首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shigella flexneri is the major pathogen causing bacillary dysentery in developing countries. S. flexneri is divided into at least 16 serotypes based on the combination of antigenic determinants present in the O-antigen. All the serotypes (except for serotype 6) share a basic O-unit containing one N-acetyl-d-glucosamine and three l-rhamnose residues, whereas differences between the serotypes are conferred by phage-encoded glucosylation and/or O-acetylation. Serotype Xv is a newly emerged and the most prevalent serotype in China, which can agglutinate with both MASF IV-1 and 7,8 monoclonal antibodies. The factor responsible for the presence of MASF IV-1 (E1037) epitope has not yet been identified. In this study, we analyzed the LPS structure of serotype Xv strains and found that the MASF IV-1 positive phenotype depends on an O-antigen modification with a phosphoethanolamine (PEtN) group attached at position 3 of one of the rhamnose residues. A plasmid carried gene, lpt-O (LPS phosphoethanolamine transferase for O–antigen), mediates the addition of PEtN for serotype Xv and other MASF IV-1 positive strains. These findings reveal a novel serotype conversion mechanism in S. flexneri and show the necessity of further extension of the serotype classification scheme recognizing the MASF IV-1 positive strains as distinctive subtypes.  相似文献   

2.
S. flexneri is the leading cause of bacillary dysentery in the developing countries. Several temperate phages originating from this host have been characterised. However, all S. flexneri phages known to date are lambdoid phages, which have the ability to confer the O-antigen modification of their host. In this study, we report the isolation and characterisation of a novel Mu-like phage from a serotype 4a strain of S. flexneri. The genome of phage SfMu is composed of 37,146 bp and is predicted to contain 55 open reading frames (orfs). Comparative genome analysis of phage SfMu with Mu and other Mu-like phages revealed that SfMu is closely related to phage Mu, sharing >90% identity with majority of its proteins. Moreover, investigation of phage SfMu receptor on the surface of the host cell revealed that the O-antigen of the host serves as the receptor for the adsorption of phage SfMu. This study also demonstrates pervasiveness of SfMu phage in S. flexneri, by identifying complete SfMu prophage strains of serotype X and Y, and remnants of SfMu in strains belonging to 4 other serotypes, thereby indicating that transposable phages in S. flexneri are not uncommon. The findings of this study contribute an advance in our current knowledge of S. flexneri phages and will also play a key role in understanding the evolution of S. flexneri.  相似文献   

3.
4.
A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) “plant-defense” response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.  相似文献   

5.
Genetic variations in circadian clock genes may serve as molecular adaptations, allowing populations to adapt to local environments. Here, we carried out a survey of genetic variation in Drosophila cryptochrome (cry), the fly’s dedicated circadian photoreceptor. An initial screen of 10 European cry alleles revealed substantial variation, including seven non-synonymous changes. The SNP frequency spectra and the excessive linkage disequilibrium in this locus suggested that this variation is maintained by natural selection. We focused on a non-conservative SNP involving a leucine - histidine replacement (L232H) and found that this polymorphism is common, with both alleles at intermediate frequencies across 27 populations surveyed in Europe, irrespective of latitude. Remarkably, we were able to reproduce this natural observation in the laboratory using replicate population cages where the minor allele frequency was initially set to 10%. Within 20 generations, the two allelic variants converged to approximately equal frequencies. Further experiments using congenic strains, showed that this SNP has a phenotypic impact, with variants showing significantly different eclosion profiles. At the long term, these phase differences in eclosion may contribute to genetic differentiation among individuals, and shape the evolution of wild populations.  相似文献   

6.
Porphyromonas gingivalis synthesizes two lipopolysaccharides (LPSs), O-LPS and A-LPS. Here, we elucidate the structure of the core oligosaccharide (OS) of O-LPS from two mutants of P. gingivalis W50, ΔPG1051 (WaaL, O-antigen ligase) and ΔPG1142 (O-antigen polymerase), which synthesize R-type LPS (core devoid of O antigen) and SR-type LPS (core plus one repeating unit of O antigen), respectively. Structural analyses were performed using one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy in combination with composition and methylation analysis. The outer core OS of O-LPS occurs in two glycoforms: an “uncapped core,” which is devoid of O polysaccharide (O-PS), and a “capped core,” which contains the site of O-PS attachment. The inner core region lacks l(d)-glycero-d(l)-manno-heptosyl residues and is linked to the outer core via 3-deoxy-d-manno-octulosonic acid, which is attached to a glycerol residue in the outer core via a monophosphodiester bridge. The outer region of the “uncapped core” is attached to the glycerol and is composed of a linear α-(1→3)-linked d-Man OS containing four or five mannopyranosyl residues, one-half of which are modified by phosphoethanolamine at position 6. An amino sugar, α-d-allosamine, is attached to the glycerol at position 3. In the “capped core,” there is a three- to five-residue extension of α-(1→3)-linked Man residues glycosylating the outer core at the nonreducing terminal residue. β-d-GalNAc from the O-PS repeating unit is attached to the nonreducing terminal Man at position 3. The core OS of P. gingivalis O-LPS is therefore a highly unusual structure, and it is the basis for further investigation of the mechanism of assembly of the outer membrane of this important periodontal bacterium.Porphyromonas gingivalis is a gram-negative anaerobe which is strongly implicated in the etiology of periodontal disease. Several putative virulence factors are produced by this organism. These virulence factors include the cysteine proteases Arg-gingipains (Rgps) and Lys-gingipain (Kgp) specific for Arg-X and Lys-X peptide bonds, respectively, which are capable of degrading several host proteins (56), and lipopolysaccharide (LPS), which has the potential to cause an inflammatory response in the periodontal tissues of the host. These factors are important antigens in patients with periodontal disease and may account for a considerable proportion of the immune response directed against P. gingivalis (58).LPS is a major constituent of the outer membrane of gram-negative bacteria and facilitates interactions with the external environment. It consists of three regions: a hydrophobic lipid A embedded in the outer leaflet of the outer membrane, a core oligosaccharide (OS), and the O-polysaccharide (O-PS) side chain composed of several repeating units. The hydrophobic lipid A serves as an anchor for the LPS and consists of β-1,6-linked d-glucosamine disaccharide, which is usually phosphorylated at the 1 and/or 4′ positions and N and/or O acylated at positions 2, 3, 2′, and 3′ with various amounts of fatty acids. The rest of the LPS molecule projects from the surface. The core region is attached to lipid A and is composed of ∼10 sugars in most bacteria studied to date and can be further subdivided into an inner core and an outer core. The inner core usually contains l(d)-glycero-d-(l)-manno-heptose and 3-deoxy-d-manno-octulosonic acid (Kdo) residues, whereas the outer core is usually composed of hexoses. Attached to the outer core are the repeating units of O antigen (O-PS), which vary in composition, stereochemistry, and the sequence of O-glycosidic linkages between bacterial strains and thereby give rise to O-serotype specificity within bacterial species. Attachment of O antigen to core lipid A results in “smooth” LPS (S-type LPS), whereas LPS lacking O antigen is “rough” LPS (R-type LPS). Attachment of one repeating unit of O-PS to core lipid A results in SR-LPS (core-plus-one repeating unit) (41, 47, 48). In addition, the outer core OS region can be either “uncapped” or “capped.” The “uncapped” core OS is devoid of O-PS repeating units, whereas the “capped” core OS contains attached O-PS repeating units (47, 53) due to modifications in the outer core region.P. gingivalis W50 was originally thought to synthesize a single LPS composed of a tetrasaccharide repeating unit in the O-PS, [→6)-α-d-Glcp-(1→4)-α-l-Rhap-(1→3)-β-d-GalNAc-(1→3)-α-d-Galp-(1→], which is modified by phosphoethanolamine (PEA) at position 2 of Rha in a nonstoichiometric manner (43). However, a second LPS in this organism, namely A-LPS (49), which has a phosphorylated mannan-containing anionic polysaccharide (A-PS), was identified in our laboratory. The A-PS repeating unit is built up of a phosphorylated branched d-Man-containing oligomer composed of an α1→6-linked d-mannose backbone to which α1→2-linked d-Man side chains of different lengths (one or two residues) are attached at position 2. One of the side chains contains Manα1→2-Manα-1-phosphate linked via phosphorus to a backbone Man residue at position O-2. Although A-LPS is predominantly composed of α-d-mannose residues, it cannot be referred to as a homopolymer due to the presence of Manα1→2Manα1-phosphate-containing OS side chains forming a nonglycosidic linkage between the backbone α-mannose and side chains. Hence, it is likely that the synthesis of A-PS (A-LPS) occurs via a “wzy-dependent” pathway in which repeating units formed on the cytoplasmic face of the inner membrane are polymerized at the periplasmic face following transport or flipping across the cytoplasmic membrane. A-LPS cross-reacts with monoclonal antibody (MAb) 1B5 raised against one of the isoforms of Arg-gingipains, a family of differentially glycosylated cysteine proteases (14, 19). Deglycosylation of the cross-reacting Rgps with anhydrous trifluoromethane sulfonic acid abolishes their immunoreactivity to MAb 1B5, indicating that this antibody recognizes a carbohydrate-containing epitope also present in A-LPS (14, 44). Hence, there appear to be common elements in the biosynthesis of A-LPS and the Arg-gingipains of this organism.Inactivation of P. gingivalis waaL (PG1051, O-antigen ligase) abolishes the synthesis of both O-LPS and A-LPS (49). Hence, the WaaL O-antigen ligase appears to have dual specificity and is capable of ligating both O-PS and A-PS chains to core lipid A. The dual specificity of WaaL in the final step of LPS biosynthesis has also been demonstrated in the synthesis of Escherichia coli O-LPS and MLPS (38) and for Pseudomonas aeruginosa A-band and B-band LPSs (1).However, the linkage between O-PS and A-PS and core OS has not been identified in P. gingivalis. In this paper, we describe a structural investigation of the core OS of O-LPS in which we used R-LPS prepared from ΔPG1051 (49) and ΔPG1142 (putative O-antigen polymerase), which we hypothesized would synthesize an SR-LPS (core plus one repeating unit) (60). The putative O-antigen polymerase encoded at PG1142 (42) is a phenylalanine-rich membrane protein consisting of 347 amino acids which shows 46% similarity over 297 amino acids to EpsK of Lactobacillus delbrueckii subsp. bulgaricus. EpsK is proposed to be a polymerase on the basis of homology and topological similarity to the O-antigen polymerase (Wzy) of E. coli and is required for the synthesis of an exopolysaccharide composed of Gal, Glc, and Rha (5:1:1) containing repeating units in L. delbrueckii (32). Application of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy and methylation and monosaccharide analyses using gas chromatography-mass spectrometry (GC-MS) to purified core-containing OSs isolated from LPS from ΔPG1051 and ΔPG1142 mutants enabled us to solve the LPS core structure of an oral gram-negative bacterium for the first time.  相似文献   

7.

Background

The transition from vegetative to reproductive stages marks a major milestone in plant development. It is clear that global change factors (e.g., increasing [CO2] and temperature) have already had and will continue to have a large impact on plant flowering times in the future. Increasing atmospheric [CO2] has recently been shown to affect flowering time, and may produce even greater responses than increasing temperature. Much is known about the genes influencing flowering time, although their relevance to changing [CO2] is not well understood. Thus, we present the first study to identify QTL (Quantitative Trait Loci) that affect flowering time at elevated [CO2] in Arabidopsis thaliana.

Methodology/Principal Findings

We developed our mapping population by crossing a genotype previously selected for high fitness at elevated [CO2] (SG, Selection Genotype) to a Cape Verde genotype (Cvi-0). SG exhibits delayed flowering at elevated [CO2], whereas Cvi-0 is non-responsive to elevated [CO2] for flowering time. We mapped one major QTL to the upper portion of chromosome 1 that explains 1/3 of the difference in flowering time between current and elevated [CO2] between the SG and Cvi-0 parents. This QTL also alters the stage at which flowering occurs, as determined from higher rosette leaf number at flowering in RILs (Recombinant Inbred Lines) harboring the SG allele. A follow-up study using Arabidopsis mutants for flowering time genes within the significant QTL suggests MOTHER OF FT AND TFL1 (MFT) as a potential candidate gene for altered flowering time at elevated [CO2].

Conclusion/Significance

This work sheds light on the underlying genetic architecture that controls flowering time at elevated [CO2]. Prior to this work, very little to nothing was known about these mechanisms at the genomic level. Such a broader understanding will be key for better predicting shifts in plant phenology and for developing successful crops for future environments.  相似文献   

8.
Staphylococcus aureus is a dangerous human pathogen. A number of the proteins secreted by this bacterium are implicated in its virulence, but many of the components of its secretome are poorly characterized. Strains of S. aureus can produce up to six homologous extracellular serine proteases grouped in a single spl operon. Although the SplA, SplB, and SplC proteases have been thoroughly characterized, the properties of the other three enzymes have not yet been investigated. Here, we describe the biochemical and structural characteristics of the SplD protease. The active enzyme was produced in an Escherichia coli recombinant system and purified to homogeneity. P1 substrate specificity was determined using a combinatorial library of synthetic peptide substrates showing exclusive preference for threonine, serine, leucine, isoleucine, alanine, and valine. To further determine the specificity of SplD, we used high-throughput synthetic peptide and cell surface protein display methods. The results not only confirmed SplD preference for a P1 residue, but also provided insight into the specificity of individual primed- and non-primed substrate-binding subsites. The analyses revealed a surprisingly narrow specificity of the protease, which recognized five consecutive residues (P4-P3-P2-P1-P1’) with a consensus motif of R-(Y/W)-(P/L)-(T/L/I/V)↓S. To understand the molecular basis of the strict substrate specificity, we crystallized the enzyme in two different conditions, and refined the structures at resolutions of 1.56 Å and 2.1 Å. Molecular modeling and mutagenesis studies allowed us to define a consensus model of substrate binding, and illustrated the molecular mechanism of protease specificity.  相似文献   

9.
The intracellular bacterial pathogen Shigella infects and spreads through the human intestinal epithelium. Effector proteins delivered by Shigella into cells promote infection by modulating diverse host functions. We demonstrate that the effector protein OspB interacts directly with the scaffolding protein IQGAP1, and that the absence of either OspB or IQGAP1 during infection leads to larger areas of S. flexneri spread through cell monolayers. We show that the effect on the area of bacterial spread is due to OspB triggering increased cell proliferation at the periphery of infected foci, thereby replacing some of the cells that die within infected foci and restricting the area of bacterial spread. We demonstrate that OspB enhancement of cell proliferation results from activation of mTORC1, a master regulator of cell growth, and is blocked by the mTORC1-specific inhibitor rapamycin. OspB activation of mTORC1, and its effects on cell proliferation and bacterial spread, depends on IQGAP1. Our results identify OspB as a regulator of mTORC1 and mTORC1-dependent cell proliferation early during S. flexneri infection and establish a role for IQGAP1 in mTORC1 signaling. They also raise the possibility that IQGAP1 serves as a scaffold for the assembly of an OspB-mTORC1 signaling complex.  相似文献   

10.
11.
Shigella flexneri O-antigen is an important and highly variable cell component presented on the outer leaflet of the outer membrane. Most Shigella flexneri bacteria share an O-antigen backbone composed of →2)-α-l-RhapIII-(1→2)-α-l-RhapII-(1→3)-α-l-RhapI-(1→3)-β-d-GlcpNAc-(1→ repeats, which can be modified by adding various chemical groups to different sugars, giving rise to diverse O-antigen structures and, correspondingly, to various serotypes. The known modifications include glucosylation on various sugar residues, O-acetylation on RhaI or/and RhaIII, and phosphorylation with phosphoethanolamine on RhaII or/and RhaIII. Recently, a new O-antigen modification, namely, O-acetylation at position 6 of N-acetylglucosamine (GlcNAc), has been identified in S. flexneri serotypes 2a, 3a, Y, and Yv. In this study, the genetic basis of the 6-O-acetylation of GlcNAc in S. flexneri was elucidated. An O-acyltransferase gene designated oacD was found to be responsible for this modification. The oacD gene is carried on serotype-converting bacteriophage SfII, which is integrated into the host chromosome by lysogeny to form a prophage responsible for the evolvement of serotype 2 of S. flexneri. The OacD-mediated 6-O-acetylation also occurs in some other S. flexneri serotypes that carry a cryptic SfII prophage with a dysfunctional gtr locus for type II glucosylation. The 6-O-acetylation on GlcNAc confers to the host a novel O-antigen epitope, provisionally named O-factor 10. These findings enhance our understanding of the mechanisms of the O-antigen variation and enable further studies to understand the contribution of the O-acetylation to the antigenicity and pathogenicity of S. flexneri.  相似文献   

12.
13.
The processive reaction mechanisms of β-glycosyl-polymerases are poorly understood. The cellubiuronan synthase of Streptococcus pneumoniae catalyzes the synthesis of the type 3 capsular polysaccharide through the alternate additions of β-1,3-Glc and β-1,4-GlcUA. The processive multistep reaction involves the sequential binding of two nucleotide sugar donors in coordination with the extension of a polysaccharide chain associated with the carbohydrate acceptor recognition site. Degradation analysis using cellubiuronan-specific depolymerase demonstrated that the oligosaccharide-lipid and polysaccharide-lipid products synthesized in vitro with recombinant cellubiuronan synthase had a similar oligosaccharyl-lipid at their reducing termini, providing definitive evidence for a precursor-product relationship and also confirming that growth occurred at the nonreducing end following initiation on phosphatidylglycerol. The presence of a lipid marker at the reducing end allowed the quantitative determination of cellubiuronic acid polysaccharide chain lengths. As the UDP-GlcUA concentration was increased from 1 to 11.5 μm, the level of synthase in the transitory processive state decreased, with the predominant oligosaccharide-lipid product containing 3 uronic acid residues, whereas the proportion of synthase in the fully processive state increased and the polysaccharide chain length increased from 320 to 6700 monosaccharide units. In conjunction with other kinetic data, these results suggest that the formation of a complex between a tetrauronosyl oligomer and the carbohydrate acceptor recognition site plays a central role in coordinating the repetitive interaction of the synthase with the nucleotide sugar donors and modulating the chain length of cellubiuronan polysaccharide.Cellubiuronic acid, the capsular polysaccharide of type 3 Streptococcus pneumoniae, is composed of the repeating disaccharide cellobiuronic acid (-3)-β-d-GlcUA2-(1,4)-β-d-Glc-(1-) (1) and is synthesized by a processive mechanism similar to that for cellulose, chitin, hyaluronic acid, and other related β-glycans (2). This group of polysaccharides is synthesized by inverting GT-2A polymerases that are located in the plasma membrane with their active sites on the cytoplasmic face, and following chain initiation, the synthases are thought to be involved in the extrusion of the nascent chains to the external membrane face (38). The overall processive elaboration of these polysaccharides remains poorly understood at the molecular level. In particular, there is relatively little information concerning the initiation process, the facilitation of chain extrusion, the mechanism of translocation, and the regulation of the final chain length during the assembly of these polymers. Recent investigations in this laboratory have begun to unravel some of the details of both the early and later stages of the biosynthesis of cellubiuronan.Unlike most S. pneumoniae capsules, whose elaboration requires multiple glycosyltransferases, a polymerase, and an additional transport system (9), the assembly and transport of cellubiuronic acid in type 3 strains is carried out by the single enzyme cellubiuronan synthase (Cps3S) (3, 10, 11). Studies of the synthase in S. pneumoniae and recombinant Escherichia coli membranes have shown that assembly of the polysaccharide involves two distinct kinetic phases: 1) a transitory processive state wherein the chain is thought to be initiated by the formation of an oligosaccharide-lipid that is loosely associated with the synthase, and 2) a fully processive state in which the polysaccharide is tightly bound to the carbohydrate substrate recognition site, except for a brief period during the translocation stage of each catalytic cycle (5, 12). Each catalytic cycle in the extrusion mode provides for chain extension by the addition of a repeating disaccharide and requires the alternate association of the synthase with UDP-Glc and UDP-GlcUA, the formation of the glycosidic linkages of the respective sugars, and the release, translocation, and reattachment of the elongating chain at the synthase carbohydrate recognition site. Transition from the transitory mode to the fully processive extrusion mode correlates with the attainment of a threshold-length oligosaccharide of ∼8 sugars (12). Nod factor chito-oligosaccharides from rhizobia are synthesized by a related group of synthases that apparently are not capable of organizing into an extrusion mode (13). Significantly, the maximum length of any reported Nod-factor oligosaccharide is 6 sugars (14).Based on β-glucosidase sensitivity of singly added [14C]Glc to the terminal end of high molecular weight cellubiuronan, it was deduced that the polysaccharide grows by repetitive β-1,3-Glc and β-1,4-GlcUA additions to the nonreducing terminus (2). Oligosaccharide-lipid assembly is thought to initiate on phosphatidylglycerol (15). To date, however, there has been no quantitative demonstration of polysaccharide-lipid conjugate, and the similarity of the distal sugar-lipid linkages in the polysaccharide- and oligosaccharide-lipid products has not been verified.Cellubiuronan depolymerase is a Bacillus circulans β-endoglucuronidase that specifically cleaves cellubiuronic acid chains at GlcUA-β1,4-Glc linkages (16, 17). The polysaccharide is successively cleaved at random internal linkages, which upon completion of hydrolysis yields a series of oligosaccharide end products containing 1–4 Glc-β1,3-GlcUA disaccharide units, with the most abundant oligomer being a tetrasaccharide. The high degree of specificity of this depolymerase has provided a sensitive analytical tool to further characterize cellubiuronan oligosaccharide- and polysaccharide-lipids, and even more importantly, it has provided a means for determining the chain length of these polysaccharides. Both in vivo (18) and in vitro studies (12) indicate that the processivity of cellubiuronan synthase is modulated by the concentration of UDP-GlcUA. However, lacking well defined cellubiuronan polysaccharide size standards, there has been no way to clearly establish the actual length of the polymer synthesized under different reaction conditions. The methodology described in this article has allowed a clear demonstration of the relationship between the polysaccharide size and the UDP-GlcUA substrate concentration and in turn has led to the development of a kinetic model (38), which provides both for UDP-sugar modulation of polysaccharide chain length and for the assembly by a single-site synthase of a polysaccharide composed of a repeating heterodisaccharide.  相似文献   

14.
Escherichia coli O86:B7 has long been used as a model bacterial strain to study the generation of natural blood group antibody in humans, and it has been shown to possess high human blood B activity. The O-antigen structure of O86:B7 was solved recently in our laboratory. Comparison with the published structure of O86:H2 showed that both O86 subtypes shared the same O unit, yet each of the O antigens is polymerized from a different terminal sugar in a different glycosidic linkage. To determine the genetic basis for the O-antigen differences between the two O86 strains, we report the complete sequence of O86:B7 O-antigen gene cluster between galF and hisI, each gene was identified based on homology to other genes in the GenBank databases. Comparison of the two O86 O-antigen gene clusters revealed that the encoding regions between galF and gnd are identical, including wzy genes. However, deletion of the two wzy genes revealed that wzy in O86:B7 is responsible for the polymerization of the O antigen, while the deletion of wzy in O86:H2 has no effect on O-antigen biosynthesis. Therefore, we proposed that there must be another functional wzy gene outside the O86:H2 O-antigen gene cluster. Wzz proteins determine the degree of polymerization of the O antigen. When separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the lipopolysaccharide (LPS) of O86:B7 exhibited a modal distribution of LPS bands with relatively short O units attached to lipid A-core, which differs from the LPS pattern of O86:H2. We proved that the wzz genes are responsible for the different LPS patterns found in the two O86 subtypes, and we also showed that the very short type of LPS is responsible for the serum sensitivity of the O86:B7 strain.  相似文献   

15.
Induction and characterization of a morphological mutant are described for Heterorhabditis bacteriophora strain HP88. A homozygous inbred line was used as the base population for mutagenesis and genetic analysis of mutations. Mutagenesis was induced by exposing young hermaphrodites to 0.05 M ethyl methanesulfonate. A dumpy mutant (designated Hdpy-l) was isolated from the F₂ generation of the mutagenized population. Morphological studies with light and scanning electron microscopy revealed that the head region of the adult stage was compressed. The head region of the infective juvenile was distorted and the mouth open. Backcross with the original population was successful only between mutant hermaphrodites and wild type males; 50-100 percent of the progeny of this cross maintained the dumpy phenotype, indicating that the ratio between self- and external fertilization of the eggs is > 1 and that the dumpy mutation is recessive.  相似文献   

16.
The phosphate-specific transport operon, pstSCAB-phoU, of Gram-negative bacteria is an essential part of the Pho regulon. Its key roles are to encode a high-affinity inorganic phosphate transport system and to prevent activation of PhoB in phosphate-rich environments. In general, mutations in pstSCAB-phoU lead to the constitutive expression of the Pho regulon. Previously, we constructed a pstCA deletion mutant of Citrobacter rodentium and found it to be attenuated for virulence in mice, its natural host. This attenuation was dependent on PhoB or PhoB-regulated gene(s) because a phoB mutation restored virulence for mice to the pstCA mutant. To investigate how downstream genes may contribute to the virulence of C. rodentium, we used microarray analysis to investigate global gene expression of C. rodentium strain ICC169 and its isogenic pstCA mutant when grown in phosphate-rich medium. Overall 323 genes of the pstCA mutant were differentially expressed by at least 1.5-fold compared to the wild-type C. rodentium. Of these 145 were up-regulated and 178 were down-regulated. Differentially expressed genes included some involved in phosphate homoeostasis, cellular metabolism and protein metabolism. A large number of genes involved in stress responses and of unknown function were also differentially expressed, as were some virulence-associated genes. Up-regulated virulence-associated genes in the pstCA mutant included that for DegP, a serine protease, which appeared to be directly regulated by PhoB. Down-regulated genes included those for the production of the urease, flagella, NleG8 (a type III-secreted protein) and the tad focus (which encodes type IVb pili in Yersinia enterocolitica). Infection studies using C57/BL6 mice showed that DegP and NleG8 play a role in bacterial virulence. Overall, our study provides evidence that Pho is a global regulator of gene expression in C. rodentium and indicates the presence of at least two previously unrecognized virulence determinants of C. rodentium, namely, DegP and NleG8.  相似文献   

17.
Gluconeogenesis is an important metabolic pathway, which produces glucose from noncarbohydrate precursors such as organic acids, fatty acids, amino acids, or glycerol. Fructose-1,6-bisphosphatase, a key enzyme of gluconeogenesis, is found in all organisms, and five different classes of these enzymes have been identified. Here we demonstrate that Escherichia coli has two class II fructose-1,6-bisphosphatases, GlpX and YggF, which show different catalytic properties. We present the first crystal structure of a class II fructose-1,6-bisphosphatase (GlpX) determined in a free state and in the complex with a substrate (fructose 1,6-bisphosphate) or inhibitor (phosphate). The crystal structure of the ligand-free GlpX revealed a compact, globular shape with two α/β-sandwich domains. The core fold of GlpX is structurally similar to that of Li+-sensitive phosphatases implying that they have a common evolutionary origin and catalytic mechanism. The structure of the GlpX complex with fructose 1,6-bisphosphate revealed that the active site is located between two domains and accommodates several conserved residues coordinating two metal ions and the substrate. The third metal ion is bound to phosphate 6 of the substrate. Inorganic phosphate strongly inhibited activity of both GlpX and YggF, and the crystal structure of the GlpX complex with phosphate demonstrated that the inhibitor molecule binds to the active site. Alanine replacement mutagenesis of GlpX identified 12 conserved residues important for activity and suggested that Thr90 is the primary catalytic residue. Our data provide insight into the molecular mechanisms of the substrate specificity and catalysis of GlpX and other class II fructose-1,6-bisphosphatases.Fructose-1,6-bisphosphatase (FBPase,2 EC 3.1.3.11), a key enzyme of gluconeogenesis, catalyzes the hydrolysis of fructose 1,6-bisphosphate to form fructose 6-phosphate and orthophosphate. It is the reverse of the reaction catalyzed by phosphofructokinase in glycolysis, and the product, fructose 6-phosphate, is an important precursor in various biosynthetic pathways (1). In all organisms, gluconeogenesis is an important metabolic pathway that allows the cells to synthesize glucose from noncarbohydrate precursors, such as organic acids, amino acids, and glycerol. FBPases are members of the large superfamily of lithium-sensitive phosphatases, which includes three families of inositol phosphatases and FBPases (the phosphoesterase clan CL0171, 3167 sequences, Pfam data base). These enzymes show metal-dependent and lithium-sensitive phosphomonoesterase activity and include inositol polyphosphate 1-phosphatases, inositol monophosphatases (IMPases), 3′-phosphoadenosine 5′-phosphatases (PAPases), and enzymes acting on both inositol 1,4-bisphosphate and PAP (PIPases) (2). They possess a common structural core with the active site lying between α+β and α/β domains (3). Li+-sensitive phosphatases are putative targets for lithium therapy in the treatment of manic depressive patients (4), whereas FBPases are targets for the development of drugs for the treatment of noninsulin-dependent diabetes (5, 6). In addition, FBPase is required for virulence in Mycobacterium tuberculosis and Leishmania major and plays an important role in the production of lysine and glutamate by Corynebacterium glutamicum (7, 8).Presently, five different classes of FBPases have been proposed based on their amino acid sequences (FBPases I to V) (911). Eukaryotes contain only the FBPase I-type enzyme, but all five types exist in various prokaryotes. Types I, II, and III are primarily in bacteria, type IV in archaea (a bifunctional FBPase/inositol monophosphatase), and type V in thermophilic prokaryotes from both domains (11). Many organisms have more than one FBPase, mostly the combination of types I + II or II + III, but no bacterial genome has a combination of types I and III FBPases (9). The type I FBPase is the most widely distributed among living organisms and is the primary FBPase in Escherichia coli, most bacteria, a few archaea, and all eukaryotes (9, 1115). The type II FBPases are represented by the E. coli GlpX and FBPase F-I from Synechocystis PCC6803 (9, 16); type III is represented by the Bacillus subtilis FBPase (17); type IV is represented by the dual activity FBPases/inosine monophosphatases FbpA from Pyrococcus furiosus (18), MJ0109 from Methanococcus jannaschii (19), and AF2372 from Archaeoglobus fulgidus (20); and type V is represented by the FBPases TK2164 from Pyrococcus (Thermococcus) kodakaraensis and ST0318 from Sulfolobus tokodai (10, 21).Three-dimensional structures of the type I (from pig kidney, spinach chloroplasts, and E. coli), type IV (MJ0109 and AF2372), and type V (ST0318) FBPases have been solved (10, 11, 19, 20, 22, 23). FBPases I and IV and inositol monophosphatases share a common sugar phosphatase fold organized in five layered interleaved α-helices and β-sheets (α-β-α-β-α) (2, 19, 24). ST0318 (an FBPase V enzyme) is composed of one domain with a completely different four-layer α-β-β-α fold (10). The FBPases from these three classes (I, IV, and V) require divalent cations for activity (Mg2+, Mn2+, or Zn2+), and their structures have revealed the presence of three or four metal ions in the active site.E. coli has five Li+-sensitive phosphatases as follows: CysQ (a PAPase), SuhB (an IMPase), Fbp (a FBPase I enzyme), GlpX (a FBPase II), and YggF (an uncharacterized protein) (see the Pfam data base). CysQ is a 3′-phosphoadenosine 5′-phosphatase involved in the cysteine biosynthesis pathway (25, 26), whereas SuhB is an inositol monophosphatase (IMPase) that is also known as a suppressor of temperature-sensitive growth phenotypes in E. coli (27, 28). Fbp is required for growth on gluconeogenic substrates and probably represents the main gluconeogenic FBPase (12). This enzyme has been characterized both biochemically and structurally and shown to be inhibited by low concentrations of AMP (IC50 15 μm) (11, 29, 30). The E. coli GlpX, a class II enzyme FBPase, has been shown to possess a Mn2+-dependent FBPase activity (9). The increased expression of glpX from a multicopy plasmid complemented the Fbp- phenotype; however, the glpX knock-out strain grew normally on gluconeogenic substrates (succinate or glycerol) (9).In this study, we present the first structure of a class II FBPase, the E. coli GlpX, in a free state and in the complex with FBP + metals or phosphate. We have demonstrated that the fold of GlpX is similar to that of the lithium-sensitive phosphatases. We have identified the GlpX residues important for activity and proposed a catalytic mechanism. We have also showed that YggF is a third FBPase in E. coli, which has distinct catalytic properties and is more sensitive than GlpX to the inhibition by lithium or phosphate.  相似文献   

18.
Clathrin and clathrin-dependent events are evolutionary conserved although it is believed that there are differences in the requirement for clathrin in yeast and higher vertebrates. Clathrin is a long-lived protein and thus, with clathrin knockdowns only long-term consequences of clathrin depletion can be studied. Here, we characterize the first vertebrate temperature-sensitive clathrin heavy chain mutant as a tool to investigate responses to rapid clathrin inactivation in higher eukaryotes. Although we created this mutant using a clathrin cryo-electron microscopy model and a yeast temperature-sensitive mutant as a guide, the resulting temperature-sensitive clathrin showed an altered phenotype compared to the corresponding yeast temperature-sensitive clathrin. First, it seemed to form stable triskelions at the non-permissive temperature although endocytosis was impaired under these conditions. Secondly, as a likely consequence of the stable triskelions at the non-permissive temperature, clathrin also localized correctly to its target membranes. Thirdly, we did not observe missorting of the lysosomal enzyme beta-glucuronidase which could indicate that the temperature-sensitive clathrin is still operating at the non-permissive temperature at the Golgi or, that, like in yeast, more than one TGN trafficking pathway exists. Fourthly, in contrast to yeast, actin does not appear to actively compensate in general endocytosis. Thus, there seem to be differences between vertebrates and yeast which can be studied in further detail with this newly created tool.  相似文献   

19.
The Notch receptor is critical for proper development where it orchestrates numerous cell fate decisions. The Fringe family of β1,3-N-acetylglucosaminyltransferases are regulators of this pathway. Fringe enzymes add N-acetylglucosamine to O-linked fucose on the epidermal growth factor repeats of Notch. Here we have analyzed the reaction catalyzed by Lunatic Fringe (Lfng) in detail. A mutagenesis strategy for Lfng was guided by a multiple sequence alignment of Fringe proteins and solutions from docking an epidermal growth factor-like O-fucose acceptor substrate onto a homology model of Lfng. We targeted three main areas as follows: residues that could help resolve where the fucose binds, residues in two conserved loops not observed in the published structure of Manic Fringe, and residues predicted to be involved in UDP-N-acetylglucosamine (UDP-GlcNAc) donor specificity. We utilized a kinetic analysis of mutant enzyme activity toward the small molecule acceptor substrate 4-nitrophenyl-α-l-fucopyranoside to judge their effect on Lfng activity. Our results support the positioning of O-fucose in a specific orientation to the catalytic residue. We also found evidence that one loop closes off the active site coincident with, or subsequent to, substrate binding. We propose a mechanism whereby the ordering of this short loop may alter the conformation of the catalytic aspartate. Finally, we identify several residues near the UDP-GlcNAc-binding site, which are specifically permissive toward UDP-GlcNAc utilization.Defects in Notch signaling have been implicated in numerous human diseases, including multiple sclerosis (1), several forms of cancer (2-4), cerebral autosomal dominant arteriopathy with sub-cortical infarcts and leukoencephalopathy (5), and spondylocostal dysostosis (SCD)3 (6-8). The transmembrane Notch signaling receptor is activated by members of the DSL (Delta, Serrate, Lag2) family of ligands (9, 10). In the endoplasmic reticulum, O-linked fucose glycans are added to the epidermal growth factor-like (EGF) repeats of the Notch extracellular domain by protein O-fucosyltransferase 1 (11-13). These O-fucose monosaccharides can be elongated in the Golgi apparatus by three highly conserved β1,3-N-acetylglucosaminyltransferases of the Fringe family (Lunatic (Lfng), Manic (Mfng), and Radical Fringe (Rfng) in mammals) (14-16). The formation of this GlcNAc-β1,3-Fuc-α1, O-serine/threonine disaccharide is necessary and sufficient for subsequent elongation to a tetrasaccharide (15, 19), although elongation past the disaccharide in Drosophila is not yet clear (20, 21). Elongation of O-fucose by Fringe is known to potentiate Notch signaling from Delta ligands and inhibit signaling from Serrate ligands (22). Delta ligands are termed Delta-like (Delta-like1, -2, and -4) in mammals, and the homologs of Serrate are known as Jagged (Jagged1 and -2) in mammals. The effects of Fringe on Drosophila Notch can be recapitulated in Notch ligand in vitro binding assays using purified components, suggesting that the elongation of O-fucose by Fringe alters the binding of Notch to its ligands (21). Although Fringe also appears to alter Notch-ligand interactions in mammals, the effects of elongation of the glycan past the O-fucose monosaccharide is more complicated and appears to be cell type-, receptor-, and ligand-dependent (for a recent review see Ref. 23).The Fringe enzymes catalyze the transfer of GlcNAc from the donor substrate UDP-α-GlcNAc to the acceptor fucose, forming the GlcNAc-β1,3-Fuc disaccharide (14-16). They belong to the GT-A-fold of inverting glycosyltransferases, which includes N-acetylglucosaminyltransferase I and β1,4-galactosyltransferase I (17, 18). The mechanism is presumed to proceed through the abstraction of a proton from the acceptor substrate by a catalytic base (Asp or Glu) in the active site. This creates a nucleophile that attacks the anomeric carbon of the nucleotide-sugar donor, inverting its configuration from α (on the nucleotide sugar) to β (in the product) (24, 25). The enzyme then releases the acceptor substrate modified with a disaccharide and UDP. The Mfng structure (26) leaves little doubt as to the identity of the catalytic residue, which in all likelihood is aspartate 289 in mouse Lfng (we will use numbering for mouse Lunatic Fringe throughout, unless otherwise stated). The structure of Mfng with UDP-GlcNAc soaked into the crystals (26) showed density only for the UDP portion of the nucleotide-sugar donor and no density for two loops flanking either side of the active site. The presence of flexible loops that become ordered upon substrate binding is a common observation with glycosyltransferases in the GT-A fold family (18, 25). Density for the entire donor was observed in the structure of rabbit N-acetylglucosaminyltransferase I (27). In this case, ordering of a previously disordered loop upon UDP-GlcNAc binding may have contributed to increased stability of the donor. In the case of bovine β1,4-galactosyltransferase I, a section of flexible random coil from the apo-structure was observed to change its conformation to α-helical upon donor substrate binding (28). Both loops in Lfng are highly conserved, and we have mutated a number of residues in each to test the hypothesis that they interact with the substrates. The mutagenesis strategy was also guided by docking of an EGF-O-fucose acceptor substrate into the active site of the Lfng model as well as comparison of the Lfng model with a homology model of the β1,3-glucosyltransferase (β3GlcT) that modifies O-fucose on thrombospondin type 1 repeats (29, 30). The β3GlcT is predicted to be a GT-A fold enzyme related to the Fringe family (17, 18, 29).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号