首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prethrombin-2 is the immediate zymogen precursor of the clotting enzyme thrombin, which is generated upon cleavage at R15 and separation of the A chain and catalytic B chain. The X-ray structure of prethrombin-2 determined in the free form at 1.9 ? resolution shows the 215-217 segment collapsed into the active site and occluding 49% of the volume available for substrate binding. Remarkably, some of the crystals harvested from the same crystallization well, under identical solution conditions, diffract to 2.2 ? resolution in the same space group but produce a structure in which the 215-217 segment moves >5 ? and occludes 24% of the volume available for substrate binding. The two alternative conformations of prethrombin-2 have the side chain of W215 relocating >9 ? within the active site and are relevant to the allosteric E*-E equilibrium of the mature enzyme. Another unanticipated feature of prethrombin-2 bears on the mechanism of prothrombin activation. R15 is found buried within the protein in ionic interactions with E14e, D14l, and E18, thereby making its exposure to solvent necessary for proteolytic attack and conversion to thrombin. On the basis of this structural observation, we constructed the E14eA/D14lA/E18A triple mutant to reduce the level of electrostatic coupling with R15 and promote zymogen activation. The mutation causes prethrombin-2 to spontaneously convert to thrombin, without the need for the snake venom ecarin or the physiological prothrombinase complex.  相似文献   

2.
Niu W  Chen Z  Gandhi PS  Vogt AD  Pozzi N  Pelc LA  Zapata F  Di Cera E 《Biochemistry》2011,50(29):6301-6307
Protein allostery is based on the existence of multiple conformations in equilibrium linked to distinct functional properties. Although evidence of allosteric transitions is relatively easy to identify by functional studies, structural detection of a pre-existing equilibrium between alternative conformations remains challenging even for textbook examples of allosteric proteins. Kinetic studies show that the trypsin-like protease thrombin exists in equilibrium between two conformations where the active site is either collapsed (E*) or accessible to substrate (E). However, structural demonstration that the two conformations exist in the same enzyme construct free of ligands has remained elusive. Here we report the crystal structure of the thrombin mutant N143P in the E form, which complements the recently reported structure in the E* form, and both the E and E* forms of the thrombin mutant Y225P. The side chain of W215 moves 10.9 ? between the two forms, causing a displacement of 6.6 ? of the entire 215-217 segment into the active site that in turn opens or closes access to the primary specificity pocket. Rapid kinetic measurements of p-aminobenzamidine binding to the active site confirm the existence of the E*-E equilibrium in solution for wild-type and the mutants N143P and Y225P. These findings provide unequivocal proof of the allosteric nature of thrombin and lend strong support to the recent proposal that the E*-E equilibrium is a key property of the trypsin fold.  相似文献   

3.
Amide H/2H exchange reveals a mechanism of thrombin activation   总被引:1,自引:0,他引:1  
Koeppe JR  Komives EA 《Biochemistry》2006,45(25):7724-7732
Thrombin is a dual action serine protease in the blood clotting cascade. Similar to other clotting factors, thrombin is mainly present in the blood in a zymogen form, prothrombin. Although the two cleavage events required to activate thrombin are well-known, little is known about why the thrombin precursors are inactive proteases. Although prothrombin is much larger than thrombin, prethrombin-2, which contains all of the same amino acids as thrombin, but has not yet been cleaved between Arg320 and Ile321, remains inactive. Crystal structures of both prethrombin-2 and thrombin are available and show almost no differences in the active site conformations. Slight differences were, however, seen in the loops surrounding the active site, which are larger in thrombin than in most other trypsin-like proteases, and have been shown to be important for substrate specificity. To explore whether the dynamics of the active site loops were different in the various zymogen forms of thrombin, we employed amide H/(2)H exchange experiments to compare the exchange rates of regions of thrombin with the same regions of prothrombin, prethrombin-2, and meizothrombin. Many of the surface loops showed less exchange in the zymogen forms, including the large loop corresponding to anion binding exosite 1. Conversely, the autolysis loop and sodium-binding site exchanged more readily in the zymogen forms. Prothrombin and prethrombin-2 gave nearly identical results while meizothrombin in some regions more closely resembled active thrombin. Thus, cleavage of the Arg320-Ile321 peptide bond is the key to formation of the active enzyme, which involves increased dynamics of the substrate-binding loops and decreased dynamics of the catalytic site.  相似文献   

4.
For over four decades, two competing mechanisms of ligand recognition-conformational selection and induced-fit-have dominated our interpretation of protein allostery. Defining the mechanism broadens our understanding of the system and impacts our ability to design effective drugs and new therapeutics. Recent kinetics studies demonstrate that trypsin-like proteases exist in equilibrium between two forms: one fully accessible to substrate (E) and the other with the active site occluded (E*). Analysis of the structural database confirms existence of the E* and E forms and vouches for the allosteric nature of the trypsin fold. Allostery in terms of conformational selection establishes an important paradigm in the protease field and enables protein engineers to expand the repertoire of proteases as therapeutics.  相似文献   

5.
AD Vogt  E Di Cera 《Biochemistry》2012,51(30):5894-5902
For almost five decades, two competing mechanisms of ligand recognition, conformational selection and induced fit, have dominated our interpretation of ligand binding in biological macromolecules. When binding-dissociation events are fast compared to conformational transitions, the rate of approach to equilibrium, k(obs), becomes diagnostic of conformational selection or induced fit based on whether it decreases or increases, respectively, with the ligand concentration, [L]. However, this simple conclusion based on the rapid equilibrium approximation is not valid in general. Here we show that conformational selection is associated with a rich repertoire of kinetic properties, with k(obs) decreasing or increasing with [L] depending on the relative magnitude of the rate of ligand dissociation, k(off), and the rate of conformational isomerization, k(r). We prove that, even for the simplest two-step mechanism of ligand binding, a decrease in k(obs) with [L] is unequivocal evidence of conformational selection, but an increase in k(obs) with [L] is not unequivocal evidence of induced fit. Ligand binding to glucokinase, thrombin, and its precursor prethrombin-2 are used as relevant examples. We conclude that conformational selection as a mechanism for a ligand binding to its target may be far more common than currently believed.  相似文献   

6.
Thrombin     
Thrombin is a Na+-activated, allosteric serine protease that plays opposing functional roles in blood coagulation. Binding of Na+ is the major driving force behind the procoagulant, prothrombotic and signaling functions of the enzyme, but is dispensable for cleavage of the anticoagulant protein C. The anticoagulant function of thrombin is under the allosteric control of the cofactor thrombomodulin. Much has been learned on the mechanism of Na+ binding and recognition of natural substrates by thrombin. Recent structural advances have shed light on the remarkable molecular plasticity of this enzyme and the molecular underpinnings of thrombin allostery mediated by binding to exosite I and the Na+ site. This review summarizes our current understanding of the molecular basis of thrombin function and allosteric regulation. The basic information emerging from recent structural, mutagenesis and kinetic investigation of this important enzyme is that thrombin exists in three forms, E*, E and E:Na+, that interconvert under the influence of ligand binding to distinct domains. The transition between the Na+ -free slow from E and the Na+ -bound fast form E:Na+ involves the structure of the enzyme as a whole, and so does the interconversion between the two Na+ -free forms E* and E. E* is most likely an inactive form of thrombin, unable to interact with Na + and substrate. The complexity of thrombin function and regulation has gained this enzyme pre-eminence as the prototypic allosteric serine protease. Thrombin is now looked upon as a model system for the quantitative analysis of biologically important enzymes.  相似文献   

7.
Trypsin-like proteases (TLPs) are a large family of enzymes responsible for digestion, blood coagulation, fibrinolysis, development, fertilization, apoptosis and immunity. A current paradigm posits that the irreversible transition from an inactive zymogen to the active protease form enables productive interaction with substrate and catalysis. Analysis of the entire structural database reveals two distinct conformations of the active site: one fully accessible to substrate (E) and the other occluded by the collapse of a specific segment (E*). The allosteric E*-E equilibrium provides a reversible mechanism for activity and regulation in addition to the irreversible zymogen to protease conversion and points to new therapeutic strategies aimed at inhibiting or activating the enzyme. In this review, we discuss relevant examples, with emphasis on the rational engineering of anticoagulant thrombin mutants.  相似文献   

8.
Human thrombin (EC 3.4.21.5) binds tightly to p-chlorobenzylamido-epsilon-aminocaproyl agarose, and is not eluted by 2 M NaCl at pH 8. Its zymogen, human prothrombin, does not bind to the same absorbent. 2 M NaCl partially elutes DFP-treated thrombin. For native human and bovine thrombins, protein and activity are quantitatively eluted by 25% dioxane, and upon rechromatography the active human enzyme exhibits the same binding properties. Equally tight binding of human thrombin occurs with derivatives of the m- and p-chlorobenzylamines. With the o-chloro derivative or benzylamine itself insolubilized to epsilon-aminocaproyl agarose, thrombin is eluted by high ionic strength. Bovine trypsin and bovine factor Xa bind less tightly than thrombin to p-chlorobenzylamido-epsilon-aminocaproyl agarose, being eluted by high ionic strength. It is proposed that the specific thrombin adsorption is related to a secondary binding site of high affinity and with hydrophobic properties. This site is not available in the zymogen. Furthermore, the less specific protease, trypsin, and the more specific protease, factor Xa, lack this binding site.  相似文献   

9.
An activator complex from the venom of Oxyuranus scutellatus scutellatus (taipan venom) is known to rapidly activate prothrombin to thrombin. To determine whether, similar to prothrombinase, taipan venom utilizes proexosite-1 on prothrombin for a productive complex assembly, the activation of proexosite-1 mutants of prethrombin-1 by the partially purified venom was studied. It was discovered that basic residues of this site (Arg(35), Lys(36), Arg(67), Lys(70), Arg(73), Arg(75), and Arg(77)) are also crucial for recognition and rapid activation of the substrate by taipan venom. This was evidenced by the observation that the K(m) and k(cat) values for the activation of the charge reversal mutants of prethrombin-1 (in particular K36E, R67E, and K70E) were markedly impaired. Competitive kinetic studies with the Tyr(63)-sulfated hirudin(54-65) peptide revealed that although the peptide inhibits the activation of the wild type zymogen by taipan venom with a K(D) of approximately 2 microm, it is ineffective in inhibiting the activation of mutant zymogens (K(D) > 4-30 microm). Interestingly, an approximately 50-kDa activator, isolated from the taipan venom complex, catalyzed the activation of prothrombin in a factor Va-dependent manner and exhibited identical activation kinetics toward the substrate in the presence of the hirudin peptide. These results suggest that, similar to prothrombinase, proexosite-1 is a cofactor-dependent recognition site for taipan venom.  相似文献   

10.
It was found that human platelets possess a high sensitivity towards alpha-thrombin (Km = 2 nM). Modified thrombin forms (beta/gamma-thrombin) with an impaired recognition site of high molecular weight substrates and DIP-alpha-thrombin and trypsin are incapable of inducing platelet aggregation when taken at concentrations corresponding to effective concentrations of alpha-thrombin. Beta/gamma-Thrombin and trypsin, unlike DIP-alpha-thrombin, cause platelet aggregation at concentrations of 100-200 nM. Studies on the modulating effects of modified thrombin forms, alpha-thrombin and trypsin, on platelet aggregation induced by alpha-thrombin revealed that beta/gamma-thrombin, alpha-thrombin and trypsin at concentrations causing no cell aggregation potentiate the platelet response after 2 min incubation and inhibit platelet aggregation upon prolonged (15 min) incubation. However, DIP-alpha-thrombin, irrespective of the incubation time (up to 30 min) increased the sensitivity of platelets to alpha-thrombin-induced aggregation. The activating effect of DIP-alpha-thrombin is characterized by an equilibrium constant (KA) of 17 nM. The experimental data confirm the hypothesis that the necessary prerequisite for an adequate physiological response of platelets to alpha-thrombin is the maintenance in the thrombin molecule of an intact active center and a recognition site for high molecular weight substrates. The specificity of thrombin as a potent platelet aggregation inducer is determined by the recognition site for high molecular weight substrates.  相似文献   

11.
Y Okada  E D Harris  Jr    H Nagase 《The Biochemical journal》1988,254(3):731-741
Two active forms (Mr 45,000 and 28,000) of a metalloendopeptidase that digest proteoglycans and other extracellular matrix components of connective tissues have previously been purified from rheumatoid synovial cells and characterized [Okada, Nagase & Harris (1986) J. Biol. Chem. 261, 14245-14255]. To study the mechanisms of activation the precursor of this metalloendopeptidase has now been purified. The final products are homogeneous on SDS/polyacrylamide-gel electrophoresis and identified as a set of zymogens of Mr 57,000 and 59,000, in which the latter form is probably the product of post-translational glycosylation of the Mr 57,000 zymogen, as it binds to concanavalin A. The zymogen can be activated by trypsin, chymotrypsin, plasma kallikrein, plasmin and thermolysin, but not by thrombin. Although the activated metalloendopeptidase is further degraded by trypsin, plasma kallikrein and thermolysin during a prolonged incubation, it is relatively stable against plasmin and chymotrypsin. Activation with 4-aminophenylmercuric acetate is dependent on its concentration. It requires the reaction with the zymogen, possibly through thiol groups, and the continued presence of the agent. During this treatment the zymogen undergoes a sequential processing; first it becomes active without changing its apparent molecular mass, and then it is processed to low-Mr species of Mr 46,000, 45,000 (HMM) and 28,000 (LMM). The rate of conversion of the precursor into an initial intermediate of Mr 46,000 follows first-order kinetics (t1/2 2.0 h with 1.5 mM-4-amino-phenylmercuric acetate at 37 degrees C) and is independent of the initial concentration of the zymogen or the presence of up to a 676-fold molar excess of substrate, whereas the generation of HMM and LMM species is affected by these parameters. These results indicate that activation of the prometalloendopeptidase by an organomercurial compound is initiated by the molecular perturbation of the zymogen that results in conversion into the 46,000-Mr intermediate by an intramolecular action; the subsequent processing of this intermediate in HMM and LMM species is a bimolecular reaction. In vivo it is probable that the precursor of this metalloendopeptidase is activated either by direct limited proteolysis by tissue or plasma endopeptidases, or, alternatively, by factors that cause certain conformational changes in the zymogen molecule.  相似文献   

12.
Staphylocoagulase (SC) is a potent nonproteolytic prothrombin (ProT) activator and the prototype of a newly established zymogen activator and adhesion protein family. The staphylocoagulase fragment containing residues 1-325 (SC-(1-325)) represents a new type of nonproteolytic activator with a unique fold consisting of two three-helix bundle domains. The N-terminal, domain 1 of SC (D1, residues 1-146) interacts with the 148 loop of thrombin and prethrombin 2 and the south rim of the catalytic site, whereas domain 2 of SC (D2, residues 147-325) occupies (pro)exosite I, the fibrinogen (Fbg) recognition exosite. Reversible conformational activation of ProT by SC-(1-325) was used to create novel analogs of ProT covalently labeled at the catalytic site with fluorescence probes. Analogs selected from screening 10 such derivatives were used to characterize quantitatively equilibrium binding of SC-(1-325) to ProT, competitive binding with native ProT, and SC domain interactions. The results support the conclusion that SC-(1-325) binds to a single site on fluorescein-labeled and native ProT with indistinguishable dissociation constants of 17-72 pM. The results obtained for isolated SC domains indicate that D2 binds ProT with approximately 130-fold greater affinity than D1, yet D1 binding accounts for the majority of the fluorescence enhancement that accompanies SC-(1-325) binding. The SC-(1-325).(pro)thrombin complexes and free thrombin showed little difference in substrate specificity for tripeptide substrates or with their natural substrate, Fbg. Lack of a significant effect of blockage of (pro)exosite I of (pro)thrombin by SC-(1-325) on Fbg cleavage indicates that a new Fbg substrate recognition exosite is expressed on the SC-(1-325).(pro)thrombin complexes. Our results provide new insight into the mechanism that mediates zymogen activation by this prototypical bacterial activator.  相似文献   

13.
14.
Ligand binding to proteins often is accompanied by conformational transitions. Here, we describe a competition assay based on single molecule Förster resonance energy transfer (smFRET) to investigate the ligand-induced conformational changes of the dengue virus (DENV) NS2B-NS3 protease, which can adopt at least two different conformations. First, a competitive ligand was used to stabilize the closed conformation of the protease. Subsequent addition of the allosteric inhibitor reduced the fraction of the closed conformation and simultaneously increased the fraction of the open conformation, demonstrating that the allosteric inhibitor stabilizes the open conformation. In addition, the proportions of open and closed conformations at different concentrations of the allosteric inhibitor were used to determine its binding affinity to the protease. The KD value observed is in accordance with the IC50 determined in the fluorometric assay. Our novel approach appears to be a valuable tool to study conformational transitions of other proteases and enzymes.  相似文献   

15.
Liu L  Mushero N  Hedstrom L  Gershenson A 《Biochemistry》2006,45(36):10865-10872
Serpins regulate serine proteases by forming metastable covalent complexes with their targets. The protease docks with the serpin and cleaves the serpin's reactive center loop (RCL) forming an acylenzyme intermediate. Cleavage triggers insertion of the RCL into beta sheet A, translocating the attached protease approximately 70 A and disrupting the protease active site, trapping the acylenzyme intermediate. Using single-pair F?rster resonance energy transfer (spFRET), we have measured the conformational distributions of trypsin and alpha(1)-proteinase inhibitor (alpha(1)PI) covalent complexes. Bovine trypsin (BTryp) complexes display a single set of conformations consistent with the full translocation of BTryp (E(full)I*). However, the range of spFRET efficiencies is large, suggesting that the region around the trypsin label is mobile. Most complexes between alpha(1)PI variants and the more stable rat trypsin (RTryp) also show a single set of conformations, but the conformational distribution is narrower, indicating less disruption of RTryp. Surprisingly, RTryp complexes containing alpha(1)PI labeled at Cys232 with a cationic fluorophore display two equally populated conformations, E(full)I* and a conformation in which RTryp is only partially translocated (E(part)I*). Destabilizing the RTryp active site, by substituting Ala for Ile16, increases the E(full)I* population. Thus, interactions between anionic RTryp and cationic dyes likely exert a restraining force on alpha(1)PI, increasing the energy needed to translocate trypsin, and this force can be counteracted by active site destabilization. These results highlight the role of protease stability in determining the conformational distributions of protease-serpin covalent complexes and show that full translocation is not required for the formation of metastable complexes.  相似文献   

16.
Epstein-Barr virus (EBV) belongs to the gamma-herpesvirinae subfamily of the Herpesviridae. The protease domain of the assemblin protein of herpesviruses forms a monomer-dimer equilibrium in solution. The protease domain of EBV was expressed in Escherichia coli and its structure was solved by X-ray crystallography to 2.3A resolution after inhibition with diisopropyl-fluorophosphate (DFP). The overall structure confirms the conservation of the homodimer and its structure throughout the alpha, beta, and gamma-herpesvirinae. The substrate recognition could be modelled using information from the DFP binding, from a crystal contact, suggesting that the substrate forms an antiparallel beta-strand extending strand beta5, and from the comparison with the structure of a peptidomimetic inhibitor bound to cytomegalovirus protease. The long insert between beta-strands 1 and 2, which was disordered in the KSHV protease structure, was found to be ordered in the EBV protease and shows the same conformation as observed for proteases in the alpha and beta-herpesvirus families. In contrast to previous structures, the long loop located between beta-strands 5 and 6 is partially ordered, probably due to DFP inhibition and a crystal contact. It also contributes to substrate recognition. The protease shows a specific recognition of its own C terminus in a binding pocket involving residue Phe210 of the other monomer interacting across the dimer interface. This suggests conformational changes of the protease domain after its release from the assemblin precursor followed by burial of the new C terminus and a possible effect onto the monomer-dimer equilibrium. The importance of the processed C terminus was confirmed using a mutant protease carrying a C-terminal extension and a mutated release site, which shows different solution properties and a strongly reduced enzymatic activity.  相似文献   

17.
Fan YX  McPhie P  Miles EW 《Biochemistry》2000,39(16):4692-4703
To investigate the linkage between enzyme conformation and catalysis, we have determined the effects of temperature on catalytic properties of the tryptophan synthase alpha(2)beta(2) complex and beta(2) subunit in the absence or presence of different monovalent cations (Cs(+), Na(+), and GuH(+)) and of an allosteric ligand, alpha-glycerol 3-phosphate. Arrhenius plots of the activity data between 5 and 50 degrees C are nonlinear in the presence of certain ligands but not others. The conditions that yield nonlinear Arrhenius plots also yield temperature-dependent changes in the equilibrium distribution of enzyme-substrate intermediates and in primary kinetic isotope effects. The results provide evidence that the nonlinear Arrhenius plots are caused by a temperature-dependent conformational change that precedes the rate-limiting step in catalysis. Thermodynamic analysis of the data associated with the conformational change shows that the activation energies are much higher at low temperatures than at high temperatures. We correlate the results with a model in which the enzyme is converted by increased temperature under certain conditions from a low-activity "open" conformation to a high-activity "closed" conformation. The allosteric ligand and different monovalent cations, including GuH(+), which also acts as a chaotropic agent, affect the equilibrium between the open and closed forms. The large positive entropy changes in the conformational conversion suggest that the closed conformation results from tightened hydrophobic interactions that exclude water from the active site of the beta subunit.  相似文献   

18.
Weikl TR  von Deuster C 《Proteins》2009,75(1):104-110
The binding of a ligand molecule to a protein is often accompanied by conformational changes of the protein. A central question is whether the ligand induces the conformational change (induced-fit), or rather selects and stabilizes a complementary conformation from a pre-existing equilibrium of ground and excited states of the protein (selected-fit). We consider here the binding kinetics in a simple four-state model of ligand-protein binding. In this model, the protein has two conformations, which can both bind the ligand. The first conformation is the ground state of the protein when the ligand is off, and the second conformation is the ground state when the ligand is bound. The induced-fit mechanism corresponds to ligand binding in the unbound ground state, and the selected-fit mechanism to ligand binding in the excited state. We find a simple, characteristic difference between the on- and off-rates in the two mechanisms if the conformational relaxation into the ground states is fast. In the case of selected-fit binding, the on-rate depends on the conformational equilibrium constant, whereas the off-rate is independent. In the case of induced-fit binding, in contrast, the off-rate depends on the conformational equilibrium, while the on-rate is independent. Whether a protein binds a ligand via selected-fit or induced-fit thus may be revealed by mutations far from the protein's binding pocket, or other "perturbations" that only affect the conformational equilibrium. In the case of selected-fit, such mutations will only change the on-rate, and in the case of induced-fit, only the off-rate.  相似文献   

19.
Kornblatt JA  Schuck P 《Biochemistry》2005,44(39):13122-13131
Plasminogen is known to undergo an extremely large conformational change when it binds ligands; the two well-established conformations are either closed (absence of external ligand) or open (presence of external ligand). We show here that plasminogen is more complicated than can be accommodated by a two-state, closed/open, model. Temperature changes induce large structural changes which can be detected with either dynamic light scattering or analytical ultracentrifugation. The temperature-induced changes are not related to the classical closed/open conformational change since both closed and open forms of the protein are similarly influenced. It appears as though the packing density of the protein increases as the temperature is raised. Over the range 4-20 degrees C, the Stokes' radius of the classical closed plasminogen goes from 4.7 to 4.2 nm, and that of the classical open form goes from 5.55 to 5.0 nm. These changes in packing can be rationalized if temperature change induces a large conformational change and if this is accompanied by a large change in hydration, by a change in solute binding, or by a change in the total void volume of the protein.  相似文献   

20.
Abstract Thrombin is the central protease of the coagulation cascade. Its activity is tightly regulated to ensure rapid blood clotting while preventing uncontrolled thrombosis. Thrombin interacts with multiple substrates and cofactors and is critically involved in both pro- and anticoagulant pathways of the coagulation network. Its allosteric regulation, especially by the monovalent cation Na+, has been the focus of research for more than 30 years. It is believed that thrombin can adopt an anticoagulant ('slow') conformation and, after Na+ binding, a structurally distinct procoagulant ('fast') state. In the past few years, however, the general view of allostery has evolved from one of rigid structural changes towards thermodynamic ensembles of conformational states. With this background, the view of the allosteric regulation of thrombin has also changed. The static view of the two-state model has been dismissed in favor of a more dynamic view of thrombin allostery. Herein, we review recent data that demonstrate that apo-thrombin is zymogen-like and exists as an ensemble of conformations. Furthermore, we describe how ligand binding to thrombin allosterically stabilizes conformations on the continuum from zymogen to protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号