, and that additivity of EDCP and EDST can be assumed in most cases.  相似文献   

2.
This study was conducted to evaluate the effects of the dietary ratio of ruminal degraded protein (RDP) to ruminal undegraded protein (RUP) and the dry matter intake (DMI) on the intestinal flows of endogenous nitrogen (N) and amino acids (AA) in goats. The experiment was designed as a 4 × 4 Latin square using four ruminally, duodenally and ileally cannulated goats. The treatments were arranged in a 2 × 2 factorial design; two ratios of RDP to RUP (65:35 and 45:55, RDP1 and RDP2, respectively) and two levels at 95% and 75% of voluntary feed intake (DMI1 and DMI2, respectively) were fed to the goats. There were no significant differences in the N intake, duodenal flow of total N, undegraded feed N, microbial N, endogenous N or ileal flow of endogenous N, but the duodenal and ileal flow of endogenous N numerically decreased by approximately 22% and 9%, respectively, when the feed intake changed from DMI1 (0.63 kg/d) to DMI2 (0.50 kg/d). The dietary ratio of RDP to RUP had significant effects (p < 0.05) on the ileal flows of endogenous leucine, phenylalanine and cysteine. The present results implied that the duodenal flows of endogenous N and AA decreased when the dietary RDP to RUP ratio and DMI decreased, and the flow of endogenous AA at the ileum also decreased when the DMI decreased but increased with decreasing RDP to RUP ratios.  相似文献   

3.
The main objective of this study was to evaluate the variability in in situ CP degradation characteristics of 15 batches lupin grains from nine genotypes in a standardised approach. This study also investigated whether differences in CP degradation can be described by protein fractionation using the Cornell Net Carbohydrate and Protein System (CNCPS) and also whether thermal processing of lupins has an effect on CP degradation in the rumen and analysed protein fractions. The rising political and consumer demand for milk products from dairy production systems based on domestic protein sources and the wide range of lupin types and varieties that can be chosen as protein feed in dairy nutrition requires research to determine the variability in CP degradation characteristics in the rumen. For CP degradation measurements, ground grains were incubated in the rumen of three lactating Jersey cows fitted with a ruminal cannula for different times from 2 to 48 h, and the washing loss of non-incubated samples was also measured. Protein fractions were analysed according to CNCPS and used for the estimation of ruminally degraded protein. In situ CP degradation parameters varied widely between untreated samples. The mean value for the washout fraction was 29.3% (from 16.4% to 43.6%). The potentially degradable fraction averaged 70.5% (from 55.6% to 83.7%), hence maximal degradation of CP was close to completeness. Mean degradation rate was 16.6%/h (from 12.6 to 21.0%/h). Variation in estimated parameters led to variation in the effective degradation (ED) averaging 76.6% (from 67.3% to 83.0%) when calculated assuming a ruminal outflow of 8%/h. Thermal treatment of lupins induced changes in degradation characteristics, primarily by lowering degradation rates, and also led to a significant reduction in ED. The ED calculated from analysed protein fractions averaged 10 percentage points higher than ED calculated from in situ parameters for untreated grains. The ED based on protein fractionation was also reduced by heat treatment, but the correlation with in situ based ED was poor. It can be concluded that the variation in ED indicates a potential to increase the amount of rumen undegraded protein without additional chemical or physical treatment and the effect of genetic factors and agronomic practices on ED of lupin grains should be investigated in systematic studies in the future.  相似文献   

4.
The ruminal degradation and intestinal digestibility (ID) of dry matter (DM) and crude protein (CP) of different feed samples were measured in two trials by using nylon bag and rumen outflow rate techniques in three wethers cannulated in the rumen and in the duodenum. In trial 1, three samples of grains of wheat, barley, and corn treated by cooking (TW, TB, and TC, respectively) were studied together with a sample of untreated corn grains (CG) of different origin. In trial 2, these studies were carried out on a sample of rapeseed (RS) and on a mix of this same sample and rapeseed meal (in proportions 70:30) treated by cooking (TR). In both trials, the animals were fed at the same intake level (40 g DM x kg(-1) LW0.75) with 2:1 (DM basis) forage to concentrate diets. Rumen degradation rates of DM were high in the treated cereals (between 11.0 and 14.2% x h(-1)) and low in the CG (6.35% x h(-1)), whereas for CP these rates were low in all cereals. For DM, in all cereals, ID decreased linearly as the ruminal incubation time increased. The values of intestinal effective digestibility (IED), calculated from these functions and from the rumen outflow, were respectively: 86.4, 62.1, 51.5, and 67.9%. For CP, ID was unaffected by the ruminal incubation time in corn samples, whereas in TW and TB a reduction of these values was only observed for the time of 48 h. The values of IED of CP for CG, TW, TB and TC were: 82.6, 88.9,82.5, and 91.6%, respectively. Rumen degradation rates of the RS and TR samples were 8.35 and 8.23% x h(-1) for DM and 12.0 and 9.59% x h(-1) for CP. In RS, the ID of DM and CP showed a downward trend with an increase of the ruminal incubation time, as modelled according to an exponential function. This same trend was observed for TR after a lag period estimated at 7.53 and 6.51 h for DM and CP, respectively. The values of IED of RS and TR were respectively 56.5 and 50.8% for DM and 71.9 and 80.1% for CP. These same results were also determined by a simplified method using a sample pooled to be representative of the rumen outflow of undegraded feed. The respective values for RS and TR were 54.8 and 51.6 for DM and 65.8 and 78.9% for CP. This method seems to be a promising technique to estimate IED, although more studies are needed to improve its accuracy.  相似文献   

5.
The objectives of this study were (1) to evaluate in situ ruminal dry matter (DM), crude protein (CP) and starch degradation characteristics and in vitro gas production (GP) kinetics using a set of 20 different maize grain genotypes and (2) to predict the effective degradation (ED) of CP and starch from chemical and physical characteristics alone or in combination with in vitro GP measurements. Maize grains were characterised by different chemical and physical characteristics. Ruminal in situ degradation was measured in three lactating Jersey cows. Ground grains (sieve size: 2 mm) were incubated in bags for 1, 2, 4, 8, 16, 24, 48 and 72 h. Bag residues were analysed for CP and starch content. Degradation kinetics was determined and the ED of DM, CP and starch calculated using a ruminal passage rate of 5%/h and 8%/h. The GP of the grains (sieve size: 1 mm) was recorded after 2, 4, 6, 8, 12, 24, 48 and 72 h incubation in buffered rumen fluid and fitted to an exponential equation to determine GP kinetics. Correlations and stepwise multiple linear regressions were evaluated for the prediction of ED calculated for a passage rate of 5%/h (ED5) for CP (EDCP5) and starch (EDST5). The in situ parameters and ED5 varied widely between genotypes with average values (±SD) of 64% ± 4.2, 62% ± 4.1 and 65% ± 5.2 for ED5 of DM, EDCP5 and EDST5 and were on average 10 percentage points lower for a passage rate of 8%/h. Degradation rates varied between 4.8%/h and 7.4%/h, 4.1%/h and 6.5%/h and 5.3%/h and 8.9%/h for DM, CP and starch, respectively. These rates were in the same range as GP rates (6.0–8.3%/h). The EDCP5 and EDST5 were related to CP concentration and could be evaluated in detail using CP fractions and specific amino acids. In vitro GP measurements and GP rates correlated well with EDCP5 and EDST5 and predicted EDCP5 and EDST5 in combination with the chemical characteristics of the samples. Equations can be used to obtain quick and cost effective information on ruminal degradation of CP and starch from maize grains.  相似文献   

6.
Fractional rates (% · day–1) of synthesis and degradation were determined by measuring the output of N-methylhistidine (MeHis) in the excreta at 4 and 8 weeks of age in the chicken. At 4 weeks of age, the fractional rate of synthesis of the meat-type stock was twice that of the egg-type stock (White Leghorn), but the fractional rates of synthesis at 8 weeks of age were similar (4.1–5.1% · day–1) among stocks. The fractional rate of degradation (1.3–1.5% · day–1) of the meat-type stock at 8 weeks of age was less than half the rate of the egg-type stock (2.9% · day–1). The fractional rates of synthesis and degradation at 4 weeks of age in the Satsuma native fowl were relatively high compared with those in the other stocks. In particular, the rate of degradation (8.6% · day–1) at 4 weeks of age was approximately twice that of other stocks. These results show that fractional rates of synthesis and degradation of muscle protein in the chicken differ among genetically diverse groups. The effect of changes in rates of synthesis and degradation on the change in fractional growth rate also differed. From regression coefficients (bK s · FGR and bK d · FGR) of these rates in skeletal muscle protein on the fractional growth rate, it was recognized that the change in growth rate accompanies the changes in both synthesis and degradation in White Leghorn and commercial broilers but only the change in synthesis in White Plymouth Rock (dw) and Satsuma native fowl.  相似文献   

7.
The ruminal effective degradability (RED) and intestinal effective digestibility (IED) for dry matter, crude protein (CP) and amino acids (AA) were estimated by a simplified in situ method using pooled samples from rumen-incubated residues, which represented the ruminal outflow of undegraded feed. The effect of microbial contamination in the rumen was corrected using 15N infusion techniques. Studies were carried out for soybean meal (SBM), barley grain (BG) and lucerne hay (LH) in three wethers cannulated in the rumen and the duodenum. Uncorrected values of RED for CP obtained either by mathematical integration or our simplified method were similar in all feeds. Microbial N in the pooled samples of SBM, BG and LH were 2%, 11% and 24% of total N, respectively. However, intestinal incubation eliminated this microbial charge by 100%, 99% and 88%, respectively. With microbial corrections, RED showed an increase, and IED showed a decrease, except for SBM. With this correction, intestinal digested CP was reduced by 2% in SBM, 13% in BG and 34% in LH. Corrected IED of AA was relatively similar in SBM (97–99%). However, large variations were observed in BG (74–93%) and in LH (10–88%). Digestion in the rumen and intestine changed the essential AA pattern. Overall, our results support that AA digestion is affected by the characteristics of their radicals and their contents in plant cell wall proteins. The accurate estimation of feed metabolisable AA or protein requires effective measures that are corrected by ruminal microbial contamination. The proposed in situ method largely simplifies these tasks and allows a more complete and less expensive feed evaluation.  相似文献   

8.
Tannins, polyphenolic compounds found in plants, are known to complex with proteins of feed and rumen bacteria. This group of substances has the potential to reduce methane production either with or without negative effects on digestibility and microbial yield. In the first step of this study, 10 tannin-rich extracts from chestnut, mimosa, myrabolan, quebracho, sumach, tara, valonea, oak, cocoa and grape seed, and four rapeseed tannin monomers (pelargonidin, catechin, cyanidin and sinapinic acid) were used in a series of in vitro trials using the Hohenheim gas test, with grass silage as substrate. The objective was to screen the potential of various tannin-rich extracts to reduce methane production without a significant effect on total gas production (GP). Supplementation with pelargonidin and cyanidin did not reduce methane production; however, catechin and sinapinic acid reduced methane production without altering GP. All tannin-rich extracts, except for tara extract, significantly reduced methane production by 8% to 28% without altering GP. On the basis of these results, five tannin-rich extracts were selected and further investigated in a second step using a Rusitec system. Each tannin-rich extract (1.5 g) was supplemented to grass silage (15 g). In this experiment, nutrient degradation, microbial protein synthesis and volatile fatty acid production were used as additional response criteria. Chestnut extract caused the greatest reduction in methane production followed by valonea, grape seed and sumach, whereas myrabolan extract did not reduce methane production. Whereas chestnut extract reduced acetate production by 19%, supplementation with grape seed or myrabolan extract increased acetate production. However, degradation of fibre fractions was reduced in all tannin treatments. Degradation of dry matter and organic matter was also reduced by tannin supplementation, and no differences were found between the tannin-rich extracts. CP degradation and ammonia-N accumulation in the Rusitec were reduced by tannin treatment. The amount and efficiency of microbial protein synthesis were not significantly affected by tannin supplementation. The results of this study indicated that some tannin-rich extracts are able to reduce methane production without altering microbial protein synthesis. We hypothesized that chestnut and valonea extract have the greatest potential to reduce methane production without negative side effects.  相似文献   

9.
Fat coating of soybean meal (SBM) can reduce its protein degradability in the rumen, but the encapsulation of SBM with palmitic (PA) and stearic acids (SA) has not yet been investigated, despite both fatty acids are common energy sources in dairy cow diets. This study aimed to evaluate the effects of applying a novel method, using either 400 or 500 g fat/kg (treatments FL40 and FL50, respectively), which was enriched in PA and SA at different ratios (100:0, 75:25, 50:50, 25:75 and 0:100), on physical and chemical characteristics, ruminal degradability, solubility and in vitro intestinal protein digestibility (IVIPD) of the obtained products. Encapsulation of SBM in fat resulted in greater mean particle size and lower bulk density and protein solubility than unprotected SBM (USBM). Treatment FL50 resulted in increased (p < 0.01) rumen-undegraded protein (RUP) compared to USBM. There were no differences in RUP of SBM when different PA: SA ratios were used. The mean RUP content of treatments FL40 and FL50 (306 and 349 g/kg, respectively) was greater compared to USBM (262 g/kg, p < 0.05), but lower than that for a standard heat-treated SBM (431 g/kg). Values of IVIPD did not differ among SBM, heat-treated SBM and FL40 and FL50 samples, all being greater than 97.8%. In conclusion, encapsulation of SBM with fats enriched in PA and SA proved to be effective in reducing protein solubility and increasing RUP without depressing protein digestibility in the intestine. For validation of the method, in vivo research to investigate the effects of these products on the production of dairy cows is warranted.  相似文献   

10.
Protein sequence-based predictors of nucleic acid (NA)-binding include methods that predict NA-binding proteins and NA-binding residues. The residue-level tools produce more details but suffer high computational cost since they must predict every amino acid in the input sequence and rely on multiple sequence alignments. We propose an alternative approach that predicts content (fraction) of the NA-binding residues, offering more information than the protein-level prediction and much shorter runtime than the residue-level tools. Our first-of-its-kind content predictor, qNABpredict, relies on a small, rationally designed and fast-to-compute feature set that represents relevant characteristics extracted from the input sequence and a well-parametrized support vector regression model. We provide two versions of qNABpredict, a taxonomy-agnostic model that can be used for proteins of unknown taxonomic origin and more accurate taxonomy-aware models that are tailored to specific taxonomic kingdoms: archaea, bacteria, eukaryota, and viruses. Empirical tests on a low-similarity test dataset show that qNABpredict is 100 times faster and generates statistically more accurate content predictions when compared to the content extracted from results produced by the residue-level predictors. We also show that qNABpredict's content predictions can be used to improve results generated by the residue-level predictors. We release qNABpredict as a convenient webserver and source code at http://biomine.cs.vcu.edu/servers/qNABpredict/ . This new tool should be particularly useful to predict details of protein–NA interactions for large protein families and proteomes.  相似文献   

11.
Ruminal in situ incubations are widely used to assess the nutritional value of feedstuffs for ruminants. In in situ methods, feed samples are ruminally incubated in indigestible bags over a predefined timespan and the disappearance of nutrients from the bags is recorded. To describe the degradation of specific nutrients, information on the concentration of feed samples and undegraded feed after in situ incubation (‘bag residues’) is needed. For cereal and pea grains, CP and starch (ST) analyses are of interest. The numerous analyses of residues following ruminal incubation contribute greatly to the substantial investments in labour and money, and faster methods would be beneficial. Therefore, calibrations were developed to estimate CP and ST concentrations in grains and bag residues following in situ incubations by using their near-infrared spectra recorded from 680 to 2500 nm. The samples comprised rye, triticale, barley, wheat, and maize grains (20 genotypes each), and 15 durum wheat and 13 pea grains. In addition, residues after ruminal incubation were included (at least from four samples per species for various incubation times). To establish CP and ST calibrations, 620 and 610 samples (grains and bag residues after incubation, respectively) were chemically analysed for their CP and ST concentration. Calibrations using wavelengths from 1250 to 2450 nm and the first derivative of the spectra produced the best results (R2Validation=0.99 for CP and ST; standard error of prediction=0.47 and 2.10% DM for CP and ST, respectively). Hence, CP and ST concentration in cereal grains and peas and their bag residues could be predicted with high precision by NIRS for use in in situ studies. No differences were found between the effective ruminal degradation calculated from NIRS estimations and those calculated from chemical analyses (P>0.70). Calibrations were also calculated to predict ruminal degradation kinetics of cereal grains from the spectra of ground grains. Estimation of the effective ruminal degradation of CP and ST from the near-infrared spectra of cereal grains showed promising results (R2>0.90), but the database needs to be extended to obtain more stable calibrations for routine use.  相似文献   

12.
Dissolved amino acids represent a significant carbon and nitrogen source for microorganisms in stream water environments, and may be utilized in preference to protein bound nitrogen in decomposing organic matter. Consequently, in streams with sufficiently high concentrations of dissolved amino acids, depolymerisation of nitrogen compounds may become delayed. This possibility was investigated in stream water samples incubated with 14C-labelled albumin and cellulose in presence of the indigenous microorganisms at different concentrations of dissolved amino acids.The experiments demonstrated at an average between 15 and 25% lower degradation of the compounds during a ten days incubation at an initial amino acid concentration of 1 mg l–1. The reduction was most clearly expressed in a nutrient-poor stream water compared with a nutrient-rich. The kinetics of the degradation were most appropriately described by a first-order model, that is, the rate of transformation of the macromolecules was independent of the total number of bacteria in the water. The mechanism suggested for the retardation of macromolecules is a superproportional utilization of the dissolved amino acids at high concentrations, a phenomenon that can cause accumulation of slowly decomposing macromolecules in sediments affected by residual wastewater.  相似文献   

13.
The objective of this study was to evaluate the effects of diet composition on phytate (InsP6) degradation in dairy cows. In Experiment 1, four diets that differed in the amount and source of phosphorus (P) were fed to 24 lactating cows in a 4 × 4 Latin Square design. The control diet (Diet C) contained 4.18 g P/kg dry matter (DM). Diet MP contained additional mineral P (5.11 g P/kg DM), Diet RS contained rapeseed and rapeseed meal as organic P sources (5.26 g P/kg DM) and Diet RSM contained rapeseed meal and rapeseed oil (5.04 g P/kg DM). Total P (tP) and InsP6 excretion in faeces were measured. In Experiment 2, we used a rumen simulation technique (Rusitec) to estimate ruminal disappearance of tP and InsP6 from Diets C, MP and RSM. In Experiment 1, tP concentration in faeces increased with tP intake and was highest for Diets RS and RSM. The source of supplemented P had no influence on tP digestibility, but tP digestibility was reduced for Diets MP, RS and RSM in comparison to that for Diet C. InsP6 disappearance decreased in Diet MP (85.0%) and increased in Diets RS (92.7%) and RSM (94.0%) compared to that in Diet C (90.0%). In Experiment 2, P source influenced ruminal tP disappearance (Diet MP, 78.6%; Diet RSM, 75.3%). InsP6 disappearance for Diet C (98.1%) was higher than that for Diets MP (95.6%) and RSM (94.9%). The results confirmed the high potential of ruminants to degrade InsP6, but differences in diet composition influenced InsP6 disappearance. Further studies of the site of InsP6 degradation are required to understand the relevance of InsP6 degradation for the absorption of P.  相似文献   

14.
Abstract The contribution of ciliates to rumen fermentation was estimated by determination of overall fibre degradation and cellulase activities (determined as carboxymethylcellulase activity) in faunated and defaunated 'artificial rumen' cultures. Experiments performed at loading rates of 22.5 and 35 g per liter per day of a grass-grain substrate revealed that fibre degradation was significantly lower in the absence of ciliates only at the high loading rate. This effect of defaunation was smaller at dilution rates below 1.7 fermenter volume turnovers per day. Bacterial numbers were higher in all experiments after removal of ciliates. Fractionation studies demonstrated that ciliates accounted for 19–28% of the total cellulase activity in faunated cultures fed on filter paper cellulose.  相似文献   

15.
Three Hereford × Friesian/Holstein heifers were each fitted with rumen and simple T-piece duodenal cannulae. They were used in an experiment of latin square design to study the rumen degradability and intestinal apparent digestibility (using the mobile dacron bag technique) of protein in soya-bean meal (SBM) and in low and high glucosinolate rapeseed meals (LgsRSM and HgsRSM, respectively) each in untreated (UT), heat treated (HT) and formaldehyde treated (FT) forms. For rumen incubation times of 24 h there were no significant protein source × processing treatment interactions for either degrability of protein in the rumen (dgN) or for the proportion of food protein undegradable in the rumen and digestible in the small intestine (DUDN). At this time dgN values for FT, HT and UT were 0.263, 0.374 and 0.418 (SEM 0.0078; P < 0.001) respectively and DUDN values for SBM, LgsRSM and HgsRSM were 0.320, 0.348 and 0.386 (SEM 0.0078; P < 0.001) respectively. Compared with UT, and to a lesser extent HT, FT at all times after 0 h incubation significantly decreased dgN values and increased DUDN values for all three protein sources. Compared with UT, HT significantly decreased dgN. Apparent digestibility of the protein of SBM in the intestines was greater than that of LgsRSM and HgsRSM, and overall the values of available undegraded protein for FTLgs and HgsRSM, but not of FTSBM, were similar to or greater than for the UT sources. FT tended to decrease the total tract apparent digestibility of the protein sources.  相似文献   

16.
The objective of the study was to determine the coefficients of ileal apparent digestibility (CIAD) of sorghum protein and amino acids (AA) in weaned piglets and growing pigs. Digestibility coefficients were estimated using the regression and difference methods for the weaned piglets; and the direct and difference methods for the growing pigs. To test the hypothesis that CP and AA digestibility of sorghum is lower in weaned piglets than in growing pigs, two experiments were conducted. In experiment one, 20 weaned piglets were fitted with a 'T' cannula at 21 days of age and were fed for 2 weeks one of five dietary treatments: a reference or control diet providing 200 g of CP/kg from casein (C) as the sole protein source, and four casein-sorghum (C-S) diets kept isoproteic to C by the appropriate adjustment of C and maize starch proportions; the amount of sorghum (S) in these diets was 135, 307, 460 and 614 g/kg. In experiment 2, fifteen castrated pigs weighing 57.8 ± 2.8 kg were used and randomly allotted to one of three dietary treatments: a reference casein-maize starch diet containing C as the sole protein source, a C-S diet, both diets containing 160 g of CP/kg, and a fortified S diet containing 68 g of CP/kg. In piglets the CIAD for CP and AA decreased linearly (P < 0.05) as the amount of S in the diet increased. The average ileal digestibility of AA from C was 0.858 ± 0.111, and decreased to 0.663 ± 0.191 at the higher S level. The CIAD estimated using the regression or difference methods were similar for leucine, cysteine, glutamic acid, serine, alanine and tyrosine, and different for the other AA. In growing pigs the CIAD of protein and AA (except alanine and cysteine) were similar (P > 0.05) for the C and the C-S diets, but higher (P < 0.05) than those for the S diet. The CIAD for S obtained by the difference method were higher (P < 0.05) than those obtained using the direct method, except for lysine, isoleucine, valine, methionine, threonine and cysteine. The results indicate that except for lysine and cysteine, growing pigs' ability to digest AA and protein is superior than weaned piglets.  相似文献   

17.
Several in situ studies have been conducted on maize silages to determine the effect of individual factors such as maturity stage, chop length and ensiling of maize crop on the rumen degradation but the information on the relationship between chemical composition and in situ rumen degradation characteristics remains scarce. The objectives of this study were to determine and describe relationships between the chemical composition and the rumen degradation characteristics of dry matter (DM), organic matter (OM), CP, starch and aNDFom (NDF assayed with a heat stable amylase and expressed exclusive of residual ash) of maize silages. In all, 75 maize silage samples were selected, with a broad range in chemical composition and quality parameters. The samples were incubated in the rumen for 2, 4, 8, 16, 32, 72 and 336 h, using the nylon bag technique. Large range was found in the rumen degradable fractions of DM, OM, CP, starch and aNDFom because of the broad range in chemical composition and quality parameters. The new database with in situ rumen degradation characteristics of DM, OM, CP, starch and aNDFom of the maize silages was obtained under uniform experimental conditions; same cows, same incubation protocol and same chemical analysis procedures. Regression equations were developed with significant predictors (P<0.05) describing moderate and weak relationships between the chemical composition and the washout fraction, rumen undegradable fraction, potentially rumen degradable fraction, fractional degradation rate and effective rumen degradable fraction of DM, OM, CP, starch and aNDFom.  相似文献   

18.
The influence of physical treatment‐expansion and flaking‐on crude proteins degradability in the rumen was studied in maize, maize‐gluten feed, rape extracted meal and in the expanded one at 120°C and 150°C, rape cake, wheat and flaked wheat by in sacco method. The enzymatic digestibility of crude protein in the rumen undegraded residues of the above mentioned feeds was determined by an enzymatically in vitro method.

The treatment of feed decreased significantly the original solubility and theoretical degradability of crude proteins, and the amount of undegraded crude proteins was increased. Positive influence on the amount of enzymatically digested crude protein was determined in rape expanded at 120 °C and 150 °C (60, 61 and/or 68%). Flaking of wheat had a similar effect. Enzymatic digestibility at undegraded rests where increased by 8–10% after the heat treatment and it remained almost unchanged in expanded maize‐gluten feed.  相似文献   

19.
Cistus ladanifer L. (CL) is a perennial shrub abundant in dry woods and dry land of Mediterranean zone, with high level of tannins. Tannins bind to protein, preventing its degradation in the digestive compartments. This tannin/protein complex may be advantageous when partially protecting good-quality feed protein from excessive rumen protein degradation. The objective of this trial was to use a CL phenol crude extract to prevent excessive rumen degradation of soya-bean meal protein. The phenolic compounds were extracted using an acetone/water solution (70:30, v/v). Soya-bean meal was then treated with this crude CL extract, containing 640 g of total phenols (TP) per kg of dry matter (DM), in order to obtain mixtures with 0, 12.5, 25, 50, 100 and 150 g of TP per kg DM. Three rumen-cannulated rams were used to assess in sacco rumen degradability of DM and nitrogen (N). The three-step in vitro procedure was used to determine intestinal digestibility. Increasing extract concentrations quadratically decreased the N-soluble fraction a (R2 = 0.96, P = 0.0001) and increased the non-soluble degradable fraction b (R2 = 0.92, P = 0.005). The rate of degradation c linearly decreased with CL extract doses (R2 = 0.44, P = 0.0065). For the effective rumen degradability of N, a linear reduction (R2 = 0.94, P < 0.0001) was observed. The in vitro intestinal digestibility of protein (ivID) quadratically decreased (R2 = 0.99, P < 0.0001) with TP inclusion and the rumen undegradable protein (RUP) showed a quadratic increase (R2 = 0.94, P = 0.0417). Total intestinal protein availability, computed from the RUP and ivID, linearly decreased with TP inclusion level (R2 = 0.45, P = 0.0033).  相似文献   

20.
The objectives of the trial were to study the effects of dietary crude protein (CP) and tannic acid (TA) on rumen fermentation, microbiota and nutrient digestion in beef cattle. Eight growing beef cattle (live weight 350 ± 25 kg) were allocated in a 2 × 2 crossover design using two levels of dietary CP [111 g/kg dry matter (DM) and 136 g/kg DM] and two levels of TA (0 and 16.9 g/kg DM) as experimental treatments. Each experimental period lasted 19 d, consisting of 14-d adaptation and 5-d sampling. The impacts of dietary CP and TA on ruminal microbiota were analysed using high-throughput sequencing of 16S rRNA gene. Results indicated that no interactions between dietary CP and TA were found on rumen fermentation and nutrient digestibility. Increasing dietary CP level from 111 to 136 g/kg DM increased the ruminal concentrations of ammonia nitrogen (NH3-N) (p < 0.01) and improved the CP digestibility (p < 0.001). Adding TA at 16.9 g/kg DM inhibited rumen fermentation and decreased the digestibility of dietary CP (p < 0.001), DM (p < 0.05) and organic matter (p < 0.01). Increasing the dietary CP level or adding TA did not affect the relative abundances of the major bacteria Firmicutes and Proteobacteria at the phylum level and Prevotella_1 and Christensenellaceae_R-7_group at the genus level, even though adding TA increased the Shannon index of the ruminal bacterial community. TA was partly hydrolysed to pyrogallol, gallic acid and resorcinol in rumen fluid and the inhibitory effects of TA on rumen fermentation and nutrient digestibility could have been resulted from the TA metabolites including pyrogallol, gallic acid and resorcinol as well as the protein-binding effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号