共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed DNA methylation of plastid DNA from fully ripened red fruits, green mature fruits, and green leaves of tomato ( Lycopersicon esculentum var. Firstmore). Essentially identical restriction profiles were obtained between chromoplast and chloroplast DNAs by EcoRI digestion. BstNI/ EcoRII and HpaII/ MspI are pairs of isoschizomers that can discriminate between methylated and unmethylated DNAs. These endonucleases produced different restriction patterns of plastid DNAs from tomato fruits compared to tomato leaves. Moreover, we have found from Southern blots that methylation was not detected in DNA fragments containing certain genes that are actively expressed in chromoplasts, whereas DNA fragments bearing genes that are barely transcribed in chromoplasts are methylated. 相似文献
2.
以陕西杨凌地区主栽的番茄品种'金棚1号'为试验材料,通过固相微萃取和GC/MS联用技术,对番茄果实不同成熟阶段的香气成分及其组成变化进行了研究.结果表明,'金棚1号'番茄果实共检测到54种香气成分,主要成分为醛类、酸类、醇类、酮类、酯类、酚类等.在果实的不同发育阶段,香味组分及其含量差异较大.醛类物质在绿熟期相对含量较高,为45.87%,在半熟期、硬熟期、完熟期的相对含量分别为12.65%、16.62%、17.15%,其中C6醛在绿熟期占43.7%,完熟期占15.27%,为醛类物质的主要成分;酸类物质含量在4个发育时期中先上升后下降,在半熟期含量达到最高,为15.2%,在完熟期酸类物质含量下降,为6.93%;酮类物质在完熟期含量达到最大,为18.27%;在绿熟期检测到4种重要的番茄特征香气物质,半熟期检测到5种番茄特征香气物质,硬熟期和完熟期各检测到6种番茄特征香气物质.说明随着果实的成熟,特征香气物质种类增多. 相似文献
5.
Blossom-end rot (BER) is a physiological disorder believed to be triggered by low Ca2+ content in the distal fruit tissue. However, many other factors can also determine fruit susceptibility to BER. It is possible that during fruit growth, Ca2+ imbalance can increase membrane leakiness, which may trigger the accumulation of reactive oxygen species, leading to cell death. Brassinosteroids are a class of plant hormones involved in stress defenses, specially increasing the activity of antioxidant enzymes and the accumulation of antioxidant compounds, such as ascorbic acid. The objective of this study was to understand the mechanisms by which 24-epibrassinolide (EBL) reduces fruit susceptibility to BER. Tomato plants ‘BRS Montese’ were cultivated in a greenhouse and were weekly sprayed with water (control) or EBL (0.01 µM) after full bloom. Plants and fruits were evaluated at 15 days after pollination (DAP). According to the results, EBL treatment inhibited BER development, increased fruit diameter, length, and fresh weight. EBL-treated fruit showed higher concentrations of soluble Ca2+ and lower concentrations of cell wall-bound Ca2+. EBL-treated fruit also had higher concentrations of ascorbic acid and lower concentrations of hydrogen peroxide, compared to water-treated fruit. EBL treatment increased the activity of the three main antioxidant enzymes known as ascorbate peroxidase, catalase, and superoxide dismutase. According to the results, EBL treatment maintained higher soluble Ca2+ and antioxidant capacity, reducing fruit susceptibility to BER. 相似文献
6.
本试验选择2个番茄果实乙烯释放量显著不同的番茄品系,通过P_1、P_2、F_1、F_2、B_1和B_2六世代的分析方法,研究了番茄果实乙烯释放量的遗传规律.结果表明:番茄果实乙烯释放量遗传符合1对负向完全显性主基因+加性-显性多基因模型(D-4),主基因效应在B_1、B_2和F_(23)个世代的遗传率分别为36.33%、44.09%和35.14%,多基因效应在B_1、B_2和F_(23)个世代的遗传率分别为54.73%、40.50%和54.88%. 相似文献
7.
Fruit development is a complex yet tightly regulated process. The developing fruit undergoes phases of cell division and expansion
followed by numerous metabolic changes leading to ripening. Plant hormones are known to affect many aspects of fruit growth
and development. In addition to the five classic hormones (auxins, gibberellins, cytokinins, abscisic acid and ethylene) a
few other growth regulators that play roles in fruit development are now gaining recognition. Exogenous application of various
hormones to different stages of developing fruits and endogenous quantifications have highlighted their importance during
fruit development. Information acquired through biochemical, genetic and molecular studies is now beginning to reveal the
possible mode of hormonal regulation of fruit development at molecular levels. In the present article, we have reviewed studies
revealing hormonal control of fruit development using tomato as a model system with emphasis on molecular genetics. 相似文献
8.
This work tested one aspect of the relations between membrane permeability and fruit ripening. Membrane permeability was measured as [ 3H]water efflux rate from preloaded fruit pericarp disks. Different stages of fruit development were compared between two tomato ( Lycopersicon esculentum Mill) strains: the normal Rutgers and the isogenic nonripening rin strain. The first significant increase in permeability was measured in Rutgers tissue at 110% of development, after fruit ripening had already begun as indicated by ethylene and CO 2 evolution and lycopene synthesis. The rin did not show any increase in tissue permeability during fruit development or maturation. 相似文献
9.
Although gibberellins (GAs) have been shown to induce development of the physiological disorder blossom-end rot (BER) in tomato fruit ( Solanum lycopersicum), the mechanisms involved remain largely unexplored. BER is believed to result from calcium (Ca) deficiency, but the relationship between Ca content and BER incidence is not strong. Our objectives were to better understand how GAs and a GA biosynthesis inhibitor affect BER development in tomato fruit. Tomato plants of two BER-susceptible cultivars, ‘Ace 55 (Vf)’ and ‘AB2,’ were grown in a greenhouse environment and subjected to Ca-deficiency conditions. Plants were treated weekly during fruit growth and development with 300 mg L ?1 GA 4+7, 300 mg L ?1 prohexadione-calcium (Apogee ®, a GA biosynthesis inhibitor), or water beginning 1 day after flower pollination. GA 4+7 treatment induced an increase in BER incidence in both cultivars up to 100%, whereas ‘Ace 55 (Vf)’ and ‘AB2’ plants treated with Apogee did not show BER incidence. The number of functional xylem vessels was higher in the placental and pericarp tissue of tomato fruit treated with Apogee at the early stages of fruit growth. Treatment with Apogee also increased fruit pericarp Ca concentration. GA 4+7 treatment enhanced the expression of the putative CAX and Ca-ATPase genes, that code for proteins involved in Ca movement into storage organelles. The lowest water-soluble apoplastic Ca concentration and the highest membrane leakage values were observed in the pericarp of GA 4+7-treated fruit. These results suggest that GAs consistently reduced fruit Ca uptake and water-soluble apoplastic Ca concentration, leading to leakier plasma membranes and an increase in BER development in fruit tissue of both tomato cultivars. 相似文献
12.
番茄( Solanum lycopersicum)是目前世界上种植面积最广且最受欢迎的蔬菜作物之一, 也是肉果及茄科的重要模式植物。番茄果实发育主要分为早期果实发育和果实成熟2个时期, 但果实形态结构和大小主要决定于早期果实发育时期。该文围绕番茄早期果实发育时期植物激素、细胞周期、表观遗传和源库代谢等多方面调控的分子机制进行了综述, 旨在认识植物生长与发育的基本生物学问题及促进基础理论研究成果在生产中应用。 相似文献
13.
The biochemical consequences of root hypoxia have been documented in many sink organs, but not extensively in fruit. Therefore,
in the present study, the response to root hypoxia in tomato fruit ( Solanum lycopersicum L.) was investigated at two developmental stages, during the cell division and the cell expansion phases. Our results showed
that in dividing fruit, root hypoxia caused an exhaustion of carbon reserves and proteins. However, ammonium and major amino
acids (glutamine, asparagine and γ–aminobutyric acid (GABA)) significantly accumulated. In expanding fruit, root hypoxia had
no effect on soluble sugar, protein and glutamine contents, whereas starch content was significantly decreased, and asparagine
and GABA contents slightly increased. Metabolite contents were well correlated with activities of the corresponding metabolising
enzymes. Contrary to nitrogen metabolising enzymes (glutamine synthetase, asparagine synthetase and glutamate decraboxylase),
the activities of enzymes involved in sugar metabolism (invertase, sucrose synthase, sucrose phosphate synthase and ADP glucose
pyrophosphorylase) were significantly reduced by root hypoxia, in diving fruit. In expanding fruit, only a slight decrease
in ADP glucose pyrophosphorylase and an increase in asparagine synthetase and glutamate decarboxylase activities were observed.
Taken together, the present data revealed that the effects of root hypoxia are more pronounced in the youngest fruits as it
is probably controlled by the relative sink strength of the fruit and by the global disturbance in plant functioning. 相似文献
14.
双向电泳技术是蛋白质组学研究的基本方法之一。果实由于富含糖、多酚、单宁和有机酸等物质,蛋白质的提取比其它植物组织更加困难。本文主要介绍不同果实蛋白质的提取、等电聚焦系统和凝胶染色技术,并建立了一套适用于桃、樱桃、苹果、芒果和冬枣等多种果实蛋白质组学的研究方法。结果表明,采用匀浆法和酚抽提法提取果实的蛋白质,裂解缓冲液2溶解蛋白质,并用固相pH梯度进行等电聚焦,可以获得背景清晰和分辨率高的凝胶图谱,具有较好的重复性,可用于果实蛋白质组学的研究。我们的研究结果显示,固相干胶条与IEF管胶相比,具有更加明显的优势。而不同的染色方法,对结果影响不大。 相似文献
16.
双向电泳技术是蛋白质组学研究的基本方法之一。果实由于富含糖、多酚、单宁和有机酸等物质,蛋白质的提取比其它植物组织更加困难。本文主要介绍不同果实蛋白质的提取、等电聚焦系统和凝胶染色技术,并建立了一套适用于桃、樱桃、苹果、芒果和冬枣等多种果实蛋白质组学的研究方法。结果表明,采用匀浆法和酚抽提法提取果实的蛋白质,裂解缓冲液2溶解蛋白质,并用固相pH梯度进行等电聚焦,可以获得背景清晰和分辨率高的凝胶图谱,具有较好的重复性,可用于果实蛋白质组学的研究。我们的研究结果显示,固相干胶条与IEF管胶相比,具有更加明显的优势。而不同的染色方法,对结果影响不大。 相似文献
19.
A kinetic model combining enzyme activity measurements and subcellular compartmentation was parameterized to fit the sucrose, hexose, and glucose-6-P contents of pericarp throughout tomato ( Solanum lycopersicum) fruit development. The model was further validated using independent data obtained from domesticated and wild tomato species and on transgenic lines. A hierarchical clustering analysis of the calculated fluxes and enzyme capacities together revealed stage-dependent features. Cell division was characterized by a high sucrolytic activity of the vacuole, whereas sucrose cleavage during expansion was sustained by both sucrose synthase and neutral invertase, associated with minimal futile cycling. Most importantly, a tight correlation between flux rate and enzyme capacity was found for fructokinase and PPi-dependent phosphofructokinase during cell division and for sucrose synthase, UDP-glucopyrophosphorylase, and phosphoglucomutase during expansion, thus suggesting an adaptation of enzyme abundance to metabolic needs. In contrast, for most enzymes, flux rates varied irrespectively of enzyme capacities, and most enzymes functioned at <5% of their maximal catalytic capacity. One of the major findings with the model was the high accumulation of soluble sugars within the vacuole together with organic acids, thus enabling the osmotic-driven vacuole expansion that was found during cell division. 相似文献
20.
测定了经4步纯化、比活性达20000U/mg蛋白质以上的番茄果实伤诱导ACC合成酶的一些酶学性质。酶反应最适PH值为9.5;酶在pH8.0下最稳定,pH7.5-10短时间处理不会使酶发生不可逆变性;酶在pH8.0和9.5的Km值分别为23和4Dμmol/L;根据酶反应不同时间的产物累积量,得出反应速度随时间的变化符合函数关系式Vt=V0e-kt,并根据此式求出酶的半寿期为107min。光照对酶活性有抑制作用。酶的DTNB化学修饰结果表明,在酶活性中心的PLP结合部位很可能有半胱氨酸残基存在。 相似文献
|