首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results.  相似文献   

2.
The aim of this study was to investigate the performance of a new and accurate method for the detection of isoniazid (INH) and rifampicin (RIF) resistance among Mycobacterium tuberculosis isolates using a crystal violet decolourisation assay (CVDA). Fifty-five M. tuberculosis isolates obtained from culture stocks stored at -80ºC were tested. After bacterial inoculation, the samples were incubated at 37ºC for seven days and 100 µL of CV (25 mg/L stock solution) was then added to the control and sample tubes. The tubes were incubated for an additional 24-48 h. CV (blue/purple) was decolourised in the presence of bacterial growth; thus, if CV lost its colour in a sample containing a drug, the tested isolate was reported as resistant. The sensitivity, specificity, positive predictive value, negative predictive value and agreement for INH were 92.5%, 96.4%, 96.1%, 93.1% and 94.5%, respectively, and 88.8%, 100%, 100%, 94.8% and 96.3%, respectively, for RIF. The results were obtained within eight-nine days. This study shows that CVDA is an effective method to detect M. tuberculosis resistance to INH and RIF in developing countries. This method is rapid, simple and inexpensive. Nonetheless, further studies are necessary before routine laboratory implementation.  相似文献   

3.
The microplate nitrate reductase assay (MNRA) and the rezasurin microtitre assay (REMA) were used for the susceptibility testing of 73 clinical isolates and the results were compared with those that were obtained using the Bactec 460 TB and Bactec MGIT 960 systems. The REMA and the MNRA were performed in 96-well plates. For the REMA, the concentrations of isoniazid (INH) and rifampicin (RIF) ranged from 1.0-0.01 μg/mL and 2.0-0.03 μg/mL, respectively. For the MNRA, the INH concentration was between 1.0-0.03 μg/mL and the RIF concentration was between 2.0-0.06 μg/mL. For the MNRA, the sensitivity, specificity, positive predictive value, negative predictive value and INH/RIF agreement were 100/95.6, 97.6/100, 96.8/100, 100/98 and 98.6/98.6, respectively, and for the REMA, they were 100/91.3, 90.4/100, 88.5/100, 100/96.1 and 94.5/97.2, respectively. Our data suggest that these two rapid, low-cost methods may be inexpensive, alternative assays for the rapid detection of multidrug resistant tuberculosis in low-income countries.  相似文献   

4.
Drug-resistant tuberculosis (TB) threatens global TB control and is a major public health concern in several countries. We therefore developed a multiplex assay (LINE-TB/MDR) that is able to identify the most frequent mutations related to rifampicin (RMP) and isoniazid (INH) resistance. The assay is based on multiplex polymerase chain reaction, membrane hybridisation and colorimetric detection targeting of rpoB and katG genes, as well as the inhA promoter, which are all known to carry specific mutations associated with multidrug-resistant TB (MDR-TB). The assay was validated on a reference panel of 108 M. tuberculosis isolates that were characterised by the proportion method and by DNA sequencing of the targets. When comparing the performance of LINE-TB/MDR with DNA sequencing, the sensitivity, specificity and agreement were 100%, 100% and 100%, respectively, for RMP and 77.6%, 90.6% and 88.9%, respectively, for INH. Using drug sensibility testing as a reference standard, the performance of LINE-TB/MDR regarding sensitivity, specificity and agreement was 100%, 100% and 100% (95%), respectively, for RMP and 77%, 100% and 88.7% (82.2-95.1), respectively, for INH. LINE-TB/MDR was compared with GenoType MTBDRplus for 65 isolates, resulting in an agreement of 93.6% (86.7-97.5) for RIF and 87.4% (84.3-96.2) for INH. LINE-TB/MDR warrants further clinical validation and may be an affordable alternative for MDR-TB diagnosis.  相似文献   

5.
Isoniazid (INH) and rifampicin (RIF) are the two most effective drugs in tuberculosis therapy. Understanding the molecular mechanisms of resistance to these two drugs is essential to quickly diagnose multidrug-resistant (MDR) tuberculosis and extensive drug-resistant tuberculosis. Nine clinical Mycobacterium tuberculosis isolates resistant to only INH and RIF and 10 clinical pan-sensitive isolates were included to evaluate the expression of 20 putative drug efflux pump genes and sequence mutations in rpoB (RIF), katG (INH), the inhA promoter (INH), and oxyR-ahpC (INH). Nine and three MDR isolates were induced to overexpress efflux pump genes by INH and RIF, respectively. Eight and two efflux pump genes were induced to overexpress by INH and RIF in MDR isolates, respectively. drrA, drrB, efpA, jefA (Rv2459), mmr, Rv0849, Rv1634, and Rv1250 were overexpressed under INH or RIF stress. Most efflux pump genes were overexpressed under INH stress in a MDR isolates that carried the wild-type katG, inhA, and oxyR-ahpC associated with INH resistance than in those that carried mutations. The expression levels of 11 genes (efpA, Rv0849, Rv1250, P55 (Rv1410c), Rv1634, Rv2994, stp, Rv2459, pstB, drrA, and drrB) without drug inducement were significantly higher (P < 0.05) in nine MDR isolates than in 10 pan-sensitive isolates. In conclusion, efflux pumps may play an important role in INH acquired resistance in MDR M. tuberculosis, especially in those strains having no mutations in genes associated with INH resistance; basal expression levels of some efflux pump genes are higher in MDR isolates than in pan-sensitive isolates and the basal expressional differences may be helpful to diagnose and treat resistant tuberculosis.  相似文献   

6.
Prompt detection of drug resistance in Mycobacterium tuberculosis is essential for effective control of tuberculosis (TB). We developed a Multi-PCR-SSCP method that detects more than 80% commonly observed isoniazid (INH) and rifampin (RIF) resistance M. tuberculosis in a single assay. The usefulness of the newly developed method was evaluated with 116 clinical isolates of M. tuberculosis. Distinct SSCP patterns were observed for different mutations and the correlation between Multi-PCR-SSCP results and DNA sequencing data was strong. Using the culture-based phenotypic drug susceptibility testing as a reference, the sensitivity of the newly developed Multi-PCR-SSCP assay was determined to be 80% and 81.8% for INH and RIF, respectively. The specificity of the assay was 100% and 92%, for INH and RIF, respectively. Multi-PCR-SSCP provides a rapid and potentially more cost-effective method of detecting multidrug-resistant TB.  相似文献   

7.
The susceptibility of 49 Mycobacterium tuberculosis clinical isolates to isoniazid (INH) and rifampisin (RIF) (28 multi-drug resistant-tuberculosis samples) was determined by a nitrate reductase assay (NRA) on blood agar. Agreement between the NRA and other testing methods was found to be 93.8% for both INH and RIF. The sensitivity, specificity, positive predictive value and negative predictive value for INH were 92.8%, 94.2%, 86.6% and 97%, respectively. The sensitivity, specificity, positive predictive value and negative predictive value for RIF were 90.4%, 96.4%, 95% and 93.1%. In conclusion, we show here that blood agar can be used effectively for the NRA test.  相似文献   

8.

Background

The purpose of this study was to evaluate the performance of the BACTEC MGIT 960 (M960) system compared with the proportion method (PM) on Löwenstein-Jensen (L-J) medium in a peripheral laboratory in China for the testing of Mycobacterium tuberculosis (MTB) susceptibility to streptomycin (SM), isoniazid (INH) rifampicin (RIF) and ethambutol (EMB) a combination known as SIRE.

Methods

The susceptibility of 205 clinical isolates of MTB to SM, INH, RIF and EMB was performed with the M960 system. The drugs were tested at the following concentrations: 1.0 µg/ml for SM, 0.1 µg/ml for INH, 1.0 µg/ml for RIF, and 5.0 µg/ml for EMB. The results were compared with those obtained by the L-J PM. The L-J PM at an arbiter site was used to resolve any discordant results.

Results

The overall consistency was 96.6% and concordance values were 95.6% for SM, 97.6% for INH, 98.0% for RIF and 95.1% for EMB. The overall sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the M960 system for PM (the standard method) was 95.6%, 97.3%, 96.2% and 96.9% respectively, and the sensitivity were 93.3% for SM, 96.9% for INH, 97.4% for RIF and 94.6% for EMB, the specificity were 96.9% for SM, 98.2% for INH, 98.4% for RIF and 95.5% for EMB, the PPV were 94.6% for SM, 97.9% for INH, 97.4% for RIF and 94.6% for EMB, the NPV were 96.2% for SM, 97.3% for INH, 98.4% for RIF and 95.5% for EMB. The turnaround time with the M960 system (median 8.0 days, ranged from 5 to 14 days) was significantly shorter than that with the PM (28 days or 42 days).

Conclusion

There was a substantial degree of agreement between the two methods. The M960 system was a reliable and rapid method for SIRE susceptibility testing of tuberculosis in China.  相似文献   

9.
In this study, we have evaluated the broth microdilution method (BMM) for susceptibility testing of Mycobacterium tuberculosis. A total of 43 clinical isolates of M. tuberculosis and H37Rv as a control strain were studied. All isolates were tested by the proportion method and the BMM for isoniazid (INH), rifampicin (RIF), streptomycin (STR), and ethambutol (ETM). The proportion method was carried out according to the National Committee for Clinical Laboratory Standards (NCCLS) on L?wenstein-Jensen (LJ) medium. The BMM was carried out using 7H9 broth with 96 well-plates. All strains were tested at 3.2-0.05 micro g/ml, 16-0.25 micro g/ml, 32-0.5 micro g/ml, and 32-0.5 micro g/ml concentrations for INH, RIF, STR, and ETM, respectively. When the BMM was compared with the proportion method, sensitivity was 100, 100, 96.9, and 90.2%, while specificity was 100, 85.7, 90.9, and 100% for INH, RIF, STR, and ETM, respectively. The plates were examined 7, 10, 14, and 21 days after incubation. The majority of the result were obtained at 14th days after incubation, while the proportion method result were ended in 21-28 days. According to our results, it may be suggested that the BMM is suitable for early determining of multidrug-resistance-M. tuberculosis strains in developed or developing countries.  相似文献   

10.
Mycobacterium tuberculosis strains resistant to streptomycin (SM), isoniazid (INH), and/or rifampin (RIF) as determined by the conventional L?wenstein-Jensen proportion method (LJPM) were compared with the E test, a minimum inhibitory concentration susceptibility method. Discrepant isolates were further evaluated by BACTEC and by DNA sequence analyses for mutations in genes most often associated with resistance to these drugs (rpsL, katG, inhA, and rpoB). Preliminary discordant E test results were seen in 75% of isolates resistant to SM and in 11% to INH. Discordance improved for these two drugs (63%) for SM and none for INH when isolates were re-tested but worsened for RIF (30%). Despite good agreement between phenotypic results and sequencing analyses, wild type profiles were detected on resistant strains mainly for SM and INH. It should be aware that susceptible isolates according to molecular methods might contain other mechanisms of resistance. Although reproducibility of the LJPM susceptibility method has been established, variable E test results for some M. tuberculosis isolates poses questions regarding its reproducibility particularly the impact of E test performance which may vary among laboratories despite adherence to recommended protocols. Further studies must be done to enlarge the evaluated samples and looked possible mutations outside of the hot spot sequenced gene among discrepant strains.  相似文献   

11.
The emergence of Mycobacterium tuberculosis (Mtb), resistant to both isoniazid (INH) and rifampicin (RIF) (MDR-TB), is an increasing threat to tuberculosis control programs. Susceptibility testing of Mtb complex isolates by phenotypic methods requires a minimum of 14 days from a primary specimen. This can be reduced significantly if molecular analysis is used. Low density oligonucleotide arrays (macroarrays) have been used successfully for the detection of RIF resistance in Mtb. We describe the use of macroarray technology to identify Mtb complex isolates resistant to INH and/or RIF. The macroarray MDR-Mtb screen has been designed to detect mutations in the RIF resistance determining region (RRDR) of Mtb rpoB and loci in katG and mabA-inhA associated with INH resistance. A panel of Mtb isolates containing 38 different RRDR genotypes, 4 different genotypes within codon 315 of katG and 2 genotypes at mabA-inhA was used to validate the macroarray. The wild type (WT) genotype was correctly identified at all three loci. Of the 37 mutant rpoB genotypes, 36 were correctly detected; the single mutant not detected contained a 9 base insertion. All mutations within katG and mabA-inhA were correctly identified. We conclude that this low cost, rapid system can usefully detect the mutations associated with the vast majority of MDR-Mtb.  相似文献   

12.
Aims:  The aim of this study was to investigate the features of rpoB gene mutations associated with Rifampin (RIF) resistance in Mycobacterium tuberculosis ( M. tuberculosis ) in eastern China.
Methods and Results:  The mutations of rpoB gene in 56 clinical isolates of M. tuberculosis resisted to one to four first-line drugs (rifampin, isonicotinyl hydrazide, ethambutol and streptomycin) were analysed by polymerase chain reaction single strand conformation polymorphism analysis (PCR-SSCP) and DNA sequencing. The results of PCR-SSCP showed 52 isolates were positive (existing rpoB mutation) including 47 isolates resisted to RIF. Subsequent results of DNA sequencing showed that 54 isolates had rpoB gene mutation including 49 isolates resisted to RIF. The most frequently mutated sites were at codons 526 (73·2%), 513 (10·7%) and 531 (3·5%).
Conclusions:  The rpoB codon 526 was the most frequently mutated site of RIF-resistant M. tuberculosis strains in eastern China and its frequency is significantly higher ( P  < 0·0001) compared with that in other areas of China and in other geographic regions worldwide.
Significance and Impact of the Study:  Our results reveal that geographic variation is responsible for rpoB mutations in M. tuberculosis and the resulting information will be helpful to improve a novel rapid molecular drug resistance screening approach for MDR TB.  相似文献   

13.
We evaluated the in vitro anti-Mycobacterium tuberculosis activity and the cytotoxicity of dichloromethane extract and pure compounds from the leaves of Calophyllum brasiliense. Purification of the dichloromethane extract yielded the pure compounds (-) mammea A/BB (1), (-) mammea B/BB (2) and amentoflavone (3). The compound structures were elucidated on the basis of spectroscopic and spectrometric data. The contents of bioactive compounds in the extracts were quantified using high performance liquid chromatography coupled to an ultraviolet detector. The anti-M. tuberculosis activity of the extracts and the pure compounds was evaluated using a resazurin microtitre assay plate. The cytotoxicity assay was performed in J774G.8 macrophages using the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide colourimetric method. The quantification of the dichloromethane extract showed (1) and (2) at concentrations of 31.86 ± 2.6 and 8.24 ± 1.1 µg/mg of extract, respectively. The dichloromethane and aqueous extracts showed anti-M. tuberculosis H37Rv activity of 62.5 and 125 µg/mL, respectively. Coumarins (1) and (2) showed minimal inhibitory concentration ranges of 31.2 and 62.5 µg/mL against M. tuberculosis H37Rv and clinical isolates. Compound (3) showed no activity against M. tuberculosis H37Rv. The selectivity index ranged from 0.59-1.06. We report the activity of the extracts and coumarins from the leaves of C. brasiliense against M. tuberculosis.  相似文献   

14.
A multicenter study was conducted with the objective to evaluate a reverse line blot (RLB) assay to detect resistance to rifampin (RIF), isoniazid (INH), streptomycin (STR), and ethambutol (EMB) in clinical isolates of Mycobacterium tuberculosis. Oligonucleotides specific for wild type and mutant (drug resistance linked) alleles of the selected codons in the genes rpoB, inhA, ahpC, rpsL, rrs, embB, were immobilized on a nylon membrane. The RLB assay conditions were optimized following analysis of DNA samples with known sequences of the targeted genes. For validation of the method at different geographical locations, the membranes were sent to seven laboratories in six countries representing the regions with high burdens of multudrug-resistant tuberculosis. The reproducibility of the assay for detection of rpoB genotypes was initially evaluated on a blinded set of twenty reference DNA samples with known allele types and overall concordant results were obtained. Further mutation analysis was performed by each laboratory on the local strains. Upon RLB analysis of 315 clinical isolates from different countries, 132 (85.2%) of 155 RIF-resistant and 28 (51.0%) of 55 EMB-resistant isolates were correctly identified, showing applicability of the assay when targeting the rpoB hot-spot region and embB306. Mutations in the inhA and ahpC promoter regions, conferring resistance to INH, were successfully identified in respectively 16.9% and 13.2% of INH-resistant strains. Likewise, mutations in rrs513 and rpsL88 that confer resistance to STR were identified in respectively 15.1% and 10.7% of STR-resistant strains. It should be mentioned that mutation analysis of the above targets usually requires rather costly DNA sequencing to which the proposed RLB assay presents rapid and inexpensive alternative. Furthermore, the proposed method requires the same simple equipment as that used for spoligotyping and permits simultaneous analysis of up to 40 samples. This technique is a first attempt to combine different targets in a single assay for prediction of antituberculosis drugs resistance. It is open to further development as it allows easy incorporation of new probes for detection of mutations in other genes associated with resistance to second-line (e.g., fluoroquinolones) and new antituberculosis compounds.  相似文献   

15.
The identification of mycobacteria is essential because tuberculosis (TB) and mycobacteriosis are clinically indistinguishable and require different therapeutic regimens. The traditional phenotypic method is time consuming and may last up to 60 days. Indeed, rapid, affordable, specific and easy-to-perform identification methods are needed. We have previously described a polymerase chain reaction-based method called a mycobacteria mobility shift assay (MMSA) that was designed for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM) species identification. The aim of this study was to assess the MMSA for the identification of MTC and NTM clinical isolates and to compare its performance with that of the PRA-hsp65 method. A total of 204 clinical isolates (102 NTM and 102 MTC) were identified by the MMSA and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing fragments of the 16S rRNA and hsp65 genes. Both methods correctly identified all MTC isolates. Among the NTM isolates, the MMSA alone assigned 94 (92.2%) to a complex or species, whereas the PRA-hsp65 method assigned 100% to a species. A 91.5% agreement was observed for the 94 NTM isolates identified by both methods. The MMSA provided correct identification for 96.8% of the NTM isolates compared with 94.7% for PRA-hsp65. The MMSA is a suitable auxiliary method for routine use for the rapid identification of mycobacteria.  相似文献   

16.
The aim of the present study was to evaluate the effect of the combination of rifampicin (RIF) and verapamil (VP) against the Mycobacterium tuberculosis H37Rv reference strain and six multidrug-resistant (MDR) M. tuberculosis clinical isolates by determining Time-Kill Curves and the ability to efflux drug by fluorometry. The RIF+VP combination showed synergism in one MDR clinical isolate. For the other five MDR clinical isolates, the drug combination showed no interaction. The MDR clinical isolate had lower ethidium bromide (EtBr) accumulation when exposed to the RIF+VP combination, compared with RIF and VP exposure alone. The other MDR clinical isolates showed no significant difference in EtBr accumulation. These results suggest greater efflux action in one of the MDR clinical isolates compared with the M. tuberculosis H37Rv reference strain. The other five MDR isolates may have additional mechanisms of drug resistance to RIF. The use of the RIF+VP combination made one MDR bacillus more susceptible to RIF probably by inhibiting efflux pumps, and this combination therapy, in some cases, may contribute to a reduction of resistance to RIF in M. tuberculosis.  相似文献   

17.
Both the probability of a mutation occurring and the ability of the mutant to persist will influence the distribution of mutants that arise in a population. We studied the interaction of these factors for the in vitro selection of rifampicin (RIF)-resistant mutants of Mycobacterium tuberculosis. We characterised two series of spontaneous RIF-resistant in vitro mutants from isoniazid (INH)-sensitive and -resistant laboratory strains and clinical isolates, representing various M. tuberculosis genotypes. The first series were selected from multiple parallel 1 ml cultures and the second from single 10 ml cultures. RIF-resistant mutants were screened by Multiplex Ligation-dependent Probe Amplification (MLPA) or by sequencing the rpoB gene. For all strains the mutation rate for RIF resistance was determined with a fluctuation assay. The most striking observation was a shift towards rpoB-S531L (TCG→TTG) mutations in a panel of laboratory-generated INH-resistant mutants selected from the 10-ml cultures (p<0.001). All tested strains showed similar mutation rates (1.33×10−8 to 2.49×10−7) except one of the laboratory-generated INH mutants with a mutation rate measured at 5.71×10−7, more than 10 times higher than that of the INH susceptible parental strain (5.46–7.44×10−8). No significant, systematic difference in the spectrum of rpoB-mutations between strains of different genotypes was observed. The dramatic shift towards rpoB-S531L in our INH-resistant laboratory mutants suggests that the relative fitness of resistant mutants can dramatically impact the distribution of (subsequent) mutations that accumulate in a M. tuberculosis population, at least in vitro. We conclude that, against specific genetic backgrounds, certain resistance mutations are particularly likely to spread. Molecular screening for these (combinations of) mutations in clinical isolates could rapidly identify these particular pathogenic strains. We therefore recommend that isolates are screened for the distribution of resistance mutations, especially in regions that are highly endemic for (multi)drug resistant tuberculosis.  相似文献   

18.
Genetically related Mycobacterium tuberculosis strains with alterations at codon 516 in the rpoB gene were observed amongst a substantial number of patients with drug resistant tuberculosis in the Eastern Cape Province (ECP) of South Africa. Mutations at codon 516 are usually associated with lower level rifampicin (RIF) resistance, while susceptibility to rifabutin (RFB) remains intact. This study was conducted to assess the rationale for using RFB as a substitution for RIF in the treatment of MDR and XDR tuberculosis outbreaks. Minimum inhibitory concentrations (MICs) of 34 drug resistant clinical isolates of M tuberculosis were determined by MGIT 960 and correlated with rpoB mutations. RFB MICs ranged from 0.125 to 0.25 µg/ml in the 34 test isolates thereby confirming phenotypic susceptibility as per critical concentration (CC) of 0.5 µg/ml. The corresponding RIF MICs ranged between 5 and 15 µg/ml, which is well above the CC of 1.0 µg/ml. Molecular-based drug susceptibility testing provides important pharmacogenetic insight by demonstrating a direct correlation between defined rpoB mutation and the level of RFB susceptibility. We suggest that isolates with marginally reduced susceptibility as compared to the epidemiological cut-off for wild-type strains (0.064 µg/ml), but lower than the current CC (≤0.5 µg/ml), are categorised as intermediate. Two breakpoints (0.064 µg/ml and 0.5 µg/ml) are recommended to distinguish between susceptible, intermediate and RFB resistant strains. This concept may assist clinicians and policy makers to make objective therapeutic decisions, especially in situations where therapeutic options are limited. The use of RFB in the ECP may improve therapeutic success and consequently minimise the risk of ongoing transmission of drug resistant M. tuberculosis strains.  相似文献   

19.
A comprehensive assay for determination of pyrazinamide (PZA), rifampicin (RIF), isoniazid (INH) and hydrazine metabolites is described. The method involves organic solvent extraction of PZA and RIF, followed by derivatization of INH, monoacetylhydrazine (mHYD) and hydrazine (HYD) with salicylaldehyde and extraction with diethyl ether. Acetylisoniazid (acINH) and diacetylhydrazine (dHYD) were hydrolyzed to INH and mHYD, respectively, and processed as above. Using a gradient solvent programmer, PZA and RIF were analyzed on a C8 (5 μm) column at 248 nm, while INH and metabolites were analyzed on a C18 (5 μm) ODS2 column at 280 nm.  相似文献   

20.
The synthesis of 19 compounds derived from l-serine and analogs of p-substituted cinnamic acid is reported. Oxazolines 9 and oxazoles 10 have high antitubercular activity with Minimum Inhibitory Concentration (MIC) of 0.7812–25.0 µg/mL (3.21–100.3 µM), against two strains of Mycobacterium tuberculosis sensitive to first-line drugs Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB), Pyrazinamide (PZE) (H37Rv) and a clinical isolate resistant to INH, RIF and EMB (G122). The cytotoxic evaluation shows that oxazoles have low activity, finding viability>96% against the VERO cell line. The results show these compounds could be considered as future alternatives for antitubercular treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号