首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

The DUSP9 locus on chromosome X was identified as a susceptibility locus for type 2 diabetes in a meta-analysis of European genome-wide association studies (GWAS), and GWAS in South Asian populations identified 6 additional single nucleotide polymorphism (SNP) loci for type 2 diabetes. However, the association of these loci with type 2 diabetes have not been examined in the Japanese. We performed a replication study to investigate the association of these 7 susceptibility loci with type 2 diabetes in the Japanese population.

Methods

We genotyped 11,319 Japanese participants (8,318 with type 2 diabetes and 3,001 controls) for each of the 7 SNPs–rs5945326 near DUSP9, rs3923113 near GRB14, rs16861329 in ST6GAL1, rs1802295 in VPS26A, rs7178572 in HMG20A, rs2028299 near AP3S2, and rs4812829 in HNF4A–and examined the association of each of these 7 SNPs with type 2 diabetes by using logistic regression analysis.

Results

All SNPs had the same direction of effect (odds ratio [OR]>1.0) as in the original reports. One SNP, rs5945326 near DUSP9, was significantly associated with type 2 diabetes at a genome-wide significance level (p = 2.21×10−8; OR 1.39, 95% confidence interval [CI]: 1.24−1.56). The 6 SNPs derived from South Asian GWAS were not significantly associated with type 2 diabetes in the Japanese population by themselves (p≥0.007). However, a genetic risk score constructed from 6 South Asian GWAS derived SNPs was significantly associated with Japanese type 2 diabetes (p = 8.69×10−4, OR  = 1.06. 95% CI; 1.03−1.10).

Conclusions/interpretation

These results indicate that the DUSP9 locus is a common susceptibility locus for type 2 diabetes across different ethnicities, and 6 loci identified in South Asian GWAS also have significant effect on susceptibility to Japanese type 2 diabetes.  相似文献   

2.
To date, eleven genome-wide significant (GWS) loci (P < 5×10−8) for polycystic ovary syndrome (PCOS) have been identified through genome-wide association studies (GWAS). Some of the risk loci have been selected for replications and validated in multiple ethnicities, however, few previous studies investigated all loci. Scanning all the GWAS variants would demonstrate a more informative profile of variance they explained. Thus, we analyzed all the 17 single nucleotide polymorphisms (SNPs) mapping to the 11 GWAS loci in an independent sample set of 800 Chinese subjects with PCOS and 1110 healthy controls systematically. Variants of rs3802457 in C9orf3 locus (P = 5.99×10−4) and rs13405728 in LHCGR locus (P = 3.73×10−4) were significantly associated with PCOS after the strict Bonferroni correction in our data set. The further haplotype analysis indicated that in the block of C9orf3 gene (rs4385527 and rs3802457), GA haplotype played a protective role in PCOS (8.7 vs 5.0, P = 9.85×10−6, OR = 0.548, 95%CI = 0.418–0.717), while GG haplotype was found suffering from an extraordinarily increased risk of PCOS (73.6% vs79.2%, P = 3.41×10−5, OR = 1.394, 95%CI = 1.191–1.632). Moreover, the directions of effects for all SNPs were consistent with previous GWAS reports (P = 1.53×10−5). Polygenic score analysis demonstrated that these 17 SNPs have a significant capacity on predicting case-control status in our samples (P = 7.17×10−9), meanwhile all these gathered 17 SNPs explained about 2.40% of variance. Our findings supported that C9orf3 and LHCGR loci variants were vital susceptibility of PCOS.  相似文献   

3.
Although more than 20 genetic susceptibility loci have been reported for type 2 diabetes (T2D), most reported variants have small to moderate effects and account for only a small proportion of the heritability of T2D, suggesting that the majority of inter-person genetic variation in this disease remains to be determined. We conducted a multistage, genome-wide association study (GWAS) within the Asian Consortium of Diabetes to search for T2D susceptibility markers. From 590,887 SNPs genotyped in 1,019 T2D cases and 1,710 controls selected from Chinese women in Shanghai, we selected the top 2,100 SNPs that were not in linkage disequilibrium (r2<0.2) with known T2D loci for in silico replication in three T2D GWAS conducted among European Americans, Koreans, and Singapore Chinese. The 5 most promising SNPs were genotyped in an independent set of 1,645 cases and 1,649 controls from Shanghai, and 4 of them were further genotyped in 1,487 cases and 3,316 controls from 2 additional Chinese studies. Consistent associations across all studies were found for rs1359790 (13q31.1), rs10906115 (10p13), and rs1436955 (15q22.2) with P-values (per allele OR, 95%CI) of 6.49×10−9 (1.15, 1.10–1.20), 1.45×10−8 (1.13, 1.08–1.18), and 7.14×10−7 (1.13, 1.08–1.19), respectively, in combined analyses of 9,794 cases and 14,615 controls. Our study provides strong evidence for a novel T2D susceptibility locus at 13q31.1 and the presence of new independent risk variants near regions (10p13 and 15q22.2) reported by previous GWAS.  相似文献   

4.
5.
Elucidation of the genetic susceptibility factors for diabetic retinopathy (DR) is important to gain insight into the pathogenesis of DR, and may help to define genetic risk factors for this condition. In the present study, we conducted a three-stage genome-wide association study (GWAS) to identify DR susceptibility loci in Japanese patients, which comprised a total of 837 type 2 diabetes patients with DR (cases) and 1,149 without DR (controls). From the stage 1 genome-wide scan of 446 subjects (205 cases and 241 controls) on 614,216 SNPs, 249 SNPs were selected for the stage 2 replication in 623 subjects (335 cases and 288 controls). Eight SNPs were further followed up in a stage 3 study of 297 cases and 620 controls. The top signal from the present association analysis was rs9362054 in an intron of RP1-90L14.1 showing borderline genome-wide significance (Pmet = 1.4×10−7, meta-analysis of stage 1 and stage 2, allele model). RP1-90L14.1 is a long intergenic non-coding RNA (lincRNA) adjacent to KIAA1009/QN1/CEP162 gene; CEP162 plays a critical role in ciliary transition zone formation before ciliogenesis. The present study raises the possibility that the dysregulation of ciliary-associated genes plays a role in susceptibility to DR.  相似文献   

6.
《PloS one》2013,8(12)
Plasma lipid levels are important risk factors for cardiovascular disease and are influenced by genetic and environmental factors. Recent genome wide association studies (GWAS) have identified several lipid-associated loci, but these loci have been identified primarily in European populations. In order to identify genetic markers for lipid levels in a Chinese population and analyze the heterogeneity between Europeans and Asians, especially Chinese, we performed a meta-analysis of two genome wide association studies on four common lipid traits including total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) in a Han Chinese population totaling 3,451 healthy subjects. Replication was performed in an additional 8,830 subjects of Han Chinese ethnicity. We replicated eight loci associated with lipid levels previously reported in a European population. The loci genome wide significantly associated with TC were near DOCK7, HMGCR and ABO; those genome wide significantly associated with TG were near APOA1/C3/A4/A5 and LPL; those genome wide significantly associated with LDL were near HMGCR, ABO and TOMM40; and those genome wide significantly associated with HDL were near LPL, LIPC and CETP. In addition, an additive genotype score of eight SNPs representing the eight loci that were found to be associated with lipid levels was associated with higher TC, TG and LDL levels (P = 5.52×10-16, 1.38×10-6 and 5.59×10-9, respectively). These findings suggest the cumulative effects of multiple genetic loci on plasma lipid levels. Comparisons with previous GWAS of lipids highlight heterogeneity in allele frequency and in effect size for some loci between Chinese and European populations. The results from our GWAS provided comprehensive and convincing evidence of the genetic determinants of plasma lipid levels in a Chinese population.  相似文献   

7.
《PloS one》2016,11(3)

Background

Data are limited on genome-wide association studies (GWAS) for incident coronary heart disease (CHD). Moreover, it is not known whether genetic variants identified to date also associate with risk of CHD in a prospective setting.

Methods

We performed a two-stage GWAS analysis of incident myocardial infarction (MI) and CHD in a total of 64,297 individuals (including 3898 MI cases, 5465 CHD cases). SNPs that passed an arbitrary threshold of 5×10−6 in Stage I were taken to Stage II for further discovery. Furthermore, in an analysis of prognosis, we studied whether known SNPs from former GWAS were associated with total mortality in individuals who experienced MI during follow-up.

Results

In Stage I 15 loci passed the threshold of 5×10−6; 8 loci for MI and 8 loci for CHD, for which one locus overlapped and none were reported in previous GWAS meta-analyses. We took 60 SNPs representing these 15 loci to Stage II of discovery. Four SNPs near QKI showed nominally significant association with MI (p-value<8.8×10−3) and three exceeded the genome-wide significance threshold when Stage I and Stage II results were combined (top SNP rs6941513: p = 6.2×10−9). Despite excellent power, the 9p21 locus SNP (rs1333049) was only modestly associated with MI (HR = 1.09, p-value = 0.02) and marginally with CHD (HR = 1.06, p-value = 0.08). Among an inception cohort of those who experienced MI during follow-up, the risk allele of rs1333049 was associated with a decreased risk of subsequent mortality (HR = 0.90, p-value = 3.2×10−3).

Conclusions

QKI represents a novel locus that may serve as a predictor of incident CHD in prospective studies. The association of the 9p21 locus both with increased risk of first myocardial infarction and longer survival after MI highlights the importance of study design in investigating genetic determinants of complex disorders.  相似文献   

8.
《PloS one》2013,8(4)
To discover susceptibility genes of late-onset Alzheimer’s disease (LOAD), we conducted a 3-stage genome-wide association study (GWAS) using three populations: Japanese from the Japanese Genetic Consortium for Alzheimer Disease (JGSCAD), Koreans, and Caucasians from the Alzheimer Disease Genetic Consortium (ADGC). In Stage 1, we evaluated data for 5,877,918 genotyped and imputed SNPs in Japanese cases (n = 1,008) and controls (n = 1,016). Genome-wide significance was observed with 12 SNPs in the APOE region. Seven SNPs from other distinct regions with p-values <2×10−5 were genotyped in a second Japanese sample (885 cases, 985 controls), and evidence of association was confirmed for one SORL1 SNP (rs3781834, P = 7.33×10−7 in the combined sample). Subsequent analysis combining results for several SORL1 SNPs in the Japanese, Korean (339 cases, 1,129 controls) and Caucasians (11,840 AD cases, 10,931 controls) revealed genome wide significance with rs11218343 (P = 1.77×10−9) and rs3781834 (P = 1.04×10−8). SNPs in previously established AD loci in Caucasians showed strong evidence of association in Japanese including rs3851179 near PICALM (P = 1.71×10−5) and rs744373 near BIN1 (P = 1.39×10−4). The associated allele for each of these SNPs was the same as in Caucasians. These data demonstrate for the first time genome-wide significance of LOAD with SORL1 and confirm the role of other known loci for LOAD in Japanese. Our study highlights the importance of examining associations in multiple ethnic populations.  相似文献   

9.
IntroductionAlthough susceptibility genes for anti-citrullinated peptide/protein antibodies (ACPA)-positive rheumatoid arthritis (RA) have been successfully discovered by genome-wide association studies (GWAS), little is known about the genetic background of ACPA-negative RA. We intended to elucidate genetic background of ACPA-negative RA.MethodWe performed a meta-analysis of GWAS comprising 670 ACPA-negative RA and 16,891 controls for 1,948,138 markers, followed by a replication study of the top 35 single nucleotide polymorphisms (SNPs) using 916 cases and 3,764 controls. Inverse-variance method was applied to assess overall effects. To assess overlap of susceptibility loci between ACPA-positive and -negative RA, odds ratios (ORs) of the 21 susceptibility markers to RA in Japanese were compared between the two subsets. In addition, SNPs were stratified by the p-values in GWAS meta-analysis for either ACPA-positive RA or ACPA-negative RA to address the question whether weakly-associated genes were also shared. The correlations between ACPA-positive RA and the subpopulations of ACPA-negative RA (rheumatoid factor (RF)-positive and RF-negative subsets) were also addressed.ResultsRs6904716 in LEMD2 of the human leukocyte antigen (HLA) locus showed a borderline association with ACPA-negative RA (overall p = 5.7 × 10−8), followed by rs6986423 in CSMD1 (p = 2.4 × 10−6) and rs17727339 in FCRL3 (p = 1.4 × 10−5). ACPA-negative RA showed significant correlations of ORs with ACPA-positive RA for the 21 susceptibility SNPs and non-HLA SNPs with p-values far from significance. These significant correlations with ACPA-positive RA were true for ACPA-negative RF-positive and ACPA-negative RF-negative RA. On the contrary, positive correlations were not observed between the ACPA-negative two subpopulations.ConclusionMany of the susceptibility loci were shared between ACPA-positive and -negative RA.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0623-4) contains supplementary material, which is available to authorized users.  相似文献   

10.
Adolescent idiopathic scoliosis (AIS) is a clinically significant disorder with high heritability that affects 2–4% of the population. Genome-wide association studies have identified LBX1 as a strong susceptibility locus for AIS in Asian and Caucasian populations. Here we further dissect the genetic association with AIS in a Caucasian population. To identify genetic markers associated with AIS we employed a genome-wide association study (GWAS) design comparing 620 female Caucasian patients who developed idiopathic scoliosis during adolescence with 1,287 ethnically matched females who had normal spinal curves by skeletal maturity. The genomic region around LBX1 was imputed and haplotypes investigated for genetic signals under different inheritance models. The strongest signal was identified upstream of LBX1 (rs11190878, Ptrend = 4.18×10-9, OR = 0.63[0.54–0.74]). None of the remaining SNPs pass the genome-wide significance threshold. We found rs11190870, downstream of LBX1 and previously associated with AIS in Asian populations, to be in modest linkage disequilibrium (LD) with rs11190878 (r2 = 0.40, D'' = 0.81). Haplotype analysis shows that rs11190870 and rs11190878 track a single risk factor that resides on the ancestral haplotype and is shared across ethnic groups. We identify six haplotypes at the LBX1 locus including two strongly associated haplotypes; a recessive risk haplotype (TTA, Controlfreq = 0.52, P = 1.25×10-9, OR = 1.56), and a co-dominant protective haplotype (CCG, Controlfreq = 0.28, P = 2.75×10-7, OR = 0.65). Together the association signals from LBX1 explain 1.4% of phenotypic variance. Our results identify two clinically relevant haplotypes in the LBX1-region with opposite effects on AIS risk. The study demonstrates the utility of haplotypes over un-phased SNPs for individualized risk assessment by more strongly delineating individuals at risk for AIS without compromising the effect size.  相似文献   

11.

Background

Adolescent idiopathic scoliosis (AIS) is one of the most common spinal deformities found in adolescent populations. Recently, a genome-wide association study (GWAS) in a Japanese population indicated that three single nucleotide polymorphisms (SNPs), rs11190870, rs625039 and rs11598564, all located near the LBX1 gene, may be associated with AIS susceptibility [1]. This study suggests a novel AIS predisposition candidate gene and supports the hypothesis that somatosensory functional disorders could contribute to the pathogenesis of AIS. These findings warrant replication in other populations.

Methodology/Principal Findings

First, we conducted a case-control study consisting of 953 Chinese Han individuals from southern China (513 patients and 440 healthy controls), and the three SNPs were all found to be associated with AIS predisposition. The ORs were observed as 1.49 (95% CI 1.23–1.80, P = 5.09E-5), 1.70 (95% CI 1.42–2.04, P = 1.17E-8) and 1.52 (95% CI 1.27–1.83, P = 5.54E-6) for rs625039, rs11190870 and rs11598564, respectively. Second, a case-only study including a subgroup of AIS patients (N = 234) was performed to determine the effects of these variants on the severity of the condition. However, we did not find any association between these variants and the severity of curvature.

Conclusion

This study shows that the genetic variants near the LBX1 gene are associated with AIS susceptibility in Chinese Han population. It successfully replicates the results of the GWAS, which was performed in a Japanese population.  相似文献   

12.

Background

Age at natural menopause (ANM) is a complex trait with high heritability and is associated with several major hormonal-related diseases. Recently, several genome-wide association studies (GWAS), conducted exclusively among women of European ancestry, have discovered dozens of genetic loci influencing ANM. No study has been conducted to evaluate whether these findings can be generalized to Chinese women.

Methodology/Principal Findings

We evaluated the index single nucleotide polymorphisms (SNPs) in 19 GWAS-identified genetic susceptibility loci for ANM among 3,533 Chinese women who had natural menopause. We also investigated 3 additional SNPs which were in LD with the index SNP in European-ancestry but not in Asian-ancestry populations. Two genetic risk scores (GRS) were calculated to summarize SNPs across multiple loci one for all SNPs tested (GRSall), and one for SNPs which showed association in our study (GRSsel). All 22 SNPs showed the same association direction as previously reported. Eight SNPs were nominally statistically significant with P≤0.05: rs4246511 (RHBDL2), rs12461110 (NLRP11), rs2307449 (POLG), rs12611091 (BRSK1), rs1172822 (BRSK1), rs365132 (UIMC1), rs2720044 (ASH2L), and rs7246479 (TMEM150B). Especially, SNPs rs4246511, rs365132, rs1172822, and rs7246479 remained significant even after Bonferroni correction. Significant associations were observed for GRS. Women in the highest quartile began menopause 0.7 years (P = 3.24×10−9) and 0.9 years (P = 4.61×10−11) later than those in the lowest quartile for GRSsel and GRSall, respectively.

Conclusions

Among the 22 investigated SNPs, eight showed associations with ANM (P<0.05) in our Chinese population. Results from this study extend some recent GWAS findings to the Asian-ancestry population and may guide future efforts to identify genetic determination of menopause.  相似文献   

13.
Congenital heart disease (CHD) is the most common form of congenital human birth anomalies and a leading cause of perinatal and infant mortality. Some studies including our published genome-wide association study (GWAS) of CHD have indicated that genetic variants may contribute to the risk of CHD. Recently, Cordell et al. published a GWAS of multiple CHD phenotypes in European Caucasians and identified 3 susceptibility loci (rs870142, rs16835979 and rs6824295) for ostium secundum atrial septal defect (ASD) at chromosome 4p16. However, whether these loci at 4p16 confer the predisposition to CHD in Chinese population is unclear. In the current study, we first analyzed the associations between these 3 single nucleotide polymorphisms (SNPs) at 4p16 and CHD risk by using our existing genome-wide scan data and found all of the 3 SNPs showed significant associations with ASD in the same direction as that observed in Cordell’s study, but not with other subtypes- ventricular septal defect (VSD) and ASD combined VSD. As these 3 SNPs were in high linkage disequilibrium (LD) in Chinese population, we selected one SNP with the lowest P value in our GWAS scan (rs16835979) to perform a replication study with additional 1,709 CHD cases with multiple phenotypes and 1,962 controls. The significant association was also observed only within the ASD subgroup, which was heterogeneous from other disease groups. In combined GWAS and replication samples, the minor allele of rs16835979 remained significant association with the risk of ASD (OR = 1.22, 95% CI = 1.08–1.38, P = 0.001). Our findings suggest that susceptibility loci of ASD identified from Cordell’s European GWAS are generalizable to Chinese population, and such investigation may provide new insights into the roles of genetic variants in the etiology of different CHD phenotypes.  相似文献   

14.
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10−8). SNP rs7560163 (P = 7.0×10−9, OR (95% CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10−5) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.  相似文献   

15.
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15×10−94<P<5×10−8, odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2×10−23 < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.  相似文献   

16.
A genome-wide association scan of type 1 diabetic patients from the GoKinD collections previously identified four novel diabetic nephropathy susceptibility loci that have subsequently been shown to be associated with diabetic nephropathy in unrelated patients with type 2 diabetes. To expand these findings, we examined whether single nucleotide polymorphisms (SNPs) at these susceptibility loci were associated with diabetic nephropathy in patients from the Joslin Study of Genetics of Nephropathy in Type 2 Diabetes Family Collection. Six SNPs across the four loci identified in the GoKinD collections and 7 haplotype tagging SNPs, were genotyped in 66 extended families of European ancestry. Pedigrees from this collection contained an average of 18.5 members, including 2 to 14 members with type 2 diabetes. Among diabetic family members, the 9q21.32 locus approached statistical significance with advanced diabetic nephropathy (P = 0.037 [adjusted P = 0.222]). When we expanded our definition of diabetic nephropathy to include individuals with high microalbuminuria, the strength of this association improved significantly (P = 1.42×10−3 [adjusted P = 0.009]). This same locus also trended toward statistical significance with variation in urinary albumin excretion in family members with type 2 diabetes (P = 0.032 [adjusted P = 0.192]) and in analyses expanded to include all relatives (P = 0.019 [adjusted P = 0.114]). These data increase support that SNPs identified in the GoKinD collections on chromosome 9q21.32 are true diabetic nephropathy susceptibility loci.  相似文献   

17.
Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10−6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10−8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10−8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10−8; RREB1: p = 5.7×10−8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.  相似文献   

18.
Genome-wide association studies (GWASs) primarily performed in European-ancestry (EA) populations have identified numerous loci associated with body mass index (BMI). However, it is still unclear whether these GWAS loci can be generalized to other ethnic groups, such as African Americans (AAs). Furthermore, the putative functional variant or variants in these loci mostly remain under investigation. The overall lower linkage disequilibrium in AA compared to EA populations provides the opportunity to narrow in or fine-map these BMI-related loci. Therefore, we used the Metabochip to densely genotype and evaluate 21 BMI GWAS loci identified in EA studies in 29,151 AAs from the Population Architecture using Genomics and Epidemiology (PAGE) study. Eight of the 21 loci (SEC16B, TMEM18, ETV5, GNPDA2, TFAP2B, BDNF, FTO, and MC4R) were found to be associated with BMI in AAs at 5.8 × 10−5. Within seven out of these eight loci, we found that, on average, a substantially smaller number of variants was correlated (r2 > 0.5) with the most significant SNP in AA than in EA populations (16 versus 55). Conditional analyses revealed GNPDA2 harboring a potential additional independent signal. Moreover, Metabochip-wide discovery analyses revealed two BMI-related loci, BRE (rs116612809, p = 3.6 × 10−8) and DHX34 (rs4802349, p = 1.2 × 10−7), which were significant when adjustment was made for the total number of SNPs tested across the chip. These results demonstrate that fine mapping in AAs is a powerful approach for both narrowing in on the underlying causal variants in known loci and discovering BMI-related loci.  相似文献   

19.

Introduction

C-reactive protein (CRP) levels are associated with cardiovascular disease and systemic inflammation. We assessed whether CRP-associated loci were associated with serum CRP and retinal markers of microvascular disease, in Asian populations.

Methods

Genome-wide association analysis (GWAS) for serum CRP was performed in East-Asian Chinese (N = 2,434) and Malays (N = 2,542) and South-Asian Indians (N = 2,538) from Singapore. Leveraging on GWAS data, we assessed, in silico, association levels among the Singaporean datasets for 22 recently identified CRP-associated loci. At loci where directional inconsistencies were observed, quantification of inter-ethnic linkage disequilibrium (LD) difference was determined. Next, we assessed association for a variant at CRP and retinal vessel traits [central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE)] in a total of 24,132 subjects of East-Asian, South-Asian and European ancestry.

Results

Serum CRP was associated with SNPs in/near APOE, CRP, HNF1A and LEPR (p-values ≤4.7×10−8) after meta-analysis of Singaporean populations. Using a candidate-SNP approach, we further replicated SNPs at 4 additional loci that had been recently identified to be associated with serum CRP (IL6R, GCKR, IL6 and IL1F10) (p-values ≤0.009), in the Singaporean datasets. SNPs from these 8 loci explained 4.05% of variance in serum CRP. Two SNPs (rs2847281 and rs6901250) were detected to be significant (p-value ≤0.036) but with opposite effect directions in the Singaporean populations as compared to original European studies. At these loci we did not detect significant inter-population LD differences. We further did not observe a significant association between CRP variant and CRVE or CRAE levels after meta-analysis of all Singaporean and European datasets (p-value >0.058).

Conclusions

Common variants associated with serum CRP, first detected in primarily European studies, are also associated with CRP levels in East-Asian and South-Asian populations. We did not find a causal link between CRP and retinal measures of microvascular disease.  相似文献   

20.
Many candidate genes have been studied for asthma, but replication has varied. Novel candidate genes have been identified for various complex diseases using genome-wide association studies (GWASs). We conducted a GWAS in 492 Mexican children with asthma, predominantly atopic by skin prick test, and their parents using the Illumina HumanHap 550 K BeadChip to identify novel genetic variation for childhood asthma. The 520,767 autosomal single nucleotide polymorphisms (SNPs) passing quality control were tested for association with childhood asthma using log-linear regression with a log-additive risk model. Eleven of the most significantly associated GWAS SNPs were tested for replication in an independent study of 177 Mexican case–parent trios with childhood-onset asthma and atopy using log-linear analysis. The chromosome 9q21.31 SNP rs2378383 (p = 7.10×10−6 in the GWAS), located upstream of transducin-like enhancer of split 4 (TLE4), gave a p-value of 0.03 and the same direction and magnitude of association in the replication study (combined p = 6.79×10−7). Ancestry analysis on chromosome 9q supported an inverse association between the rs2378383 minor allele (G) and childhood asthma. This work identifies chromosome 9q21.31 as a novel susceptibility locus for childhood asthma in Mexicans. Further, analysis of genome-wide expression data in 51 human tissues from the Novartis Research Foundation showed that median GWAS significance levels for SNPs in genes expressed in the lung differed most significantly from genes not expressed in the lung when compared to 50 other tissues, supporting the biological plausibility of our overall GWAS findings and the multigenic etiology of childhood asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号