首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.  相似文献   

2.
3.
Non-contact ACL injuries are one of the most common injuries to the knee joint among adolescent/collegiate athletes, with sex and limb dominance being identified as risk factors. In children under 12 years of age (U12), these injuries occur less often and there is no sex-bias present. This study set out to explore if sex and/or limb dominance differences exist in neuromuscular activations in U12 athletes. Thirty-four U12 males and females had six bilateral muscles analyzed during unanticipated side-cuts. Principal component analysis was performed, capturing differences in overall magnitudes and timing of peak magnitudes. Two-way mixed-model ANOVAs determined significant limb effects with both sexes displaying (i) greater magnitudes in the lateral gastrocnemius and both hamstrings in the dominant limb and (ii) earlier timing of peak magnitudes in both gastrocnemii, both hamstrings and vastus medialis in the non-dominant limb, while no sex differences were identified. This study demonstrated that limb dominance, not sex, affects neuromuscular activation strategies in U12 athletes during unanticipated side-cuts. When developing injury prevention programs for younger athletes, an increased focus on balancing neuromuscular activations in both limbs could be beneficial in reducing the likelihood of ACL injuries in these athletes as they mature through puberty.  相似文献   

4.
This study determined which knee joint motions lead to anterior cruciate ligament (ACL) rupture with the knee at 25° of flexion. The knee was subjected to internal and external rotations, as well as varus and valgus motions. A failure locus representing the relationship between these motions and ACL rupture was established using finite element simulations. This study also considered possible concomitant injuries to the tibial articular cartilage prior to ACL injury. The posterolateral bundle of the ACL demonstrated higher rupture susceptibility than the anteromedial bundle. The average varus angular displacement required for ACL failure was 46.6% lower compared to the average valgus angular displacement. Femoral external rotation decreased the frontal plane angle required for ACL failure by 27.5% compared to internal rotation. Tibial articular cartilage damage initiated prior to ACL failure in all valgus simulations. The results from this investigation agreed well with other experimental and analytical investigations. This study provides a greater understanding of the various knee joint motion combinations leading to ACL injury and articular cartilage damage.  相似文献   

5.
Gastrocnemius is a premier muscle crossing the knee, but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains less clear when compared to hamstrings and quadriceps. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait kinematics—kinetics. The tibiofemoral joint under isolated isometric contraction of gastrocnemius was subsequently analyzed at different force levels and flexion angles (0°–90°). Changes in gastrocnemius force at late stance markedly influenced hamstrings forces. Gastrocnemius acted as ACL antagonist by substantially increasing its force. Simulations under isolated contraction of gastrocnemius confirmed this role at all flexion angles, in particular, at extreme knee flexion angles (0° and 90°). Constraint on varus/valgus rotations substantially decreased this effect. Although hamstrings and gastrocnemius are both knee joint flexors, they play opposite roles in respectively protecting or loading ACL. Although the quadriceps is also recognized as antagonist of ACL, at larger joint flexion and in contrast to quadriceps, activity in gastrocnemius substantially increased ACL forces (anteromedial bundle). The fact that gastrocnemius is an antagonist of ACL should help in effective prevention and management of ACL injuries.  相似文献   

6.
Fatiguing contractions of the adductor pollicis muscle were produced by intermittent supramaximal stimulation of the ulnar nerve in a set frequency pattern, in six normal subjects. At the end of an initial fatiguing contraction series, low frequency fatigue (LFF) had been induced and persisted at 15 min of recovery. Stimulated fatiguing activity was then repeated in an identical fashion to the initial series. At high frequencies, declines in force were similar for both series. At low frequencies, declines in force were greater during the second series despite similar changes in compound muscle action potential amplitude. This confirmation that LFF persists during subsequent stimulated activity, and reduces low but not high frequency fatigue resistance, suggests that the impaired endurance of fatigued muscle during voluntary activity primarily results from peripheral changes at low frequency. These findings also have implications for therapeutic electrical stimulation of muscle.  相似文献   

7.
This study examined (1) the influence of whole body vibration (WBV) frequency (20 Hz, 30 Hz, 40 Hz), amplitude (low: 0.8 mm and high: 1.5 mm) and body postures (high-squat, deep-squat, tip-toe standing) on WBV transmissibility and signal purity, and (2) the relationship between stroke motor impairment and WBV transmissibility/signal purity. Thirty-four participants with chronic stroke were tested under 18 different conditions with unique combinations of WBV frequency, amplitude, and body posture. Lower limb motor function and muscle spasticity were assessed using the Fugl-Meyer Assessment and Modified Ashworth Scale respectively. Nine tri-axial accelerometers were used to measure acceleration at the WBV platform, and the head, third lumbar vertebra, and bilateral hips, knees, and ankles. The results indicated that WBV amplitude, frequency, body postures and their interactions significantly influenced the vibration transmissibility and signal purity among people with chronic stroke. In all anatomical landmarks except the ankle, the transmissibility decreased with increased frequency, increased amplitude or increased knee flexion angle. The transmissibility was similar between the paretic and non-paretic side, except at the ankle during tip-toe standing. Less severe lower limb motor impairment was associated with greater transmissibility at the paretic ankle, knee and hip in certain WBV conditions. Leg muscle spasticity was not significantly related to WBV transmissibility. In clinical practice, WBV amplitude, frequency, body postures need to be considered regarding the therapeutic purpose. Good contact between the feet and vibration platform and symmetrical body-weight distribution pattern should be ensured.  相似文献   

8.
We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (p < 0.01) and internal oblique (p < 0.01) showed significantly elevated activity compared with the rectus abdominis muscle. Furthermore, at 20% and 30% PEmax, the external oblique (p < 0.05 and < 0.01, respectively) and the internal oblique (p < 0.05 and < 0.01, respectively) showed significantly elevated activity compared with the rectus abdominis muscle. At 10% PEmax, no significant differences were observed in muscle activity.Although we observed no significant difference between 10% and 20% PEmax, activity during 30% PEmax was significantly greater than during 20% PEmax (external oblique: p < 0.05; internal oblique: p < 0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance.  相似文献   

9.
Low amplitude mechanical noise vibration has been shown to improve somatosensory acuity in various clinical groups with comparable deficiencies through a phenomenon known as Stochastic Resonance (SR). This technology showed promising outcomes in improving somatosensory acuity in other clinical patients (e.g., Parkinson’s disease and osteoarthritis). Some degree of chronic somatosensory deficiency in the knee has been reported following anterior cruciate ligament (ACL) reconstruction surgery. In this study, the effect of the SR phenomenon on improving knee somatosensory acuity (proprioception and kinesthesia) in female ACL reconstructed (ACLR) participants (n = 19) was tested at three months post-surgery, and the results were compared to healthy controls (n = 28). Proprioception was quantified by the measure of joint position sense (JPS) and kinesthesia with the threshold to detection of passive movement (TDPM).The results based on the statistical analysis demonstrated an overall difference between the somatosensory acuity in the ACLR limb compared to healthy controls (p = 0.007). A larger TDPM was observed in the ACLR limb compared to the healthy controls (p = 0.002). However, the JPS between the ACLR and healthy limbs were not statistically significantly different (p = 0.365). SR significantly improved JPS (p = 0.006) while the effect was more pronounced in the ACLR cohort. The effect on the TDPM did not reach statistical significance (p = 0.681) in either group.In conclusion, deficient kinesthesia in the ACLR limb was observed at three months post-surgery. Also, the positive effects of SR on somatosensory acuity in the ACL reconstructed group warrant further investigation into the use of this phenomenon to improve proprioception in ACLR and healthy groups.  相似文献   

10.
The purpose of this study was to examine the acute effects of different vibration loads (frequency and amplitude) of whole-body vibration (WBV) on flexibility and explosive strength of lower limbs in springboard divers. Eighteen male and female divers, aged 19 ± 2 years, volunteered to perform 3 different WBV protocols in the present study. To assess the vibration effect, flexibility and explosive strength of lower limbs were measured before (Pre), immediately after (Post 1) and 15 min after the end of vibration exposure (Post 15). Three protocols with different frequencies and amplitudes were used in the present study: a) low vibration frequency and amplitude (30 Hz/2 mm); b) high vibration frequency and amplitude (50 Hz/4 mm); c) a control protocol (no vibration). WBV protocols were performed on a Power Plate platform, whereas the no vibration divers performed the same protocol but with the vibration platform turned off. A two-way ANOVA 3 x 3 (protocol × time) with repeated measures on both factors was used. The level of significance was set at p < 0.05. Univariate analyses with simple contrasts across time were selected as post hoc tests. Intraclass coefficients (ICC) were used to assess the reliability across time. The results indicated that flexibility and explosive strength of lower limbs were significantly higher in both WBV protocols compared to the no vibration group (NVG). The greatest improvement in flexibility and explosive strength, which occurred immediately after vibration treatment, was maintained 15 min later in both WBV protocols, whereas NVG revealed a significant decrease 15 min later, in all examined strength parameters. In conclusion, a bout of WBV significantly increased flexibility and explosive strength in competitive divers compared with the NVG. Therefore, it is recommended to incorporate WBV as a method to increase flexibility and vertical jump height in sports where these parameters play an important role in the success outcome of these sports.  相似文献   

11.
Information about head orientation, position, and movement with respect to the trunk relies on the visual, vestibular, extensive muscular, and articular proprioceptive system of the neck. Various factors can affect proprioception since it is the function of afferent integration, and tuning of muscular and articular receptors. Pain, muscle fatigue, and joint position have been shown to affect proprioceptive capacity. Thus, it can be speculated that changes in body posture can alter the neck proprioception. This study was undertaken to investigate the effect of body posture on cervicocephalic kinesthetic sense in healthy subjects. Cervicocephalic kinesthetic sensibility was measured by the kinesthetic sensibility test in healthy young adults while in (a) habitual slouched sitting position with arms hanging by the side (SS), (b) habitual slouched sitting position with arms unloaded (supported) (SS-AS), and (c) upright sitting position with arms hanging by the side (US) during maximum and 30 degree right, left rotations, flexion, and extension. Thirty healthy male adults (mean age 27.83; SD 3.41) volunteered for this study. The least mean error was found for the SS-AS position (0.48; SD 0.24), followed by SS (0.60; SD 0.43) and US (0.96; SD 0.71), respectively. For all test conditions, there was significant difference in mean absolute error while head repositioning from maximum and 30 degree rotation during SS and SS-AS positions (p?相似文献   

12.
The purpose of this study was to investigate the effect of whole body vibration (WBV) training on maximal strength, squat jump, and flexibility of well-trained combat athletes. Twelve female and 8 male combat athletes (age: 22.8 ± 3.1 years, mass: 65.4 ± 10.7 kg, height: 168.8 ± 8.8 cm, training experience: 11.6 ± 4.7 years, training volume: 9.3 ± 2.8 hours/week) participated in this study. The study consisted of three sessions separated by 48 hours. The first session was conducted for familiarization. In the subsequent two sessions, participants performed WBV or sham intervention in a randomized, balanced order. During WBV intervention, four isometric exercises were performed (26 Hz, 4 mm). During the sham intervention, participants performed the same WBV intervention without vibration treatment (0 Hz, 0 mm). Hand grip, squat jump, trunk flexion, and isometric leg strength tests were performed after each intervention. The results of a two-factor (pre-post[2] × intervention[2]) repeated measures ANOVA revealed a significant interaction (p = 0.018) of pre-post × intervention only for the hand grip test, indicating a significant performance increase of moderate effect (net increase of 2.48%, d = 0.61) after WBV intervention. Squat jump, trunk flexion, and isometric leg strength performances were not affected by WBV. In conclusion, the WBV protocol used in this study potentiated hand grip performance, but did not enhance squat jump, trunk flexion, or isometric leg strength in well-trained combat athletes.  相似文献   

13.
Summary The ultrastructure of the neuromuscular junction (n.m.j.) of the androgen-sensitive levator ani muscle was studied in normal adult male rats, in 8-month-old rats castrated at the age of one month and in castrated rats treated with testosterone propionate (TP). Castration does not result in significant changes of the n.m.j. The density of synaptic vesicles and the postsynaptic junctional folds remain practically normal in spite of marked atrophy of the muscle. TP administration for 7 days results in marked changes in preand postsynaptic structures. There is slow progressive depletion of synaptic vesicles, appearance of cisternae and coated vesicles in axon terminals, and coalescence of coated vesicles with the plasma membrane. Coated vesicles are also found inside Schwann cells and among junctional folds. Dense core vesicles appear both in the axon terminals and in the postsynaptic area. Collateral sprouting of terminal axons with the formation of new immature junctions is observed. After 35 days of TP administration depletion of synaptic vesicles continues. Glycogen -particles, mostly freely dispersed, occasionally seen in axon terminals 7 days after TP administration, subsequently increase in number. In the endplate zone of the muscle fibre increased protein synthesis is indicated by a rapid increase in ribosomes and irregularly located myofilaments and myofibrils. The appearance of n.m.j. after testosterone administration resembles that described after nerve stimulation; the degree of change is however less pronounced.The authors wish to acknowledge the skillful technical assistance of Mrs. L. Vedralová  相似文献   

14.

Objective:

We performed a meta-analysis to evaluate the effects of whole-body vibration on physiologic and functional measurements in children with cerebral palsy.

Design and methods:

We searched MEDLINE, Cochrane Controlled Trials Register, EMBASE, Scielo, CINAHL (from the earliest date available to November 2014) for randomized controlled trials, that aimed to investigate the effects of whole-body vibration versus exercise and/or versus control on physiologic and functional measurements in children with cerebral palsy. Two reviewers independently selected the studies. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated.

Results:

Six studies with 176 patients comparing whole-body vibration to exercise and/or control were included. Whole-body vibration resulted in improvement in: gait speed WMDs (0.13 95% CI:0.05 to 0.20); gross motor function dimension E WMDs (2.97 95% CI:0.07 to 5.86) and femur bone density (1.32 95% CI:0.28 to 2.36). The meta-analysis also showed a nonsignificant difference in muscle strength and gross motor function dimension D for participants in the whole-body vibration compared with control group. No serious adverse events were reported.

Conclusions:

Whole-body vibration may improve gait speed and standing function in children with cerebral palsy and could be considered for inclusion in rehabilitation programs.  相似文献   

15.
Whole body Co60 gamma radiation induced changes in lactic dehydrogenase (LDH) activity, pyruvate, lactate content and rate of oxygen (O2) consumption in a tropical hibernating anuran (Bufo melanostictus). In 3.5 and 7 Gy treated groups, a significant increase in LDH activity and lactate/pyruvate ratio was observed, whereas a significant decrease in O2 consumption rate was observed in treated animals on post-irradiation day (PID) 1, 5 and 10. Increase in LDH activity was observed on PID-1 in both the treated groups, reached to a peak on PID-5 in 7 Gy treated group and then declined on PID-10.  相似文献   

16.
目的: 观察中老年人进行振动训练时下肢骨骼肌激活特征和生理负荷指标,探讨将振动训练应用于中老年人的可行性。方法: 选取28名50~65岁健康中老年人作为研究对象,分别在振动条件下(VT)和无振动条件下(NT)进行5次40 s静力半蹲练习,测试下肢主要肌群表面肌电和生理负荷指标。结果: ①VT受试者腓肠肌内侧(MG)、腓肠肌外侧(LG)、胫骨前肌(TA)、股直肌(RF)、股内侧肌(VM)、股外侧肌(VL)、股二头肌(BF)、半腱肌(ST)均方根振幅(RMS)显著高于NT(P<0.01,P<0.05),VL、BF、ST、MG、LG、TA平均功率频率(MPF)显著高于NT(P<0.05);VM、VL、BF、MG、LG、TA平均功率斜率(MPF slope)显著高于NT(P<0.05);②VT受试者心率和摄氧量显著高于NT(P<0.05),主观疲劳等级(RPE)与NT比较无显著差异;③VT受试者尿素氮与NT无显著差异。结论: 50~65岁中老年人采用施加振动刺激的静力半蹲练习可以使机体募集更多的运动单位和更高比例的快肌纤维参与工作,在不增加主观疲劳感的基础上增加运动强度,同时未发现肌肉损伤。  相似文献   

17.
The apoptotic death of cardiomyocytes due to ischemia/reperfusion is one of the major complications of heart disease. Ischemia/reperfusion has been shown to lead to the activation of the stress-activated protein (SAP) kinases and the p38/reactivating kinase (p38/RK). In this study, the direct effect of an aqueous Flos carthami (FC) extract on SAP kinases was investigated. When isolated rat hearts were perfused by Langendorff mode with media containing FC extract prior to the induction of global ischemia and the subsequent reperfusion, SAP kinase activity was inhibited 95%. Untreated ischemic/reperfused hearts showed a 57% elevation in the activity of SAP kinase. The in vitro effect of these FC extracts on SAP kinase was also tested. At a concentration of 10 g/ml, the aqueous FC extract resulted in 50% inhibition of SAP kinase activity in ischemic heart tissue. Our results showed that FC affected both the interaction of SAP kinase with c-jun as well as the phosphotransferase reaction. These results clearly demonstrate that extracts from Flos carthami exerted inhibitory effects on SAP kinase. The administration of the FC extract may lead to a modulation of the apoptotic effect of SAP kinase activation induced during ischemia/reperfusion.  相似文献   

18.
AimTo evaluate the activity of knee stabilizing muscles while using custom-made biomechanical footwear (BF) and to compare it when walking barefoot and with a knee brace (Unloader®).MethodsSeventeen healthy working-aged (mean age: 29 years; standard deviation: 8 years) individuals participated. The knee brace was worn on the right knee and BF in both legs. Surface electromyography (sEMG) data was recorded bilaterally from vastus medialis (VM), semitendinosus (ST), tibialis anterior (TA) and lateral gastrocnemius (LG) muscles during walking, and repeated-measures ANOVA with a post-hoc t-test was used to determine differences between the different walking modalities (barefoot, brace and BF).ResultsAveraged sEMG was significantly higher when walking with BF than barefoot or knee brace in the ST muscles, in the right LG, and left TA muscle. It was significantly lower when walking with the brace compared to barefoot in the right ST and LG muscles, and left TA muscle. Analysis of the ensemble-averaged sEMG profiles showed earlier activation of TA muscles when walking with BF compared to other walking modalities.ConclusionBF produced greater activation in evaluated lower leg muscles compared to barefoot walking. Thus BF may have an exercise effect in rehabilitation and further studies about its effectiveness are warranted.  相似文献   

19.
The in vivo responses of pyruvate dehydrogenase (PDH) complex to starvation and insulin was assessed in heart, diaphragm and red quadriceps muscle. PDH complex activity was decreased by starvation (3.4–10.2-fold), the magnitude of change depending on muscle type. Insulin increased PDH activity in all muscle types. In fed rats, this effect was relatively small (1.25–1.29-fold). In starved rats there were effects in heart (4.3-fold) and red quadriceps (1.7-fold) but no effect in diaphragm. These results demonstrate that PDH complex in different groups of muscle has different insulin sensitivity (particularly in tissues from starved animals).  相似文献   

20.
Studies of electromyographic (EMG) activity and lumbopelvic rhythm have led to a better understanding of neuromuscular alterations in chronic low back pain (cLBP) patients. Whether these changes reflect adaptations to chronic pain or are induced by acute pain is still unclear. This work aimed to assess the effects of experimental LBP on lumbar erector spinae (LES) EMG activity and lumbopelvic kinematics during a trunk flexion–extension task in healthy volunteers and LBP patients. The contribution of disability to these effects was also examined. Twelve healthy participants and 14 cLBP patients performed flexion–extension tasks in three conditions; control, innocuous heat and noxious heat, applied on the skin over L5 or T7. The results indicated that noxious heat at L5 evoked specific increases in LES activity during static full trunk flexion and extension, irrespective of participants’ group. Kinematic data suggested that LBP patients adopted a different movement strategy than controls when noxious heat was applied at the L5 level. Besides, high disability was associated with less kinematic changes when approaching and leaving full flexion. These results indicate that experimental pain can induce neuromechanical alterations in cLBP patients and healthy volunteers, and that higher disability in patients is associated with decreased movement pattern changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号