首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nexin-dynein regulatory complex (N-DRC) forms a cross-bridge between the outer doublet microtubules of the axoneme and regulates dynein motor activity in cilia/flagella. Although the molecular composition and the three-dimensional structure of N-DRC have been studied using mutant strains lacking N-DRC subunits, more accurate approaches are necessary to characterize the structure and function of N-DRC. In this study, we precisely localized DRC1, DRC2, and DRC4 using cryo–electron tomography and structural labeling. All three N-DRC subunits had elongated conformations and spanned the length of N-DRC. Furthermore, we purified N-DRC and characterized its microtubule-binding properties. Purified N-DRC bound to the microtubule and partially inhibited microtubule sliding driven by the outer dynein arms (ODAs). Of interest, microtubule sliding was observed even in the presence of fourfold molar excess of N-DRC relative to ODA. These results provide insights into the role of N-DRC in generating the beating motions of cilia/flagella.  相似文献   

2.
Cryo-electron tomography (cryo-ET) has reached nanoscale resolution for in situ three-dimensional imaging of macromolecular complexes and organelles. Yet its current resolution is not sufficient to precisely localize or identify most proteins in situ; for example, the location and arrangement of components of the nexin-dynein regulatory complex (N-DRC), a key regulator of ciliary/flagellar motility that is conserved from algae to humans, have remained elusive despite many cryo-ET studies of cilia and flagella. Here, we developed an in situ localization method that combines cryo-ET/subtomogram averaging with the clonable SNAP tag, a widely used cell biological probe to visualize fusion proteins by fluorescence microscopy. Using this hybrid approach, we precisely determined the locations of the N and C termini of DRC3 and the C terminus of DRC4 within the three-dimensional structure of the N-DRC in Chlamydomonas flagella. Our data demonstrate that fusion of SNAP with target proteins allowed for protein localization with high efficiency and fidelity using SNAP-linked gold nanoparticles, without disrupting the native assembly, structure, or function of the flagella. After cryo-ET and subtomogram averaging, we localized DRC3 to the L1 projection of the nexin linker, which interacts directly with a dynein motor, whereas DRC4 was observed to stretch along the N-DRC base plate to the nexin linker. Application of the technique developed here to the N-DRC revealed new insights into the organization and regulatory mechanism of this complex, and provides a valuable tool for the structural dissection of macromolecular complexes in situ.  相似文献   

3.
CCDC39 and CCDC40 were first identified as causative mutations in primary ciliary dyskinesia patients; cilia from patients show disorganized microtubules, and they are missing both N-DRC and inner dynein arms proteins. In Chlamydomonas, we used immunoblots and microtubule sliding assays to show that mutants in CCDC40 (PF7) and CCDC39 (PF8) fail to assemble N-DRC, several inner dynein arms, tektin, and CCDC39. Enrichment screens for suppression of pf7; pf8 cells led to the isolation of five independent extragenic suppressors defined by four different mutations in a NIMA-related kinase, CNK11. These alleles partially rescue the flagellar length defect, but not the motility defect. The suppressor does not restore the missing N-DRC and inner dynein arm proteins. In addition, the cnk11 mutations partially suppress the short flagella phenotype of N-DRC and axonemal dynein mutants, but do not suppress the motility defects. The tpg1 mutation in TTLL9, a tubulin polyglutamylase, partially suppresses the length phenotype in the same axonemal dynein mutants. In contrast to cnk11, tpg1 does not suppress the short flagella phenotype of pf7. The polyglutamylated tubulin in the proximal region that remains in the tpg1 mutant is reduced further in the pf7; tpg1 double mutant by immunofluorescence. CCDC40, which is needed for docking multiple other axonemal complexes, is needed for tubulin polyglutamylation in the proximal end of the flagella. The CCDC39 and CCDC40 proteins are likely to be involved in recruiting another tubulin glutamylase(s) to the flagella. Another difference between cnk11-1 and tpg1 mutants is that cnk11-1 cells show a faster turnover rate of tubulin at the flagellar tip than in wild-type flagella and tpg1 flagella show a slower rate. The double mutant shows a turnover rate similar to tpg1, which suggests the faster turnover rate in cnk11-1 flagella requires polyglutamylation. Thus, we hypothesize that many short flagella mutants in Chlamydomonas have increased instability of axonemal microtubules. Both CNK11 and tubulin polyglutamylation play roles in regulating the stability of axonemal microtubules.  相似文献   

4.
We provide indirect evidence that six axonemal proteins here referred to as "dynein regulatory complex" (drc) are located in close proximity with the inner dynein arms I2 and I3. Subsets of drc subunits are missing from five second-site suppressors, pf2, pf3, suppf3, suppf4, and suppf5, that restore flagellar motility but not radial spoke structure of radial spoke mutants. The absence of drc components is correlated with a deficiency of all four heavy chains of inner arms I2 and I3 from axonemes of suppressors pf2, pf3, suppf3, and suppf5. Similarly, inner arm subunits actin, p28, and caltractin/centrin, or subsets of them, are deficient in pf2, pf3, and suppf5. Recombinant strains carrying one of the mutations pf2, pf3, or suppf5 and the inner arm mutation ida4 are more defective for I2 inner arm heavy chains than the parent strains. This evidence indicates that at least one subunit of the drc affects the assembly of and interacts with the inner arms I2.  相似文献   

5.
6.
The directional flow generated by motile cilia and flagella is critical for many processes, including human development and organ function. Normal beating requires the control and coordination of thousands of dynein motors, and the nexin-dynein regulatory complex (N-DRC) has been identified as an important regulatory node for orchestrating dynein activity. The nexin link appears to be critical for the transformation of dynein-driven, linear microtubule sliding to flagellar bending, yet the molecular composition and mechanism of the N-DRC remain largely unknown. Here, we used proteomics with special attention to protein phosphorylation to analyze the composition of the N-DRC and to determine which subunits may be important for signal transduction. Two-dimensional electrophoresis and MALDI-TOF mass spectrometry of WT and mutant flagellar axonemes from Chlamydomonas identified 12 N-DRC-associated proteins, including all seven previously observed N-DRC components. Sequence and PCR analyses identified the mutation responsible for the phenotype of the sup-pf-4 strain, and biochemical comparison with a radial spoke mutant revealed two components that may link the N-DRC and the radial spokes. Phosphoproteomics revealed eight proteins with phosphorylated isoforms for which the isoform patterns changed with the genotype as well as two components that may play pivotal roles in N-DRC function through their phosphorylation status. These data were assembled into a model of the N-DRC that explains aspects of its regulatory function.  相似文献   

7.
The flagellum of Trypanosoma brucei is a multifunctional organelle with critical roles in motility and other aspects of the trypanosome life cycle. Trypanin is a flagellar protein required for directional cell motility, but its molecular function is unknown. Recently, a trypanin homologue in Chlamydomonas reinhardtii was reported to be part of a dynein regulatory complex (DRC) that transmits regulatory signals from central pair microtubules and radial spokes to axonemal dynein. DRC genes were identified as extragenic suppressors of central pair and/or radial spoke mutations. We used RNA interference to ablate expression of radial spoke (RSP3) and central pair (PF16) components individually or in combination with trypanin. Both rsp3 and pf16 single knockdown mutants are immotile, with severely defective flagellar beat. In the case of rsp3, this loss of motility is correlated with the loss of radial spokes, while in the case of pf16 the loss of motility correlates with an aberrant orientation of the central pair microtubules within the axoneme. Genetic interaction between trypanin and PF16 is demonstrated by the finding that loss of trypanin suppresses the pf16 beat defect, indicating that the DRC represents an evolutionarily conserved strategy for dynein regulation. Surprisingly, we discovered that four independent mutants with an impaired flagellar beat all fail in the final stage of cytokinesis, indicating that flagellar motility is necessary for normal cell division in T. brucei. These findings present the first evidence that flagellar beating is important for cell division and open the opportunity to exploit enzymatic activities that drive flagellar beat as drug targets for the treatment of African sleeping sickness.  相似文献   

8.
Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.  相似文献   

9.
Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonas reinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.  相似文献   

10.
To identify new loci that are involved in the assembly and targeting of dynein complexes, we have screened a collection of motility mutants that were generated by insertional mutagenesis. One such mutant, 5B10, lacks the inner arm isoform known as the I1 complex. This isoform is located proximal to the first radial spoke in each 96-nm axoneme repeat and is an important target for the regulation of flagellar motility. Complementation tests reveal that 5B10 represents a new I1 locus, IDA7. Biochemical analyses confirm that ida7 axonemes lack at least five I1 complex subunits. Southern blots probed with a clone containing the gene encoding the 140-kDa intermediate chain (IC) indicate that the ida7 mutation is the result of plasmid insertion into the IC140 gene. Transformation with a wild-type copy of the IC140 gene completely rescues the mutant defects. Surprisingly, transformation with a construct of the IC140 gene lacking the first four exons of the coding sequence also rescues the mutant phenotype. These studies indicate that IC140 is essential for assembly of the I1 complex, but unlike other dynein ICs, the N-terminal region is not critical for its activity.  相似文献   

11.
Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associ-ated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo-electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin-dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.  相似文献   

12.
The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.  相似文献   

13.
Several enzymes, including cytoplasmic and flagellar outer arm dynein, share an Mr 8,000 light chain termed LC8. The function of this chain is unknown, but it is highly conserved between a wide variety of organisms. We have identified deletion alleles of the gene (fla14) encoding this protein in Chlamydomonas reinhardtii. These mutants have short, immotile flagella with deficiencies in radial spokes, in the inner and outer arms, and in the beak-like projections in the B tubule of the outer doublet microtubules. Most dramatically, the space between the doublet microtubules and the flagellar membrane contains an unusually high number of rafts, the particles translocated by intraflagellar transport (IFT) (Kozminski, K.G., P.L. Beech, and J.L. Rosenbaum. 1995. J. Cell Biol. 131:1517–1527). IFT is a rapid bidirectional movement of rafts under the flagellar membrane along axonemal microtubules. Anterograde IFT is dependent on a kinesin whereas the motor for retrograde IFT is unknown. Anterograde IFT is normal in the LC8 mutants but retrograde IFT is absent; this undoubtedly accounts for the accumulation of rafts in the flagellum. This is the first mutation shown to specifically affect retrograde IFT; the fact that LC8 loss affects retrograde IFT strongly suggests that cytoplasmic dynein is the motor that drives this process. Concomitant with the accumulation of rafts, LC8 mutants accumulate proteins that are components of the 15-16S IFT complexes (Cole, D.G., D.R. Deiner, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum. 1998. J. Cell Biol. 141:993–1008), confirming that these complexes are subunits of the rafts. Polystyrene microbeads are still translocated on the surface of the flagella of LC8 mutants, indicating that the motor for flagellar surface motility is different than the motor for retrograde IFT.  相似文献   

14.
Previous work has revealed a cytoplasmic pool of flagellar precursor proteins capable of contributing to the assembly of new flagella, but how and where these components assemble is unknown. We tested Chlamydomonas outer-dynein arm subunit stability and assembly in the cytoplasm of wild-type cells and 11 outer dynein arm assembly mutant strains (oda1-oda11) by Western blotting of cytoplasmic extracts, or immunoprecipitates from these extracts, with five outer-row dynein subunit-specific antibodies. Western blots reveal that at least three oda mutants (oda6, oda7, and oda9) alter the level of a subunit that is not the mutant gene product. Immunoprecipitation shows that large preassembled flagellar complexes containing all five tested subunits (three heavy chains and two intermediate chains) exist within wild-type cytoplasm. When the preassembly of these subunits was examined in oda strains, we observed three patterns: complete coassembly (oda 1, 3, 5, 8, and 10), partial coassembly (oda7 and oda11), and no coassembly (oda2, 6, and 9) of the four tested subunits with HCβ. Our data, together with previous studies, suggest that flagellar outer-dynein arms preassemble into a complete Mr 2 × 106 dynein arm that resides in a cytoplasmic precursor pool before transport into the flagellar compartment.  相似文献   

15.
《The Journal of cell biology》1994,125(5):1109-1117
To understand mechanisms of regulation of dynein activity along and around the axoneme we further characterized the "dynein regulatory complex" (drc). The lack of some axonemal proteins, which together are referred to as drc, causes the suppression of flagellar paralysis of radial spoke and central pair mutants. The drc is also an adapter involved in the ATP-insensitive binding of I2 and I3 inner dynein arms to doublet microtubules. Evidence supporting these conclusions was obtained through analyses of five drc mutants: pf2, pf3, suppf3, suppf4, and suppf5. Axonemes from drc mutants lack part of I2 and I3 inner dynein arms as well as subsets of seven drc components (apparent molecular weight from 29,000 to 192,000). In the absence of ATP-Mg, dynein-depleted axonemes from the same mutants bind I2 and I3 inner arms at both ATP-sensitive and -insensitive sites. At ATP-insensitive sites, they bind I2 and I3 inner arms to an extent that depends on the drc defect. This evidence suggested to us that the drc forms one binding site for the I2 and I3 inner arms on the A part of doublet microtubules.  相似文献   

16.
Motility in the protozoan parasite Trypanosoma brucei is conferred by a single flagellum, attached alongside the cell, which moves the cell forward using a beat that is generated from tip-to-base. We are interested in characterizing components that regulate flagellar beating, in this study we extend the characterization of TbIC138, the ortholog of a dynein intermediate chain that regulates axonemal inner arm dynein f/I1. TbIC138 was tagged In situ-and shown to fractionate with the inner arm components of the flagellum. RNAi knockdown of TbIC138 resulted in significantly reduced protein levels, mild growth defect and significant motility defects. These cells tended to cluster, exhibited slow and abnormal motility and some cells had partially or fully detached flagella. Slight but significant increases were observed in the incidence of mis-localized or missing kinetoplasts. To document development of the TbIC138 knockdown phenotype over time, we performed a detailed analysis of flagellar detachment and motility changes over 108 hours following induction of RNAi. Abnormal motility, such as slow twitching or irregular beating, was observed early, and became progressively more severe such that by 72 hours-post-induction, approximately 80% of the cells were immotile. Progressively more cells exhibited flagellar detachment over time, but this phenotype was not as prevalent as immotility, affecting less than 60% of the population. Detached flagella had abnormal beating, but abnormal beating was also observed in cells with no flagellar detachment, suggesting that TbIC138 has a direct, or primary, effect on the flagellar beat, whereas detachment is a secondary phenotype of TbIC138 knockdown. Our results are consistent with the role of TbIC138 as a regulator of motility, and has a phenotype amenable to more extensive structure-function analyses to further elucidate its role in the control of flagellar beat in T. brucei.  相似文献   

17.
Dyneins are microtubule-based molecular motors involved in many different types of cell movement. Most dynein heavy chains (DHCs) clearly group into cytoplasmic or axonemal isoforms. However, DHC1b has been enigmatic. To learn more about this isoform, we isolated Chlamydomonas cDNA clones encoding a portion of DHC1b, and used these clones to identify a Chlamydomonas cell line with a deletion mutation in DHC1b. The mutant grows normally and appears to have a normal Golgi apparatus, but has very short flagella. The deletion also results in a massive redistribution of raft subunits from a peri-basal body pool (Cole, D.G., D.R. Diener, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum. 1998. J. Cell Biol. 141:993–1008) to the flagella. Rafts are particles that normally move up and down the flagella in a process known as intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519–5523), which is essential for assembly and maintenance of flagella. The redistribution of raft subunits apparently occurs due to a defect in the retrograde component of IFT, suggesting that DHC1b is the motor for retrograde IFT. Consistent with this, Western blots indicate that DHC1b is present in the flagellum, predominantly in the detergent- and ATP-soluble fractions. These results indicate that DHC1b is a cytoplasmic dynein essential for flagellar assembly, probably because it is the motor for retrograde IFT.  相似文献   

18.
LC8 functions as a dimer crucial for a variety of molecular motors and non-motor complexes. Emerging models, founded on structural studies, suggest that the LC8 dimer promotes the stability and refolding of dimeric target proteins in molecular complexes, and its interactions with selective target proteins, including dynein subunits, is regulated by LC8 phosphorylation, which is proposed to prevent LC8 dimerization. To test these hypotheses in vivo, we determine the impacts of two new LC8 mutations on the assembly and stability of defined LC8-containing complexes in Chlamydomonas flagella. The three types of dyneins and the radial spoke are disparately affected by dimeric LC8 with a C-terminal extension. The defects include the absence of specific subunits, complex instability, and reduced incorporation into the axonemal super complex. Surprisingly, a phosphomimetic LC8 mutation, which is largely monomeric in vitro, is still dimeric in vivo and does not significantly change flagellar generation and motility. The differential defects in these flagellar complexes support the structural model and indicate that modulation of target proteins by LC8 leads to the proper assembly of complexes and ultimately higher level complexes. Furthermore, the ability of flagellar complexes to incorporate the phosphomimetic LC8 protein and the modest defects observed in the phosphomimetic LC8 mutant suggest that LC8 phosphorylation is not an effective mechanism for regulating molecular complexes.  相似文献   

19.
Although flagellar motility is essential for the colonisation of the stomach by Helicobacter pylori, little is known about the regulation of flagellar biosynthesis in this organism. We have identified a gene in H. pylori, designated fliI, whose deduced amino acid sequence revealed extensive homology with the FliI/LcrB/InvC family of proteins which energise the export of flagellar and other virulence factors in several bacterial species. An isogenic mutant of fliI was non-motile and synthesised reduced amounts of flagellin and hook protein subunits. The majority (>99%) of mutant cells were completely aflagellate. These results suggest that FliI is a novel ATPase involved in flagellar export in H. pylori.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号