共查询到20条相似文献,搜索用时 12 毫秒
1.
In Staphylococcus aureus, the intracellular siderophore staphyloferrin B, which has been shown to chelate iron-bound to serum transferrin, is transported into cells by the SirABC system. In this work, we have analysed the role of the Sir transporter under stress conditions that resemble those imposed by the mammalian innate immune system. We show that exposure of S. aureus to oxidative and nitrosative stress generated by hydrogen peroxide and S-nitrosoglutathione, respectively, induced the expression of the sirA gene. The disruption of the sir operon led to a strain with lower viability and decreased resistance to oxidative stress. S. aureus sir null mutant was also analysed during infection of murine macrophages and shown to contribute to S. aureus survival inside macrophages. Altogether, our results indicate that the Sir transport system confers protection against reactive oxygen species, therefore, contributing to the virulence of S. aureus. 相似文献
2.
AM Edwards 《Journal of bacteriology》2012,194(19):5404-5412
The pathogen Staphylococcus aureus undergoes phenotype switching in vivo from its normal colony phenotype (NCP) to a slow-growing, antibiotic-resistant small-colony-variant (SCV) phenotype that is associated with persistence in host cells and tissues. However, it is not clear whether phenotype switching is the result of a constitutive process that is selected for under certain conditions or is triggered by particular environmental stimuli. Examination of cultures of diverse S. aureus strains in the absence of selective pressure consistently revealed a small gentamicin-resistant SCV subpopulation that emerged during exponential-phase NCP growth and increased in number until NCP stationary phase. Treatment of replicating bacteria with the antibiotic gentamicin, which inhibited NCP but not SCV replication, resulted in an initial decrease in SCV numbers, demonstrating that SCVs arise as a consequence of NCP replication. However, SCV population expansion in the presence of gentamicin was reestablished by selection of phenotype-stable SCVs and subsequent SCV replication. In the absence of selective pressure, however, phenotype switching was bidirectional and occurred at a high frequency during NCP replication, resulting in SCV turnover. In summary, these data demonstrate that S. aureus phenotype switching occurs via a constitutive mechanism that generates a dynamic, antibiotic-resistant subpopulation of bacteria that can revert to the parental phenotype. The emergence of SCVs can therefore be considered a normal part of the S. aureus life cycle and provides an insurance policy against exposure to antibiotics that would otherwise eliminate the entire population. 相似文献
3.
4.
Staphylococcus aureus, a pathogen responsible for hospital and community-acquired infections, expresses many virulence factors under the control of numerous regulatory systems. Here we show that one of the small pathogenicity island RNAs, named SprD, contributes significantly to causing disease in an animal model of infection. We have identified one of the targets of SprD and our in vivo data demonstrate that SprD negatively regulates the expression of the Sbi immune-evasion molecule, impairing both the adaptive and innate host immune responses. SprD interacts with the 5′ part of the sbi mRNA and structural mapping of SprD, its mRNA target, and the ‘SprD-mRNA’ duplex, in combination with mutational analysis, reveals the molecular details of the regulation. It demonstrates that the accessible SprD central region interacts with the sbi mRNA translational start site. We show by toeprint experiments that SprD prevents translation initiation of sbi mRNA by an antisense mechanism. SprD is a small regulatory RNA required for S. aureus pathogenicity with an identified function, although the mechanism of virulence control by the RNA is yet to be elucidated. 相似文献
5.
Penicillin-Binding Protein 1 of Staphylococcus aureus Is Essential for Growth 总被引:3,自引:0,他引:3 下载免费PDF全文
pbpA, a gene encoding penicillin-binding protein (PBP) 1 of Staphylococcus aureus, was cloned in an Escherichia coli MC1061 transformant which grew on a plate containing 512 μg of vancomycin per ml. This gene encodes a 744-amino-acid sequence which conserves three motifs of PBPs, SXXK, SXN, and KTG. The chromosomal copy of pbpA could be disrupted only when RN4220, a methicillin-sensitive S. aureus strain, had additional copies of pbpA in its episome. Furthermore, these episomal copies of pbpA could not be eliminated by an incompatible plasmid when the chromosomal copy of pbpA was disrupted beforehand. Based on these observations, we concluded that pbpA is essential for the growth of methicillin-sensitive S. aureus. 相似文献
6.
Udayan Chatterji Michael Bobardt Suganya Selvarajah Feng Yang Hengli Tang Noayo Sakamoto Gregoire Vuagniaux Tanya Parkinson Philippe Gallay 《The Journal of biological chemistry》2009,284(25):16998-17005
Cyclosporine A and nonimmunosuppressive cyclophilin (Cyp) inhibitors such as Debio 025, NIM811, and SCY-635 block hepatitis C virus (HCV) replication in vitro. This effect was recently confirmed in HCV-infected patients where Debio 025 treatment dramatically decreased HCV viral load, suggesting that Cyps inhibitors represent a novel class of anti-HCV agents. However, it remains unclear how these compounds control HCV replication. Recent studies suggest that Cyps are important for HCV replication. However, a profound disagreement currently exists as to the respective roles of Cyp members in HCV replication. In this study, we analyzed the respective contribution of Cyp members to HCV replication by specifically knocking down their expression by both transient and stable small RNA interference. Only the CypA knockdown drastically decreased HCV replication. The re-expression of an exogenous CypA escape protein, which contains escape mutations at the small RNA interference recognition site, restored HCV replication, demonstrating the specificity for the CypA requirement. We then mutated residues that reside in the hydrophobic pocket of CypA where proline-containing peptide substrates and cyclosporine A bind and that are vital for the enzymatic or the hydrophobic pocket binding activity of CypA. Remarkably, these CypA mutants fail to restore HCV replication, suggesting for the first time that HCV exploits either the isomerase or the chaperone activity of CypA to replicate in hepatocytes and that CypA is the principal mediator of the Cyp inhibitor anti-HCV activity. Moreover, we demonstrated that the HCV NS5B polymerase associates with CypA via its enzymatic pocket. The study of the roles of Cyps in HCV replication should lead to the identification of new targets for the development of alternate anti-HCV therapies.Hepatitis C virus (HCV)2 is the main contributing agent of acute and chronic liver diseases worldwide (1). Primary infection is often asymptomatic or associated with mild symptoms. However, persistently infected individuals develop high risks for chronic liver diseases such as hepatocellular carcinoma and liver cirrhosis (1). The combination of IFNα and ribavirin that serves as current therapy for chronically HCV-infected patients not only has a low success rate (about 50%) (2) but is often associated with serious side effects (2). There is thus an urgent need for the development of novel anti-HCV treatments (2).The immunosuppressive drug cyclosporine A (CsA) was reported to be clinically effective against HCV (3). Controlled trials showed that a combination of CsA with IFNα is more effective than IFNα alone, especially in patients with a high viral load (4, 5). Moreover, recent in vitro studies provided evidence that CsA prevents both HCV RNA replication and HCV protein production in an IFNα-independent manner (6–10). CsA exerts this anti-HCV activity independently of its immunosuppressive activity because the nonimmunosuppressive Cyp inhibitors such as Debio 025, NIM811, and SCY-635 also block HCV RNA and protein production (9, 11–14). Unlike CsA, these molecules do not display calcineurin affinity and specifically inhibit the peptidyl-prolyl cis-trans-isomerase (PPIase) Cyps. Most importantly, recent clinical data demonstrated that Debio 025 dramatically decreased HCV viral load (3.6 log decrease) in patients coinfected with HCV and HIV (15). This 14-day Debio 025 treatment (1200 mg orally administered twice daily) was effective against the three genotypes (genotypes 1, 3, and 4) represented in the study. More recently, the anti HCV effect of Debio 025 in combination with peginterferon α 2a (peg-IFNα2a) was investigated in treatment-inexperienced patients with chronic hepatitis C. Debio 025 (600 mg administered once daily) in combination with peg-IFNα2a (180 μg/week) for 4 weeks induced a continuous decay in viral load that reached −4.61 ± 1.88 IU/ml in patients with genotypes 1 and 4 and −5.91 ± 1.11 IU/ml in patients with genotypes 2 and 3 at week 4 (16). The Debio 025 findings are critical because they suggest that Cyp inhibitors represent a novel class of anti-HCV agents. However, it remains unclear how these compounds control HCV replication. The fact that several recent studies using small RNA interference knockdown approaches suggest that Cyps are critical for the HCV life cycle (9, 17, 18) strongly implies that there is a direct or indirect link between the CsA- and CsA derivative-mediated inhibitory effect on HCV replication and host Cyps.The discovery 20 years ago of the first cellular protein showing PPIase activity (19) was entirely unrelated to the discovery of CypA as an intracellular protein possessing a high affinity for CsA (20). It is only a few years later that Fischer et al. (21) demonstrated that the 18-kDa protein with PPIase activity and CypA represent a single unique protein. All Cyps contain a common domain of 109 amino acids, called the Cyp-like domain, which is surrounded by domains specific to each Cyp members and which dictates their cellular compartmentalization and function (22). Bacteria, fungi, insects, plants, and mammals contain Cyps, which all have PPIase activity and are structurally conserved (22). To date, 16 Cyp members have been identified, and 7 of them are found in humans: CypA, CypB, CypC, CypD, CypE, Cyp40, and CypNK (22).Although there is a growing body of evidence that Cyps control HCV replication in human hepatocytes, a major disagreement currently exists on the respective roles of Cyp members in HCV replication. One study suggests that CypB, but not CypA, is critical for HCV replication (17), another suggests that CypA, but not CypB and CypC, is critical for HCV replication (18), and a third study suggests that three Cyps, CypA, B, and C, are all required for HCV replication (9). Thus, although it becomes evident that Cyps serve as HCV co-factors, their respective contributions and roles in the HCV life cycle remain to be determined. An understanding of the mechanisms that control the Cyp inhibitor-mediated anti-HCV effect is imperative because it will provide new alternate anti-HCV therapies and shed light on the still poorly understood early and late steps of the HCV life cycle. 相似文献
7.
Aimee D. Wilde Daniel J. Snyder Nicole E. Putnam Michael D. Valentino Neal D. Hammer Zachery R. Lonergan Scott A. Hinger Esar E. Aysanoa Catlyn Blanchard Paul M. Dunman Gregory A. Wasserman John Chen Bo Shopsin Michael S. Gilmore Eric P. Skaar James E. Cassat 《PLoS pathogens》2015,11(12)
Staphylococcus aureus is capable of infecting nearly every organ in the human body. In order to infiltrate and thrive in such diverse host tissues, staphylococci must possess remarkable flexibility in both metabolic and virulence programs. To investigate the genetic requirements for bacterial survival during invasive infection, we performed a transposon sequencing (TnSeq) analysis of S. aureus during experimental osteomyelitis. TnSeq identified 65 genes essential for staphylococcal survival in infected bone and an additional 148 mutants with compromised fitness in vivo. Among the loci essential for in vivo survival was SrrAB, a staphylococcal two-component system previously reported to coordinate hypoxic and nitrosative stress responses in vitro. Healthy bone is intrinsically hypoxic, and intravital oxygen monitoring revealed further decreases in skeletal oxygen concentrations upon S. aureus infection. The fitness of an srrAB mutant during osteomyelitis was significantly increased by depletion of neutrophils, suggesting that neutrophils impose hypoxic and/or nitrosative stresses on invading bacteria. To more globally evaluate staphylococcal responses to changing oxygenation, we examined quorum sensing and virulence factor production in staphylococci grown under aerobic or hypoxic conditions. Hypoxic growth resulted in a profound increase in quorum sensing-dependent toxin production, and a concomitant increase in cytotoxicity toward mammalian cells. Moreover, aerobic growth limited quorum sensing and cytotoxicity in an SrrAB-dependent manner, suggesting a mechanism by which S. aureus modulates quorum sensing and toxin production in response to environmental oxygenation. Collectively, our results demonstrate that bacterial hypoxic responses are key determinants of the staphylococcal-host interaction. 相似文献
8.
9.
10.
11.
12.
Reactive oxygen species (ROS) are potent signal molecules rapidly generated in response to stress. Detection of pathogen-associated molecular patterns induces a transient apoplastic ROS through the function of the NADPH respiratory burst oxidase homologs D (RbohD). However, little is known about the regulation of pathogen-associated molecular pattern-elicited ROS or its role in plant immunity. We investigated ROS production triggered by bacterial flagellin (flg22) in Arabidopsis (Arabidopsis thaliana). The oxidative burst was diminished in ethylene-insensitive mutants. Flagellin Sensitive2 (FLS2) accumulation was reduced in etr1 and ein2, indicating a requirement of ethylene signaling for FLS2 expression. Multiplication of virulent bacteria was enhanced in Arabidopsis lines displaying altered ROS production at early but not late stages of infection, suggesting an impairment of preinvasive immunity. Stomatal closure, a mechanism used to reduce bacterial entry into plant tissues, was abolished in etr1, ein2, and rbohD mutants. These results point to the importance of flg22-triggered ROS at an early stage of the plant immune response.A rapid and transient increase in reactive oxygen species (ROS), termed an “oxidative burst,” is often associated with responses to abiotic and biotic stresses and could trigger changes in stomatal aperture or programmed cell death in defense against pathogens (Kwak et al., 2003; Torres and Dangl, 2005). ROS production can occur extracellularly through activities of plasma membrane-resident NADPH oxidases (Kangasjärvi et al., 2005; Torres and Dangl, 2005). In plants, Rboh proteins, which are homologs of mammalian NADPH oxidase 2, were shown to be the predominant mediators of apoplastic ROS production (Torres et al., 1998; Galletti et al., 2008). Respiratory burst oxidase homologs D and F (RbohD and RbohF) were identified by mutation to be the responsible oxidases in Arabidopsis (Arabidopsis thaliana) defense responses (Torres et al., 2002). While most ROS generated in response to avirulent Pseudomonas syringae bacteria and Hyaloperonospora oomycete pathogens depend on RbohD function, the induced cell death response by these pathogens appears to be mostly regulated by RbohF. Cell death provoked upon infection with the necrotizing fungus Alternaria, however, is under the control of RbohD (Pogány et al., 2009). The contribution of NADPH oxidases to plant immunity was also described in barley (Hordeum vulgare) and tobacco (Nicotiana benthamiana), where resistance to powdery mildew fungi and the oomycete Phytophthora infestans, respectively, was dependent on Rboh functions (Yoshioka et al., 2003; Trujillo et al., 2006).An early layer of active plant defense is mediated by pattern recognition receptors, which sense microbes according to conserved constituents, so-called pathogen-associated molecular patterns (PAMPs). These initiate a plethora of defense responses referred to as PAMP-triggered immunity (Boller and Felix, 2009). The Arabidopsis receptor kinase Flagellin Sensitive2 (FLS2) recognizes and physically interacts with flg22, the elicitor-active epitope of bacterial flagellin (Felix et al., 1999; Gomez-Gomez and Boller, 2000; Chinchilla et al., 2006). FLS2 is plasma membrane localized and expressed throughout the plant (Robatzek et al., 2006). FLS2 requires the receptor kinase BRI1-Associated Kinase1 (BAK1), which forms a heteromeric complex upon flg22 binding (Chinchilla et al., 2007). Subsequently, a rapid and transient flg22-stimulated oxidative burst occurs that is dependent on RbohD (Zhang et al., 2007). In addition, flg22 triggers early responses, such as ethylene biosynthesis, activation of mitogen-activated protein (MAP) kinase cascades, and changes in gene expression (Felix et al., 1999; Asai et al., 2002; Zipfel et al., 2004). Late flg22 responses include the accumulation of salicylic acid (SA), callose deposition, and an arrest of seedling growth (Gomez-Gomez et al., 1999; Mischina and Zeier, 2007). This collectively contributes to plant immunity (Zipfel et al., 2004; Melotto et al., 2006).Little is known about the regulatory components of FLS2-activated early flg22 responses and their relevance in plant resistance to pathogens. Here, we investigated flg22-triggered ROS production in Arabidopsis seedlings and have identified ethylene signaling as a critical component of the oxidative burst in response to flg22, partly through promoting the accumulation of FLS2. We further provide evidence that the flg22-triggered oxidative burst is required for resistance to bacterial infection at the point of pathogen entry through stomata. 相似文献
13.
B Egenberger V Gorboulev T Keller D Gorbunov N Gottlieb D Geiger TD Mueller H Koepsell 《The Journal of biological chemistry》2012,287(37):31561-31573
Organic cation transporters are membrane potential-dependent facilitative diffusion systems. Functional studies, extensive mutagenesis, and homology modeling indicate the following mechanism. A transporter conformation with a large outward-open cleft binds extracellular substrate, passes a state in which the substrate is occluded, turns to a conformation with an inward-open cleft, releases substrate, and subsequently turns back to the outward-open state. In the rat organic cation transporter (rOct1), voltage- and ligand-dependent movements of fluorescence-labeled cysteines were measured by voltage clamp fluorometry. For fluorescence detection, cysteine residues were introduced in extracellular parts of cleft-forming transmembrane α-helices (TMHs) 5, 8, and 11. Following expression of the mutants in Xenopus laevis oocytes, cysteines were labeled with tetramethylrhodamine-6-maleimide, and voltage-dependent conformational changes were monitored by voltage clamp fluorometry. One cysteine was introduced in the central domain of TMH 11 replacing glycine 478. This domain contains two amino acids that are involved in substrate binding and two glycine residues (Gly-477 and Gly-478) allowing for helix bending. Cys-478 could be modified with the transported substrate analog [2-(trimethylammonium)-ethyl]methanethiosulfonate but was inaccessible to tetramethylrhodamine-6-maleimide. Voltage-dependent movements at the indicator positions of TMHs 5, 8, and 11 were altered by substrate applications indicating large conformational changes during transport. The G478C exchange decreased transporter turnover and blocked voltage-dependent movements of TMHs 5 and 11. [2-(Trimethylammonium)-ethyl]methanethiosulfonate modification of Cys-478 blocked substrate binding, transport activity, and movement of TMH 8. The data suggest that Gly-478 is located within a mechanistically important hinge domain of TMH 11 in which substrate binding induces transport-related structural changes. 相似文献
14.
Jennifer N. Walker Heidi A. Crosby Adam R. Spaulding Wilmara Salgado-Pabón Cheryl L. Malone Carolyn B. Rosenthal Patrick M. Schlievert Jeffrey M. Boyd Alexander R. Horswill 《PLoS pathogens》2013,9(12)
Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis. 相似文献
15.
16.
The reductive capacity of rat tissue homogenates and body fluids was determined by cyclic voltammetric measurements. The reductive capacity of rat lung, liver and kidney homogenates was significantly reduced four days after total body γ-ray irradiation with 5.5 Gy as compared to controls. In parallel, reduced ability of the irradiated organ homogenates to scavenge hydroxyl radicals and to destroy hydrogen peroxide was recorded. However, no difference in their superoxide dismutase activity was found. The possible use of cyclic voltammetry as a method for qualitative evaluation of the ability of biological tissues to cope with oxidative stress is discussed. 相似文献
17.
Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureusebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections. 相似文献
18.
Yvonne Gar-Yun Chan Hwan Keun Kim Olaf Schneewind Dominique Missiakas 《The Journal of biological chemistry》2014,289(22):15680-15690
Envelope biogenesis in bacteria involves synthesis of intermediates that are tethered to the lipid carrier undecaprenol-phosphate. LytR-CpsA-Psr (LCP) enzymes have been proposed to catalyze the transfer of undecaprenol-linked intermediates onto the C6-hydroxyl of MurNAc in peptidoglycan, thereby promoting attachment of wall teichoic acid (WTA) in bacilli and staphylococci and capsular polysaccharides (CPS) in streptococci. S. aureus encodes three lcp enzymes, and a variant lacking all three genes (Δlcp) releases WTA from the bacterial envelope and displays a growth defect. Here, we report that the type 5 capsular polysaccharide (CP5) of Staphylococcus aureus Newman is covalently attached to the glycan strands of peptidoglycan. Cell wall attachment of CP5 is abrogated in the Δlcp variant, a defect that is best complemented via expression of lcpC in trans. CP5 synthesis and peptidoglycan attachment are not impaired in the tagO mutant, suggesting that CP5 synthesis does not involve the GlcNAc-ManNAc linkage unit of WTA and may instead utilize another Wzy-type ligase to assemble undecaprenyl-phosphate intermediates. Thus, LCP enzymes of S. aureus are promiscuous enzymes that attach secondary cell wall polymers with discrete linkage units to peptidoglycan. 相似文献
19.
CtaA of Staphylococcus aureus Is Required for Starvation Survival, Recovery, and Cytochrome Biosynthesis 总被引:1,自引:0,他引:1 下载免费PDF全文
Mark O. Clements Sean P. Watson Robert K. Poole Simon J. Foster 《Journal of bacteriology》1999,181(2):501-507
A Staphylococcus aureus mutant (SPW3) apparently unable to survive long-term starvation was shown to have a transposon insertion within a gene homologous to ctaA of Bacillus subtilis which encodes a heme A synthase. Analysis of the cytochrome profiles of SPW3 revealed the absence of heme A-containing cytochromes compared to the parental 8325-4 strain. SPW3 demonstrated a 100-fold reduction in the ability to survive starvation induced by glucose limitation, under aerated conditions, compared to 8325-4. Analysis of starved cultures revealed that greater than 90% of the cells which demonstrated metabolism (as shown by rhodamine 123 accumulation) were unable to recover and form colonies on agar. Analysis of the lag phase and initial growth kinetics of those cells which could recover also showed a defect. This recovery defect could be partially alleviated by the inclusion of catalase in the recovery medium, indicating the probable involvement of oxidative stress. SPW3 also exhibited reduced colony size similar to that of a small-colony variant, increased resistance to aminoglycoside antibiotics, and reduced hemolysin and toxic shock syndrome toxin 1 production, but no alteration in the ability to form lesions in a subcutaneous mouse infection model. 相似文献