首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of PIK3IP1 in the murine uterus during early pregnancy   总被引:1,自引:0,他引:1  
The ovarian steroid hormones, estrogen (E2) and progesterone (P4), are essential regulators of uterine functions necessary for development, embryo implantation, and normal pregnancy. ARID1A plays an important role in steroid hormone signaling in endometrial function and pregnancy. In previous studies, using high density DNA microarray analysis, we identified phosphatidylinositol-3-kinase interacting protein 1 (Pik3ip1) as one of the genes up-regulated by ARID1A. In the present study, we performed real-time qPCR and immunohistochemistry analysis to investigate the regulation of PIK3IP1 by ARID1A and determine expression patterns of PIK3IP1 in the uterus during early pregnancy. The expression of PIK3IP1 was strong at the uterine epithelial and stromal cells of the control mice. However, expression of PIK3IP1 was remarkably reduced in the Pgrcre/+Arid1af/f mice and progesterone receptor knock-out (PRKO) mice. During early pregnancy, PIK3IP1 expression was strong at day 2.5 of gestation (GD 2.5) and then slightly decreased at GD 3.5?at the epithelium and stroma. After implantation, PIK3IP1 expression was detected at the secondary decidualization zone. To determine the ovarian steroid hormone regulation of PIK3IP1, we examined the expression of PIK3IP1 in ovariectomized control, Pgrcre/+Arid1af/f, and PRKO mice treated with P4 or E2. P4 treatment increased the PIK3IP1 expression at the luminal and glandular epithelium of control mice. However, the PIK3IP1 induction was decreased in both the Pgrcre/+Arid1af/f and PRKO mice, compared to controls. Our results identified PIK3IP1 as a novel target of ARID1A and PGR in the murine uterus.  相似文献   

2.
ARID1A, encoding a subunit of chromatin remodeling SWI/SNF complexes, has recently been considered as a new type of tumor suppressor gene for its somatic mutations frequently found in various human tumors, including hepatocellular carcinoma (HCC). However, the role and mechanism of inactivated ARID1A mutations in tumorigenesis remain unclear. To investigate the role of ARID1A inactivation in HCC pathogenesis, we generated hepatocyte-specific Arid1a knockout (Arid1a LKO) mice by crossing mice carrying loxP-flanked Arid1a exon 8 alleles (Arid1a f/f) with albumin promoter-Cre transgenic mice. Significantly, the hepatocyte-specific Arid1a deficiency results in mouse steatohepatitis and HCC development. In Arid1a LKO mice, we found that innate immune cells, including F4/80+ macrophages and CD11c+ neutrophil cells, infiltrate into the liver parenchyma, accompanied by the increased tumor necrosis factor (TNF)-α and interleukin (IL)-6, and activation of STAT3 and NF-κB pathways. In conclusion, hepatocyte-specific Arid1a deficiency could lead to mouse steatohepatitis and HCC development. This study provides an alternative mechanism by which Arid1a deficiency contributes to HCC tumorigenesis.  相似文献   

3.
ObjectiveNeurodevelopmental diseases are common disorders caused by the disruption of essential neurodevelopmental processes. Recent human exome sequencing and genome‐wide association studies have shown that mutations in the subunits of the SWI/SNF (BAF) complex are risk factors for neurodevelopmental diseases. Clinical studies have found that ARID1A (BAF250a) is the most frequently mutated SWI/SNF gene and its mutations lead to mental retardation and microcephaly. However, the function of ARID1A in brain development and its underlying mechanisms still remain elusive.MethodsThe present study used Cre/loxP system to generate an Arid1a conditional knockout mouse line. Cell proliferation, cell apoptosis and cell differentiation of NSPCs were studied by immunofluorescence staining. In addition, RNA‐seq and RT‐PCR were performed to dissect the molecular mechanisms of Arid1a underlying cortical neurogenesis. Finally, rescue experiments were conducted to evaluate the effects of Neurod1 or Fezf2 overexpression on the differentiation of NSPCs in vitro.ResultsConditional knockout of Arid1a reduces cortical thickness in the developing cortex. Arid1a loss of function inhibits the proliferation of radial glial cells, and increases cell death during late cortical development, and leads to dysregulated expression of genes associated with proliferation and differentiation. Overexpression of Neurod1 or Fezf2 in Arid1a cKO NSPCs rescues their neural differentiation defect in vitro.ConclusionsThis study demonstrates for the first time that Arid1a plays an important role in regulating the proliferation and differentiation of NSPCs during cortical development, and proposes several gene candidates that are worth to understand the pathological mechanisms and to develop novel interventions of neurodevelopment disorders caused by Arid1a mutations.  相似文献   

4.
ARID1A, encoding a subunit of SWI/SNF chromatin remodeling complex, is widely recognized as a tumor suppressor gene in multiple tumor types including liver cancer. Previous studies have demonstrated that ARID1A deficiency can cause liver cancer metastasis, possibly due to the altered chromatin organization, however the underlying mechanisms remain poorly understood. To address the effect of Arid1a deficiency on chromatin organization, we generated chromatin interaction matrices, and exploited the conformation changes upon Arid1a depletion in hepatocytes. Our results demonstrated that Arid1a deficiency induced A/B compartment switching, topologically associated domain (TAD) remodeling, and decrease of chromatin loops. Further mechanism studies revealed that ATPase BRG1 of SWI/SNF complex could physically interact with RAD21, a structural subunit of chromatin architectural element cohesin; whereas ARID1A deficiency significantly diminished the coupled BRG1-RAD21. Interestingly, the tumor-associated genes within the switched compartments were differentially expressed depending upon Arid1a depletion or not. As a consequence of ARID1A deficiency-induced conformational alteration, the dysregulation of some genes such as PMP22 and GSC, promoted the invasion capacity of liver cancer cells. This study provides an insight into liver cancer tumorigenesis and progression related to ARID1A mutations.Subject terms: Metastasis, Chromatin remodelling  相似文献   

5.
6.
7.
Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a+/−, Rassf1a−/− and an intestinal epithelial cell specific knockout mouse (Rassf1a IEC-KO) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury. Furthermore, epithelial restitution/repair was inhibited in DSS-treated Rassf1a−/− mice with reduction of several makers of proliferation including Yes associated protein (YAP)-driven proliferation. Surprisingly, tyrosine phosphorylation of YAP was detected which coincided with increased nuclear p73 association, Bax-driven epithelial cell death and p53 accumulation resulting in enhanced apoptosis and poor survival of DSS-treated Rassf1a knockout mice. We can inhibit these events and promote the survival of DSS-treated Rassf1a knockout mice with intraperitoneal injection of the c-Abl and c-Abl related protein tyrosine kinase inhibitor, imatinib/gleevec. However, p53 accumulation was not inhibited by imatinib/gleevec in the Rassf1a−/− background which revealed the importance of p53-dependent cell death during intestinal inflammation. These observations suggest that tyrosine phosphorylation of YAP (to drive p73 association and up-regulation of pro-apoptotic genes such as Bax) and accumulation of p53 are consequences of inflammation-induced injury in DSS-treated Rassf1a−/− mice. Mechanistically, we can detect robust associations of RASSF1A with membrane proximal Toll-like receptor (TLR) components to suggest that RASSF1A may function to interfere and restrict TLR-driven activation of NFκB. Failure to restrict NFκB resulted in the inflammation-induced DNA damage driven tyrosine phosphorylation of YAP, subsequent p53 accumulation and loss of intestinal epithelial homeostasis.  相似文献   

8.
Endometriosis is the most major cause of chronic pelvic pain in women of reproductive age. Moreover, the involvement of histone deacetylase 2 (HDAC2) has been identified in endometriosis. However, the specific mechanism of HDAC2 remains to be further elusive. Therefore, this study was designed to explore the mechanism of HDAC2 orchestrating hepatocyte nuclear factor 4α/AT-rich interactive domain 1A (HNF4A/ARID1A) axis in endometriosis. Endometriosis cell line hEM15A and clinical endometriosis tissues were obtained, followed by gain- and loss-of-function assays in hEM15A cells. HDAC2, HNF4A and ARID1A expression was detected by immunohistochemistry and Western blot analysis. Cell viability was determined by Cell Counting Kit-8 Assay, invasion by Transwell assay and apoptosis by flow cytometry. HDAC2 enrichment in HNF4A promoter region and HNF4A enrichment in ARID1A promoter region was detected through chromatin immunoprecipitation. Mouse models of endometriosis were established, followed by immunohistochemistry of Ki-67 expression and TUNEL staining of apoptosis in ectopic tissues. HDAC2 was upregulated but HNF4A and ARID1A were downregulated in endometriosis tissues. HDAC2 inhibited HNF4A expression by deacetylation, and HNF4A was enriched in ARID1A promoter region to activate ARID1A. Silencing HDAC2 or overexpressing HNF4A or ARID1A diminished the viability and invasion and augmented the apoptosis of hEM15A cells. HDAC2 silencing reduced the area and weight of endometriosis tissues, suppressed endometriosis cell proliferation and accelerated endometriosis cell apoptosis. The inhibitory action of silencing HDAC2 via HNF4A/ARID1A axis was reproduced in mouse models. Collectively, HDAC2 silencing might upregulate HNF4A via repression of deacetylation to activate ARID1A, thus preventing the occurrence of endometriosis.  相似文献   

9.
The etiology of ovarian epithelial cancer is poorly understood, mainly due to the lack of an appropriate experimental model for studying the onset and progression of this disease. We have created a mutant mouse model in which aberrant estrogen receptor alpha (ERα) signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis. In these mice, termed ERαd/d, the ERα gene was conditionally deleted in the anterior pituitary, but remained intact in the hypothalamus and the ovary. The loss of negative-feedback regulation by estrogen (E) at the level of the pituitary led to increased production of luteinizing hormone (LH) by this tissue. Hyperstimulation of the ovarian cells by LH resulted in elevated steroidogenesis, producing high circulating levels of steroid hormones, including E. The ERαd/d mice exhibited formation of palpable ovarian epithelial tumors starting at 5 months of age with 100% penetrance. By 15 months of age, 80% of ERαd/d mice die. Besides proliferating epithelial cells, these tumors also contained an expanded population of luteinized stromal cells, which acquire the ability to express P450 aromatase and synthesize E locally. In response to the elevated levels of E, the ERα signaling was accentuated in the ovarian epithelial cells of ERαd/d mice, triggering increased ERα-dependent gene expression, abnormal cell proliferation, and tumorigenesis. Consistent with these findings, treatment of ERαd/d mice with letrozole, an aromatase inhibitor, markedly reduced circulating E and ovarian tumor volume. We have, therefore, developed a unique animal model, which serves as a useful tool for exploring the involvement of E-dependent signaling pathways in ovarian epithelial tumorigenesis.  相似文献   

10.
11.
ObjectivesThe female reproductive tract comprises several different cell types. Using three representative Cre systems, we comparatively analysed the phenotypes of Dgcr8 conditional knockout (cKO) mice to understand the function of Dgcr8, involved in canonical microRNA biogenesis, in the female reproductive tract.Materials and Methods Dgcr8 f/f mice were crossed with Ltf icre/+, Amhr2 cre/+ or PR cre/+ mice to produce mice deficient in Dgcr8 in epithelial (Dgcr8 ed/ed), mesenchymal (Dgcr8 md/md) and all the compartments (Dgcr8 td/td) in the female reproductive tract. Reproductive phenotypes were evaluated in Dgcr8 cKO mice. Uteri and/or oviducts were used for small RNA‐seq, mRNA‐seq, real‐time RT‐PCR, and/or morphologic and histological analyses.Result Dgcr8 ed/ed mice did not exhibit any distinct defects, whereas Dgcr8 md/md mice showed sub‐fertility and oviductal smooth muscle deformities. Dgcr8 td/td mice were infertile due to anovulation and acute inflammation in the female reproductive tract and suffered from an atrophic uterus with myometrial defects. The microRNAs and mRNAs related to immune modulation and/or smooth muscle growth were systemically altered in the Dgcr8 td/td uterus. Expression profiles of dysregulated microRNAs and mRNAs in the Dgcr8 td/td uterus were different from those in other genotypes in a Cre‐dependent manner.Conclusions Dgcr8 deficiency with different Cre systems induces overlapping but distinct phenotypes as well as the profiles of microRNAs and their target mRNAs in the female reproductive tract, suggesting the importance of selecting the appropriate Cre driver to investigate the genes of interest.  相似文献   

12.
Vitamin A (retinol) and its active metabolite, retinoic acid (RA), serve dual roles in the female reproductive tract. Cytochrome P450 26A1 (Cyp26a1), an RA-metabolizing enzyme, is involved in mammalian early pregnancy. In order to investigate the role of RA synthesis and metabolism during embryo implantation, we first investigated the spatiotemporal expression of RA-signal in the mouse uterus during the peri-implantation period. RA-signal-related molecules, including binding proteins, synthesizing enzymes, catabolizing enzymes and receptors, were all expressed in the mouse uterus during embryo implantation. The locations of the RA synthetic system (Aldh1a1, Aldh1a2, CRBP1) and catabolizing enzyme (Cyp26a1) were distinctive in the mouse uterus during the peri-implantation period. Aldh1a1 was located in the gland epithelium, whereas Aldh1a2 and CRBP1 were located in the stroma and Cyp26a1 was expressed in the luminal and glandular epithelium. These results demonstrate that RA synthesis occurs in the stroma, whereas RA metabolism takes place in the endometrial epithelium. When endometrial epithelial cells were isolated on day 4.5 of pregnancy and treated with E2 (17beta-estradiol) or a combination of E2 and progesterone, all-trans-RA (10???M) significantly down-regulated the expression of LIF, HB-EF and CSF-1 in these cells in vitro. Taken together, these results suggest that the accumulation of RA in the stroma during mouse embryo implantation has an inhibitory effect on the expression of the three implantation-essential genes, LIF, HB-EGF and CSF-1. Therefore, the expression of Cyp26a1 in luminal and glandular epithelium might block the adverse effect of RA in order to promote successful embryo implantation.  相似文献   

13.
Cigarette smoking has long been tied to a multitude of poor health outcomes; however, in reproductive biology, smoking has shown several unintuitive findings. Smoking is associated with significantly decreased rates of endometriosis and endometrial cancer. Here, we show that treatment with cigarette smoke extract leads to increased mRNA and protein expression of homeobox A10 (HOXA10) and progesterone receptor (PGR) as well as more rapid decidualization of endometrial stromal cells in vitro. In vivo, mice exposed to cigarette smoke similarly showed increased expression of HOXA10 and PGR in the endometrium. Both HOXA10 and PGR drive endometrial differentiation and are suppressed in endometrial tumors and in endometriosis. The increased expression found upon exposure to cigarette smoke may provide a protective effect, mediating the decreased incidence of endometrial disease among smokers. This mechanism contrasts with the accepted paradigm that the effects of smoking on the uterus are secondary to ovarian alterations rather than direct effects on endometrium as demonstrated here.  相似文献   

14.
Invariant CD1d-restricted natural killer T cells play an important immunoregulatory role and can influence a broad spectrum of immunological responses including against bacterial infections. They are present at the fetal–maternal interface and although it has been reported that experimental systemic iNKT cell activation can induce mouse abortion, their role during pregnancy remain poorly understood. In the present work, using a physiological Chlamydia muridarum infection model, we have shown that, in vaginally infected pregnant mice, C. muridarum is cleared similarly in C57BL/6 wild type (WT) and CD1d−/− mice. We have also shown that infected- as well as uninfected-CD1d−/− mice have the same litter size as WT counterparts. Thus, CD1d-restricted cells are required neither for the resolution of chlamydial infection of the lower-genital tract, nor for the maintenance of reproductive capacity. However, unexpected differences in T cell populations were observed in uninfected pregnant females, as CD1d−/− placentas contained significantly higher percentages of CD4+ and CD8+ T cells than WT counterparts. However, infection triggered a significant decrease in the percentages of CD4+ T cells in CD1d−/− mice. In infected WT pregnant mice, the numbers of uterine CD4+ and CD8+ T cells, monocytes and granulocytes were greatly increased, changes not observed in infected CD1d−/− mice. An increase in the percentage of CD8+ T cells seems independent of CD1d-restricted cells as it occurred in both WT and CD1d−/− mice. Thus, in the steady state, the lack of CD1d-restricted NKT cells affects leukocyte populations only in the placenta. In Chlamydia-infected pregnant mice, the immune response against Chlamydia is dampened in the uterus. Our results suggest that CD1d-restricted NKT cells play a role in the recruitment or homeostasis of leukocyte populations at the maternal–fetal interface in the presence or absence of Chlamydia infection.  相似文献   

15.
DD Wang  YB Chen  K Pan  W Wang  SP Chen  JG Chen  JJ Zhao  L Lv  QZ Pan  YQ Li  QJ Wang  LX Huang  ML Ke  J He  JC Xia 《PloS one》2012,7(7):e40364

Background

The ARID1A gene encodes adenine-thymine (AT)-rich interactive domain-containing protein 1A, which participates in chromatin remodeling. ARID1A has been showed to function as a tumor suppressor in various cancer types. In the current study, we investigated the expression and prognosis value of ARID1A in primary gastric cancer. Meanwhile, the biological role of ARID1A was further investigated using cell model in vitro.

Methodology/Principal Findings

To investigate the role of ARID1A gene in primary gastric cancer pathogenesis, real-time quantitative PCR and western blotting were used to examine the ARID1A expression in paired cancerous and noncancerous tissues. Results revealed decreased ARID1A mRNA (P = 0.0029) and protein (P = 0.0015) expression in most tumor-bearing tissues compared with the matched adjacent non-tumor tissues, and in gastric cancer cell lines. To further investigate the clinicopathological and prognostic roles of ARID1A expression, we performed immunohistochemical analyses of the 224 paraffin-embedded gastric cancer tissue blocks. Data revealed that the loss of ARID1A expression was significantly correlated with T stage (P = 0.001) and grade (P = 0.006). Consistent with these results, we found that loss of ARID1A expression was significantly correlated with poor survival in gastric cancer patients (P = 0.003). Cox regression analyses showed that ARID1A expression was an independent predictor of overall survival (P = 0.029). Furthermore, the functions of ARID1A in the proliferation and colony formation of gastric cell lines were analyzed by transfecting cells with full-length ARID1A expression vector or siRNA targeting ARID1A. Restoring ARID1A expression in gastric cancer cells significantly inhibited cell proliferation and colony formation. Silencing ARID1A expression in gastric epithelial cell line significantly enhanced cell growth rate.

Conclusions/Significance

Our data suggest that ARID1A may play an important role in gastric cancer and may serve as a valuable prognostic marker and potential target for gene therapy in the treatment of gastric cancer.  相似文献   

16.
17.
Mutations in the AT-interacting domain-rich protein 1A (ARID1A) gene, a critical component of the switch/sucrose nonfermentable (SWI/SNF) complex, are frequently found in most human cancers. Approximately 5–10% of lung cancers carry ARID1A mutations. ARID1A loss in lung cancer correlates with clinicopathological features and poor prognosis. Co-mutation of ARID1A and epidermal growth factor receptor (EGFR) results in the limited efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs) but increases the clinical benefit of immune checkpoint inhibitors (ICIs). ARID1A gene mutation plays a role in cell cycle regulation, metabolic reprogramming, and epithelial–mesenchymal transition. We present the first comprehensive review of the relationship between ARID1A gene mutations and lung cancer and discuss the potential of ARID1A as a new molecular target.  相似文献   

18.
In this study we describe the reproductive phenotypes of a novel mouse model in which Cre-mediated deletion of ERα is regulated by the aP2 (fatty acid binding protein 4) promoter. ERα-floxed mice were crossed with transgenic mice expressing Cre-recombinase under the control of the aP2 promoter to generate aP2-Cre/ERαflox/flox mice. As expected, ERα mRNA levels were reduced in adipose tissue, but in addition we also detected an 80% reduction of ERα levels in the hypothalamus of aP2-Cre/ERαflox/flox mice. Phenotypic analysis revealed that aP2-Cre/ERαflox/flox female mice were infertile. In line with this, aP2-Cre/ERαflox/flox female mice did not cycle and presented 3.8-fold elevated estrogen levels. That elevated estrogen levels were associated with increased estrogen signaling was evidenced by increased mRNA levels of the estrogen-regulated genes lactoferrin and aquaporin 5 in the uterus. Furthermore, aP2-Cre/ERαflox/flox female mice showed an accumulation of intra-uterine fluid, hydrometra, without overt indications for causative anatomical anomalies. However, the vagina and cervix displayed advanced keratosis with abnormal quantities of accumulating squamous epithelial cells suggesting functional obstruction by keratin plugs. Importantly, treatment of aP2-Cre/ERαflox/flox mice with the aromatase inhibitor Letrozole caused regression of the hydrometra phenotype linking increased estrogen levels to the observed phenotype. We propose that in aP2-Cre/ERαflox/flox mice, increased serum estrogen levels cause over-stimulation in the uterus and genital tracts resulting in hydrometra and vaginal obstruction.  相似文献   

19.
Thymic medullary type epithelial cell line (MTEC1), which expressed H-2Dd and Iad, was derived from BALB/c mouse. MTEC1 cells were introduced by intrathymic injection into irradiated H-2b mice reconstituted with H-2bxd F1bone marrow cells. Two months later, the injected MTEC1 cells were found to be still present in the recipient thymus. Splenocytes from chimeric mice, inin vitro functional assays, were analyzed to investigate whether the MTEC1 cellsin vivo could induce the production of H-2d restricted antigen-specific T cells. The H-2d restricted VSV-antigen specific proliferating and IL-2 producing T cells as well as H-2d restricted influenza virus specific cytotoxic T cells were found in chimeric mice injected with MTEC1 cells, and these cells were shown to be tolerant to H-2d selfantigen. On the contrary, H-2d restricted antigen-specific and H-2d self-antigen tolerant T cells were not shown in control mice injected with saline. These results suggest that intrathymically injected MTEC1 cells could induce T lineage cell development and functional maturation in the intact thymus. A hypothesis of “second thymic selection” in thymic medulla has been postulated and its implication discussed.  相似文献   

20.
Most of the chlorophyll (Chl) cofactors in photosystem II (PSII) from Acaryochloris marina are Chld, although a few Chla molecules are also present. To evaluate the possibility that Chla may participate in the PD1/PD2 Chl pair in PSII from A. marina, the PD1?+/PD2?+ charge ratio was investigated using the PSII crystal structure analyzed at 1.9-Å resolution, while considering all possibilities for the Chld-containing PD1/PD2 pair, i.e., Chld/Chld, Chla/Chld, and Chld/Chla pairs. Chld/Chld and Chla/Chld pairs resulted in a large PD1?+ population relative to PD2?+, as identified in Chla/Chla homodimer pairs in PSII from other species, e.g., Thermosynechococcus elongatus PSII. However, the Chld/Chla pair possessed a PD1?+/PD2?+ ratio of approximately 50/50, which is in contrast to previous spectroscopic studies on A. marina PSII. The present results strongly exclude the possibility that the Chld/Chla pair serves as PD1/PD2 in A. marina PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号