共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is widely accepted that MAPK activation in budding and fission yeasts is often associated with negative effects on cell cycle progression, resulting in delay or arrest at a specific stage in the cell cycle, thereby enabling cells to adapt to changing environmental conditions. For instance, activation of the Cell Wall Integrity (CWI) pathway in the budding yeast Saccharomyces cerevisiae signals an increase in CDK inhibitory phosphorylation, which leads cells to remain in the G2 phase. Here we characterized the CWI pathway of Ustilago maydis, a fungus evolutionarily distant from budding and fission yeasts, and show that activation of the CWI pathway forces cells to escape from G2 phase. In spite of these disparate cell cycle responses in S. cerevisiae and U. maydis, the CWI pathway in both organisms appears to respond to the same class cell wall stressors. To understand the basis of such a difference, we studied the mechanism behind the U. maydis response. We found that activation of CWI pathway in U. maydis results in a decrease in CDK inhibitory phosphorylation, which depends on the mitotic phosphatase Cdc25. Moreover, in response to activation of the CWI pathway, Cdc25 accumulates in the nucleus, providing a likely explanation for the increase in the unphosphorylated form of CDK. We also found that the extended N-terminal domain of Cdc25, which is dispensable under normal growth conditions, is required for this G2 escape as well as for resistance to cell wall stressors. We propose that the process of cell cycle adaptation to cell stress evolved differently in these two divergent organisms so that each can move towards a cell cycle phase most appropriate for responding to the environmental signals encountered. 相似文献
3.
Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host. 相似文献
4.
RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling
Laura A Lindsey-Boltz Michael G Kemp Christopher Capp Aziz Sancar 《Cell cycle (Georgetown, Tex.)》2015,14(1):99-108
The ATR-Chk1 signaling pathway mediates cellular responses to DNA damage and replication stress and is composed of a number of core factors that are conserved throughout eukaryotic organisms. However, humans and other higher eukaryotic species possess additional factors that are implicated in the regulation of this signaling network but that have not been extensively studied. Here we show that RHINO (for Rad9, Rad1, Hus1 interacting nuclear orphan) forms complexes with both the 9-1-1 checkpoint clamp and TopBP1 in human cells even in the absence of treatments with DNA damaging agents via direct interactions with the Rad9 and Rad1 subunits of the 9-1-1 checkpoint clamp and with the ATR kinase activator TopBP1. The interaction of RHINO with 9-1-1 was of sufficient affinity to allow for the purification of a stable heterotetrameric RHINO-Rad9-Hus1-Rad1 complex in vitro. In human cells, a portion of RHINO localizes to chromatin in the absence of DNA damage, and this association is enriched following UV irradiation. Furthermore, we find that the tethering of a Lac Repressor (LacR)-RHINO fusion protein to LacO repeats in chromatin of mammalian cells induces Chk1 phosphorylation in a Rad9- and Claspin-dependent manner. Lastly, the loss of RHINO partially abrogates ATR-Chk1 signaling following UV irradiation without impacting the interaction of the 9-1-1 clamp with TopBP1 or the loading of 9-1-1 onto chromatin. We conclude that RHINO is a bona fide regulator of ATR-Chk1 signaling in mammalian cells. 相似文献
5.
RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling
《Cell cycle (Georgetown, Tex.)》2013,12(1):99-108
The ATR-Chk1 signaling pathway mediates cellular responses to DNA damage and replication stress and is composed of a number of core factors that are conserved throughout eukaryotic organisms. However, humans and other higher eukaryotic species possess additional factors that are implicated in the regulation of this signaling network but that have not been extensively studied. Here we show that RHINO (for Rad9, Rad1, Hus1 interacting nuclear orphan) forms complexes with both the 9-1-1 checkpoint clamp and TopBP1 in human cells even in the absence of treatments with DNA damaging agents via direct interactions with the Rad9 and Rad1 subunits of the 9-1-1 checkpoint clamp and with the ATR kinase activator TopBP1. The interaction of RHINO with 9-1-1 was of sufficient affinity to allow for the purification of a stable heterotetrameric RHINO-Rad9-Hus1-Rad1 complex in vitro. In human cells, a portion of RHINO localizes to chromatin in the absence of DNA damage, and this association is enriched following UV irradiation. Furthermore, we find that the tethering of a Lac Repressor (LacR)-RHINO fusion protein to LacO repeats in chromatin of mammalian cells induces Chk1 phosphorylation in a Rad9- and Claspin-dependent manner. Lastly, the loss of RHINO partially abrogates ATR-Chk1 signaling following UV irradiation without impacting the interaction of the 9-1-1 clamp with TopBP1 or the loading of 9-1-1 onto chromatin. We conclude that RHINO is a bona fide regulator of ATR-Chk1 signaling in mammalian cells. 相似文献
6.
7.
Thomas Brefort Shigeyuki Tanaka Nina Neidig Gunther Doehlemann Volker Vincon Regine Kahmann 《PLoS pathogens》2014,10(7)
In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function. 相似文献
8.
9.
Activation of the MAP Kinase Pathway by FGF-1 Correlates with Cell Proliferation Induction While Activation of the Src Pathway Correlates with Migration 总被引:5,自引:0,他引:5
下载免费PDF全文

Theresa M. LaVallee Igor A. Prudovsky Grainne A. McMahon Xiaoguo Hu Thomas Maciag 《The Journal of cell biology》1998,141(7):1647-1658
10.
11.
A subset of human cancer cells uses a specialized, aberrant recombination pathway known as ALT to maintain telomeres, which in these cells are characterized by complex aberrations including length heterogeneity, high levels of unpaired C-strand, and accumulation of extra-chromosomal telomere repeats (ECTR). These phenotypes have not been recapitulated in any standard budding or fission yeast mutant. We found that eliminating Ku70 or Ku80 in the yeast-like fungus Ustilago maydis results initially in all the characteristic telomere aberrations of ALT cancer cells, including C-circles, a highly specific marker of ALT. Subsequently the ku mutants experience permanent G2 cell cycle arrest, accompanied by loss of telomere repeats from chromosome ends and even more drastic accumulation of very short ECTRs (vsECTRs). The deletion of atr1 or chk1 rescued the lethality of the ku mutant, and “trapped” the telomere aberrations in the early ALT-like stage. Telomere abnormalities are telomerase-independent, but dramatically suppressed by deletion of mre11 or blm, suggesting major roles for these factors in the induction of the ALT pathway. In contrast, removal of other DNA damage response and repair factors such as Rad51 has disparate effects on the ALT phenotypes, suggesting that these factors process ALT intermediates or products. Notably, the antagonism of Ku and Mre11 in the induction of ALT is reminiscent of their roles in DSB resection, in which Blm is also known to play a key role. We suggest that an aberrant resection reaction may constitute an early trigger for ALT telomeres, and that the outcomes of ALT are distinct from DSB because of the unique telomere nucleoprotein structure. 相似文献
12.
The intra-S phase checkpoint kinase of metazoa and yeast, ATR/MEC1, protects chromosomes from DNA damage and replication stress by phosphorylating subunits of the replicative helicase, MCM2-7. Here we describe an unprecedented ATR-dependent pathway in Tetrahymena thermophila in which the essential pre-replicative complex proteins, Orc1p, Orc2p and Mcm6p are degraded in hydroxyurea-treated S phase cells. Chromosomes undergo global changes during HU-arrest, including phosphorylation of histone H2A.X, deacetylation of histone H3, and an apparent diminution in DNA content that can be blocked by the deacetylase inhibitor sodium butyrate. Most remarkably, the cell cycle rapidly resumes upon hydroxyurea removal, and the entire genome is replicated prior to replenishment of ORC and MCMs. While stalled replication forks are elongated under these conditions, DNA fiber imaging revealed that most replicating molecules are produced by new initiation events. Furthermore, the sole origin in the ribosomal DNA minichromosome is inactive and replication appears to initiate near the rRNA promoter. The collective data raise the possibility that replication initiation occurs by an ORC-independent mechanism during the recovery from HU-induced replication stress. 相似文献
13.
14.
Georgios Ioannis Karras Marco Fumasoni Grzegorz Sienski Fabio Vanoli Dana Branzei Stefan Jentsch 《Molecular cell》2013,49(3):536-546
- Download : Download high-res image (310KB)
- Download : Download full-size image
15.
16.
17.
Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems. 相似文献
18.
19.
Qiao Cao Yue Wang Feifei Chen Yongjie Xia Jingyu Lou Xue Zhang Nana Yang Xiaoxu Sun Qin Zhang Chao Zhuo Xi Huang Xin Deng Cai-Guang Yang Yan Ye Jing Zhao Min Wu Lefu Lan 《PLoS pathogens》2014,10(8)
The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs. 相似文献