首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Infectious laryngotracheitis (ILT) is an acute, highly contagious upper-respiratory infectious disease of chickens. In this study, a real-time PCR method was developed for fast and accurate detection and quantitation of ILTV DNA of chickens experimentally infected with ILTV strain LJS09 and naturally infected chickens. The detection lower limit of the assay was 10 copies of DNA. There were no cross reactions with the DNA and RNA of infectious bursal disease virus, chicken anemia virus, reticuloendotheliosis virus, avian reovirus, Newcastle disease virus, and Marek''s disease virus. The real-time PCR was reproducible as the coefficients of variation of reproducibility of the intra-assay and the inter-assay were less than 2%. The real-time PCR was used to detect the levels of the ILTV DNA in the tissues of specific pathogen free (SPF) chickens infected with ILTV at different times post infection. ILTV DNA was detected by real-time PCR in the heart, liver, spleen, lung, kidney, larynx, tongue, thymus, glandular stomach, duodenum, pancreatic gland, small intestine, large intestine, cecum, cecal tonsil, bursa of Fabricius, and brain of chickens in the infection group and the contact-exposure group. The sensitivity, specificity, and reproducibility of the ILTV real-time PCR assay revealed its suitability for detection and quantitation of ILTV in the samples from clinically and experimentally ILTV infected chickens.  相似文献   

3.
Inactivated poliovirus vaccine (IPV) may be used in mass vaccination campaigns during the final stages of polio eradication. It is also likely to be adopted by many countries following the coordinated global cessation of vaccination with oral poliovirus vaccine (OPV) after eradication. The success of IPV in the control of poliomyelitis outbreaks will depend on the degree of nasopharyngeal and intestinal mucosal immunity induced against poliovirus infection. We performed a systematic review of studies published through May 2011 that recorded the prevalence of poliovirus shedding in stool samples or nasopharyngeal secretions collected 5–30 days after a “challenge” dose of OPV. Studies were combined in a meta-analysis of the odds of shedding among children vaccinated according to IPV, OPV, and combination schedules. We identified 31 studies of shedding in stool and four in nasopharyngeal samples that met the inclusion criteria. Individuals vaccinated with OPV were protected against infection and shedding of poliovirus in stool samples collected after challenge compared with unvaccinated individuals (summary odds ratio [OR] for shedding 0.13 (95% confidence interval [CI] 0.08–0.24)). In contrast, IPV provided no protection against shedding compared with unvaccinated individuals (summary OR 0.81 [95% CI 0.59–1.11]) or when given in addition to OPV, compared with individuals given OPV alone (summary OR 1.14 [95% CI 0.82–1.58]). There were insufficient studies of nasopharyngeal shedding to draw a conclusion. IPV does not induce sufficient intestinal mucosal immunity to reduce the prevalence of fecal poliovirus shedding after challenge, although there was some evidence that it can reduce the quantity of virus shed. The impact of IPV on poliovirus transmission in countries where fecal-oral spread is common is unknown but is likely to be limited compared with OPV.  相似文献   

4.
An in situ hybridization procedure for the detection of infectious laryngotracheitis virus (ILTV) in experimentally infected chickens is described. Formalin-fixed, paraffin-embedded sections of trachea, taken from chickens on days 3–10 post-inoculation (p.i.) with ILTV were hybridized with a mixture of 2 biotinylated, polymerase chain reaction-generated DNA fragments. The fragments correspond to sequences of the ILTV glycoprotein C and thymidine kinase genes. In situ hybridization was seen in 7 out of 7 chickens examined on day 3 p.i., 2 out of 2 examined on day 4 p.i. and 3 out of 3 examined on day 5 p.i. No hybridization was observed in 3 out of 3 chickens examined on day 10 p.i. ILTV nucleic acid was detected in nuclei of degenerated tracheal epithelial cells and in intranuclear inclusion bodies of syncytia.  相似文献   

5.
Since 1998, 9 of the 26 serotypes of bluetongue virus (BTV) have spread throughout Europe, and serotype 8 has suddenly emerged in northern Europe, causing considerable economic losses, direct (mortality and morbidity) but also indirect, due to restriction in animal movements. Therefore, many new types of vaccines, particularly subunit vaccines, with improved safety and efficacy for a broad range of BTV serotypes are currently being developed by different laboratories. Here we exploited a reverse genetics-based replication-deficient BTV serotype 1 (BTV-1) (disabled infectious single cycle [DISC]) strain to generate a series of DISC vaccine strains. Cattle and sheep were vaccinated with these viruses either singly or in cocktail form as a multivalent vaccine candidate. All vaccinated animals were seroconverted and developed neutralizing antibody responses to their respective serotypes. After challenge with the virulent strains at 21 days postvaccination, vaccinated animals showed neither any clinical reaction nor viremia. Further, there was no interference with protection with a multivalent preparation of six distinct DISC viruses. These data indicate that a very-rapid-response vaccine could be developed based on which serotypes are circulating in the population at the time of an outbreak.  相似文献   

6.
在重组禽痘病毒中表达多个禽类病原的主要免疫原基因是构建多价基因工程疫苗的前提,但相关研究很少。在表达传染性喉气管炎病毒(ILTV)gB基因重组禽痘病毒的转移载体的基础上,构建了含有ILTV gB基因和新城疫病毒(NDV)F基因的重组禽痘病毒转移载体pSY-gB-F,采用脂质体转染禽痘病毒感染的鸡胚成纤维(CEF)细胞后,通过蓝斑试验筛选出重组禽痘病毒(rFPv-gB-F),并进行了6轮蚀斑纯化。Western-blot试验和间接免疫荧光试验证明ILTV gB基因和NBVF基因在rFPV-gB-F感染的CEF细胞中获得表达。为传染性喉气管炎、新城疫与鸡痘活载体多价疫苗的研制奠定基础。  相似文献   

7.
A series of incubation and broiler growth studies were conducted using one strain of broiler chicken (fast feathering dam line) observing incubation effects on femoral bone ash % at hatch and the ability of the bird to remain standing at 6 weeks of age (Latency-To-Lie). Egg shell temperatures during incubation were consistently recorded. Parsimonious models were developed across eight studies using stepwise multiple linear regression of egg shell temperatures over 3-day periods and both bone ash at hatch and Latency-To-Lie. A model for bone ash at hatch explained 70% of the variation in this factor and revealed an association with lower egg shell temperatures during days 4–6 and 13–15 and higher egg shell temperatures during days 16–18 of incubation. Bone ash at hatch and subsequent Latency-To-Lie were positively correlated (r = 0.57, P<0.05). A model described 66% of the variation Latency-To-Lie showing significant association of the interaction of femoral ash at hatch and lower average egg shell temperatures over the first 15 days of incubation. Lower egg shell temperature in the early to mid incubation process (days 1–15) and higher egg shell temperatures at a later stage (days 16–18) will both tend to delay the hatch time of incubating eggs. Incubation profiles that resulted in later hatching chicks produced birds which could remain standing for a longer time at 6 weeks of age. This supports a contention that the effects of incubation observed in many studies may in fact relate more to earlier hatching and longer sojourn of the hatched chick in the final stage incubator. The implication of these outcomes are that the optimum egg shell temperature during incubation for broiler leg strength development may be lower than that regarded as ideal (37.8°C) for maximum hatchability and chick growth.  相似文献   

8.
9.
There is a critical need for new influenza vaccines able to protect against constantly emerging divergent virus strains. This will be sustained by the induction of vigorous cellular responses and humoral immunity capable of acting at the portal of entry of this pathogen. In this study we evaluate the protective efficacy of intranasal vaccination with recombinant influenza nucleoprotein (rNP) co-administrated with bis-(3′,5′)-cyclic dimeric adenosine monophosphate (c-di-AMP) as adjuvant. Immunization of BALB/c mice with two doses of the formulation stimulates high titers of NP-specific IgG in serum and secretory IgA at mucosal sites. This formulation also promotes a strong Th1 response characterized by high secretion of INF-γ and IL-2. The immune response elicited promotes efficient protection against virus challenge. These results suggest that c-di-AMP is a potent mucosal adjuvant which may significantly contribute towards the development of innovative mucosal vaccines against influenza.  相似文献   

10.
Vaccine protection from infection and/or disease induced by highly pathogenic simian immunodeficiency virus (SIV) strain SIVmac251 in the rhesus macaque model is a challenging task. Thus far, the only approach that has been reported to protect a fraction of macaques from infection following intravenous challenge with SIVmac251 was the use of a live attenuated SIV vaccine. In the present study, the gag, pol, and env genes of SIVK6W were expressed in the NYVAC vector, a genetically engineered derivative of the vaccinia virus Copenhagen strain that displays a highly attenuated phenotype in humans. In addition, the genes for the α and β chains of interleukin-12 (IL-12), as well as the IL-2 gene, were expressed in separate NYVAC vectors and inoculated intramuscularly, in conjunction with or separate from the NYVAC-SIV vaccine, in 40 macaques. The overall cytotoxic T-lymphocyte (CTL) response was greater, at the expense of proliferative and humoral responses, in animals immunized with NYVAC-SIV and NYVAC–IL-12 than in animals immunized with the NYVAC-SIV vaccine alone. At the end of the immunization regimen, half of the animals were challenged with SIVmac251 by the intravenous route and the other half were exposed to SIVmac251 intrarectally. Significantly, five of the eleven vaccinees exposed mucosally to SIVmac251 showed a transient peak of viremia 1 week after viral challenge and subsequently appeared to clear viral infection. In contrast, all 12 animals inoculated intravenously became infected, but 5 to 6 months after viral challenge, 4 animals were able to control viral expression and appeared to progress to disease more slowly than control animals. Protection did not appear to be associated with any of the measured immunological parameters. Further modulation of immune responses by coadministration of NYVAC-cytokine recombinants did not appear to influence the outcome of viral challenge. The fact that the NYVAC-SIV recombinant vaccine appears to be effective per se in the animal model that best mirrors human AIDS supports the idea that the development of a highly attenuated poxvirus-based vaccine candidate can be a valuable approach to significantly decrease the spread of human immunodeficiency virus (HIV) infection by the mucosal route.  相似文献   

11.
Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV–LACK, rCDV–TSA, and rCDV–LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV–LACK showed markedly smaller nodules without ulceration. Although the rCDV–TSA- and rCDV–LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV–LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.  相似文献   

12.
13.
以RTPCR法扩增获得H9亚型禽流感病毒(AIV)分离株(A/Chicken/China/F/1998)的血凝素(HA)基因,将其定向插入鸡痘病毒转移载体1175的痘苗病毒启动子P75的下游,得到重组转移载体1175HA。以脂质体转染法将1175HA转染至已感染鸡痘病毒282E4疫苗株(wtFPV)的鸡胚成纤维细胞(CEF)中,通过在含Xgal的营养琼脂上连续挑选蓝色病毒蚀斑获得并纯化rFPVHA。以间接免疫荧光法证实感染rFPVHA的CEF表达了HA。rFPVHA在免疫7日龄SPF鸡7天后即能诱生可检出的血凝抑制(HI)抗体,14天后诱生的HI抗体到达高峰,且诱生的HI抗体保持较高水平达55天。在7日龄SPF鸡及含抗FPV母源抗体的商品鸡上进行的免疫效力试验表明,rFPVHV能显著抑制静脉攻毒后免疫鸡从泄殖腔的排毒,效果与AIV全病毒灭活苗相当。  相似文献   

14.
The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years) with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es) might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA) monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI) assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918–1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs) raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009 pandemic H1N1 virus. This data provides a mechanistic basis for the protection seen in the older population, and emphasizes a rationale for including vaccination of the younger, naïve population. Our results also support the notion that pigs can act as an animal reservoir where influenza virus HAs become antigenically frozen for long periods of time, facilitating the generation of human pandemic viruses.  相似文献   

15.
Hepatitis E virus (HEV) constitutes a significant health burden worldwide, with an estimated approximately 33% of the world’s population exposed to the pathogen. The recent licensed HEV 239 vaccine in China showed excellent protective efficacy against HEV of genotypes 1 and 4 in the general population and pregnant women. Because hepatitis E is a zoonosis, it is also necessary to ascertain whether this vaccine can serve to manage animal sources of human HEV infection. To test the efficacy of the HEV 239 vaccine in protecting animal reservoirs of HEV against HEV infection, twelve specific-pathogen-free (SPF) rabbits were divided randomly into two groups of 6 animals and inoculated intramuscularly with HEV 239 and placebo (PBS). All animals were challenged intravenously with swine HEV of genotype 4 or rabbit HEV seven weeks after the initial immunization. The course of infection was monitored for 10 weeks by serum ALT levels, duration of viremia and fecal virus excretion and HEV antibody responses. All rabbits immunized with HEV 239 developed high titers of anti-HEV and no signs of HEV infection were observed throughout the experiment, while rabbits inoculated with PBS developed viral hepatitis following challenge, with liver enzyme elevations, viremia, and fecal virus shedding. Our data indicated that the HEV 239 vaccine is highly immunogenic for rabbits and that it can completely protect rabbits against homologous and heterologous HEV infections. These findings could facilitate the prevention of food-borne sporadic HEV infection in both developing and industrialized countries.  相似文献   

16.
Large numbers of polymorphonuclear leukocytes (PMNs) infiltrated the murine vaginal mucosa within 24 h after intravaginal inoculation with an attenuated strain of herpes simplex virus type 2 (HSV-2). The role of these cells in resolution of a primary genital infection and in protection of HSV-immune animals against challenge with a fully virulent HSV-2 strain was investigated. Depletion of greater than 95% of the PMNs at the vaginal mucosal surface prior to intravaginal inoculation with an attenuated HSV-2 strain resulted in significantly higher virus titers on days 3 to 7 but only slightly delayed resolution of the primary genital infection. These results suggest that neutrophils helped control the infection but that other immune mechanisms ultimately cleared the virus. Interestingly, depletion of PMNs from HSV-immune mice prior to challenge with a fully virulent HSV-2 strain resulted in a rise in virus titers to levels comparable to those of nonimmune mice and a more pronounced diminution of virus clearance from the vaginal mucosa despite the presence of HSV-specific B and T cells. Levels of gamma interferon (IFN-gamma) and HSV-specific antibody were comparable in neutrophil-depleted and control-treated immune mice following HSV-2 challenge, suggesting that RB6-8C5 treatment did not impair T- and B-cell function. Therefore, these results suggest that neutrophils play a role in limiting and clearing HSV-2 vaginal infections and that they are, in association with HSV-specific B and T cells, an important component in immune protection of the vaginal mucosa.  相似文献   

17.
Development of a vaccine to prevent or reduce parasite development in lymphatic filariasis would be a complementary approach to existing chemotherapeutic tools. Trehalose-6-phosphate phosphatase of Brugia malayi (Bm-TPP) represents an attractive vaccine target due to its absence in mammals, prevalence in the major life stages of the parasite and immunoreactivity with human bancroftian antibodies, especially from endemic normal subjects. We have recently reported on the cloning, expression, purification and biochemical characterization of this vital enzyme of B. malayi. In the present study, immunoprophylactic evaluation of Bm-TPP was carried out against B. malayi larval challenge in a susceptible host Mastomys coucha and the protective ability of the recombinant protein was evaluated by observing the adverse effects on microfilarial density and adult worm establishment. Immunization caused 78.4% decrease in microfilaremia and 71.04% reduction in the adult worm establishment along with sterilization of 70.06% of the recovered live females. The recombinant protein elicited a mixed Th1/Th2 type of protective immune response as evidenced by the generation of both pro- and anti-inflammatory cytokines IL-2, IFN-γ, TNF-α, IL-4 and an increased production of antibody isotypes IgG1, IgG2a, IgG2b and IgA. Thus immunization with Bm-TPP conferred considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a potential vaccine candidate against lymphatic filariasis (LF).  相似文献   

18.
H5N1 highly pathogenic avian influenza virus (HPAIV) causes periodic outbreaks in humans, resulting in severe infections with a high (60%) incidence of mortality. The circulating strains have low human-to-human transmissibility; however, widespread concerns exist that enhanced transmission due to mutations could lead to a global pandemic. We previously engineered Newcastle disease virus (NDV), an avian paramyxovirus, as a vector to express the HPAIV hemagglutinin (HA) protein, and we showed that this vaccine (NDV/HA) induced a high level of HPAIV-specific mucosal and serum antibodies in primates when administered through the respiratory tract. Here we developed additional NDV-vectored vaccines expressing either HPAIV HA in which the polybasic cleavage site was replaced with that from a low-pathogenicity strain of influenza virus [HA(RV)], in order to address concerns of enhanced vector replication or genetic exchange, or HPAIV neuraminidase (NA). The three vaccine viruses [NDV/HA, NDV/HA(RV), and NDV/NA] were administered separately to groups of African green monkeys by the intranasal/intratracheal route. An additional group of animals received NDV/HA by aerosol administration. Each of the vaccine constructs was highly restricted for replication, with only low levels of virus shedding detected in respiratory secretions. All groups developed high levels of neutralizing antibodies against homologous and heterologous strains of HPAIV and were protected against challenge with 2 × 107 PFU of homologous HPAIV. Thus, needle-free, highly attenuated NDV-vectored vaccines expressing either HPAIV HA, HA(RV), or NA have been developed and demonstrated to be individually immunogenic and protective in a primate model of HPAIV infection. The finding that HA(RV) was protective indicates that it would be preferred for inclusion in a vaccine. The study also identified NA as an independent protective HPAIV antigen in primates. Furthermore, we demonstrated the feasibility of aerosol delivery of NDV-vectored vaccines.H5N1 highly pathogenic avian influenza virus (HPAIV) was first detected in human infections in 1997; previously, it had been found only in birds (11, 50). To date, this virus has been identified in 436 confirmed cases of human infection in 15 countries, 262 (60%) of which were fatal (75). The currently circulating H5N1 strains are characterized by low human-to-human transmissibility. This has been attributed, in part, to a preference for binding to α-2,3-linked sialic acids that are present in high concentrations throughout the avian respiratory tract but were thought to be found primarily in the lower human respiratory tract (57), although this explanation has been questioned (48, 49). It has also been observed that mutations in the PB2 subunit of the viral polymerase are necessary to confer the ability for the virus to be spread by aerosolized nasal droplets in ferrets (72). Whatever factors may be involved, there is widespread concern that the avian virus could mutate to enhance its transmissibility among humans, possibly resulting in a global pandemic (28, 50). For the avian H9N2 virus, which also has pandemic potential, it has been demonstrated that only five amino acid changes were sufficient for the virus to gain the ability to be spread by aerosolized nasal droplets in a ferret model (60). Thus, there is an urgent need for vaccines against HPAIV.Several vaccine strategies for HPAIV have been evaluated (reviewed in references 32 and 41), including inactivated and live attenuated vaccines. These efforts have been hampered by several factors. HPAIV strains are highly virulent for embryonated chicken eggs, the most widely used substrate for vaccine manufacture, and their rapid death following inoculation renders eggs unsuitable for efficient virus propagation. In addition, the major protective antigen, hemagglutinin (HA), administered either as a purified protein or in inactivated HPAIV virions, appears to be poorly immunogenic (69, 70). An additional factor complicating the development of HPAIV vaccines based on inactivated virus is the high cost and biohazard associated with HPAIV propagation, which must be done under enhanced biosafety level 3 (BSL-3) containment, although this problem might be addressed by the use of live attenuated reassortant influenza virus vaccines that contain the HPAIV glycoproteins on the background of an avirulent human influenza virus strain (24, 37). In addition, such reassortant strains might serve directly as live attenuated vaccines. Unfortunately, the latter approach may be limited by subtle and unpredictable incompatibility between the avian-origin glycoproteins and human-origin vaccine backgrounds acceptable for human use, which can result in overattenuation in vivo (24). There are also lingering concerns about the significant potential, with a live HPAIV vaccine, for reassortment between gene segments of the vaccine virus and circulating influenza virus strains, which might result in novel strains with unpredictable biological properties (63).We and others have been evaluating Newcastle disease virus (NDV) as a general human vaccine vector for emerging pathogens, including H5N1 HPAIV (7, 18-20, 29). NDV is an avian paramyxovirus that is antigenically unrelated to common human pathogens; hence, its use in humans should not be affected by host immunity to common pathogens. The many naturally occurring strains of NDV can be categorized into three pathotypes based on virulence in chickens: velogenic strains, causing severe disease with high mortality; mesogenic strains, causing disease of intermediate severity with low mortality; and lentogenic strains, causing mild or inapparent infections (reviewed in reference 2). Lentogenic, and sometimes mesogenic, strains of NDV are in wide use as live attenuated vaccines against velogenic NDV in poultry (2). When mesogenic or lentogenic NDV was administered to the respiratory tracts of nonhuman primates as a model for the immunization of humans, the virus was highly attenuated for replication, was shed only at low titers, appeared to remain restricted to the respiratory tract, and was highly immunogenic for the expressed foreign antigen (7). We recently demonstrated that a mesogenic strain of NDV expressing the HA protein of H5N1 HPAIV (NDV/HA) elicited high titers of neutralizing antibodies in serum following combined intranasal (i.n.) and intratracheal (i.t.) delivery in a nonhuman primate model (20). Vaccination of mice with a similar NDV-vectored vaccine protected them from HPAIV challenge (29). However, results obtained with mice do not reliably predict the efficacy of an influenza virus vaccine for human use, due to the pathophysiological and phylogenetic differences between mice and humans (71). In particular, mice may produce a potent immune response to HPAIV vaccines (64) that may not be reproduced in clinical trials (38). These considerations are especially important for a vaccine based on a live viral vector platform, since its immunogenicity, and therefore its protective efficacy, is directly linked to replication, which can differ greatly in various experimental animals versus humans (reviewed in references 6 and 9). Therefore, the protective efficacy of NDV-based vaccines against HPAIV challenge in nonhuman primate models—the closest model to humans—has remained unknown.The protease recognition sequence of the HA protein is one of the major determinants of avian influenza virus pathogenicity (62). HPAIV strains have a “polybasic” cleavage site, containing multiple basic amino acids, that is readily cleaved by ubiquitous intracellular subtilisin-like proteases, facilitating the replication and spread of the virus. In contrast, the HA cleavage site of low-pathogenicity strains contains fewer basic amino acids and depends on secretory trypsin-like proteases found in the respiratory and enteric tracts, resulting in more-localized infections (30, 62). The presence of a polybasic cleavage site in the H5 HA of any live vaccine raises some concern about the possibility of genetic exchange with circulating strains of influenza virus. It should be noted that genetic exchange involving paramyxoviruses is a rare event (14) that has been documented only once (61). However, elimination of the polybasic HA cleavage site would mitigate the effects of even this rare possibility of genetic exchange. Another concern was based on our previous finding that the HPAIV H5 HA protein is incorporated into the NDV envelope as a trimer (20), consistent with its presence in a functional form. While we previously showed that this did not enhance the pathogenicity of the NDV/HA recombinant in chickens (20), we could not rule out the possibility that it might confer an altered tropism on the NDV/HA virus in other systems. For example, a recombinant parainfluenza virus type 3 expressing the Ebola virus glycoprotein incorporated the foreign protein into its envelope, allowing cellular attachment and fusion of the vaccine virus independently of the vector''s own envelope glycoproteins (10).In addition to the HA protein, the neuraminidase (NA) protein is also present on the surfaces of influenza virus-infected cells and virions. Antibodies specific for NA are not thought to interfere with the initial viral attachment and penetration of host cells (36, 40, 54). However, NA-specific antibodies prevent the release of virus from infected cells, thereby decreasing viral spread (35), and they increase resistance to viral infection in humans (40, 47, 54). They also provide at least some protection against viruses bearing homologous or heterologous NA proteins of the same subtype in a mouse model (12, 56). NA also appears to evolve at a lower rate than HA, suggesting that NA-specific antibodies may provide broader protection than a vaccine utilizing HA alone (39). Therefore, it was important to assess the immunogenicity and protective efficacy of the HPAIV NA independently of those of HA, which has not previously been done in a human or nonhuman primate model.  相似文献   

19.
We previously showed that envelope (gp160)-based vaccines, used in a live recombinant virus priming and subunit protein boosting regimen, protected macaques against intravenous and intrarectal challenges with the homologous simian immunodeficiency virus SIVmne clone E11S. However, the breadth of protection appears to be limited, since the vaccines were only partially effective against intravenous challenge by the uncloned SIVmne. To examine factors that could affect the breadth and the efficacy of this immunization approach, we studied (i) the effect of priming by recombinant vaccinia virus; (ii) the role of surface antigen gp130; and (iii) the role of core antigens (Gag and Pol) in eliciting protective immunity. Results indicate that (i) priming with recombinant vaccinia virus was more effective than subunit antigen in eliciting protective responses; (ii) while both gp130 and gp160 elicited similar levels of SIV-specific antibodies, gp130 was not as effective as gp160 in protection, indicating a possible role for the transmembrane protein in presenting functionally important epitopes; and (iii) although animals immunized with core antigens failed to generate any neutralizing antibody and were infected upon challenge, their virus load was 50- to 100-fold lower than that of the controls, suggesting the importance of cellular immunity or other core-specific immune responses in controlling acute infection. Complete protection against intravenous infection by the pathogenic uncloned SIVmne was achieved by immunization with both the envelope and the core antigens. These results indicate that immune responses to both antigens may contribute to protection and thus argue for the inclusion of multiple antigens in recombinant vaccine designs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号