首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.  相似文献   

2.
《Current biology : CB》2021,31(17):3943-3951.e3
  1. Download : Download high-res image (165KB)
  2. Download : Download full-size image
  相似文献   

3.
The regulated release of neurotransmitters at synapses is mediated by the fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane. Continuous synaptic activity relies on the constant recycling of synaptic vesicle proteins into newly formed synaptic vesicles. At least two different mechanisms are presumed to mediate synaptic vesicle biogenesis at the synapse as follows: direct retrieval of synaptic vesicle proteins and lipids from the plasma membrane, and indirect passage of synaptic vesicle proteins through an endosomal intermediate. We have identified a vesicle population with the characteristics of a primary endocytic vesicle responsible for the recycling of synaptic vesicle proteins through the indirect pathway. We find that synaptic vesicle proteins colocalize in this vesicle with a variety of proteins known to recycle from the plasma membrane through the endocytic pathway, including three different glucose transporters, GLUT1, GLUT3, and GLUT4, and the transferrin receptor. These vesicles differ from "classical" synaptic vesicles in their size and their generic protein content, indicating that they do not discriminate between synaptic vesicle-specific proteins and other recycling proteins. We propose that these vesicles deliver synaptic vesicle proteins that have escaped internalization by the direct pathway to endosomes, where they are sorted from other recycling proteins and packaged into synaptic vesicles.  相似文献   

4.
5.
Intracellular trafficking of membranes plays an essential role in the biogenesis and maintenance of myelin. The requisite proteins and lipids are transported from their sites of synthesis to myelin via vesicles. Vesicle transport is tightly coordinated with synthesis of lipids and proteins. To maintain the structural and functional organization of oligodendrocytes it is essential synchronize the various pathways of vesicle transport and to coordinate vesicle transport with reorganization of cytoskeleton. The systems that regulate the targeting of protein to myelin by vesicle transport are now being described. Here we review the current knowledge of these systems including those involved in (a) protein folding, (b) protein sorting and formation of carrier vesicles, (c) vesicle transport along elements of the cytoskeleton, and (d) vesicle targeting/fusion.  相似文献   

6.
Cells release membrane-delimited particles into the environment. These particles are called “extracellular vesicles” (EVs), and EVs are present in fluids contacting cells, including body fluids and conditioned culture media. Because EVs change and contribute to health and disease, EVs have become a hot topic. From the thousands of papers now published on EVs annually, one easily gets the impression that EVs provide biomarkers for all diseases, and that EVs are carriers of all relevant biomolecules and are omnipotent therapeutics. At the same time, EVs are heterogeneous, elusive and difficult to study due to their physical properties and the complex composition of their environment. This overview addresses the current challenges encountered when working with EVs, and how we envision that most of these challenges will be overcome in the near future. Right now, an infrastructure is being developed to improve the reproducibility of EV measurement results. This infrastructure comprises expert task forces of the International Society of Extracellular Vesicles (ISEV) developing guidelines and recommendations, instrument calibration, standardized and transparent reporting, and education. Altogether, these developments will support the credibility of EV research by introducing robust reproducibility, which is a prerequisite for understanding their biological significance and biomarker potential.  相似文献   

7.
Repellents evoke growth cone turning by eliciting asymmetric, localized loss of actin cytoskeleton together with changes in substratum attachment. We have demonstrated that semaphorin-3A (Sema3A)-induced growth cone detachment and collapse require eicosanoid-mediated activation of protein kinase C epsilon (PKC epsilon) and that the major PKC epsilon target is the myristoylated, alanine-rich C-kinase substrate (MARCKS). Here, we show that PKC activation is necessary for growth cone turning and that MARCKS, while at the membrane, colocalizes with alpha3-integrin in a peripheral adhesive zone of the growth cone. Phosphorylation of MARCKS causes its translocation from the membrane to the cytosol. Silencing MARCKS expression dramatically reduces growth cone spread, whereas overexpression of wild-type MARCKS inhibits growth cone collapse triggered by PKC activation. Expression of phosphorylation-deficient, mutant MARCKS greatly expands growth cone adhesion, and this is characterized by extensive colocalization of MARCKS and alpha3-integrin, resistance to eicosanoid-triggered detachment and collapse, and reversal of Sema3A-induced repulsion into attraction. We conclude that MARCKS is involved in regulating growth cone adhesion as follows: its nonphosphorylated form stabilizes integrin-mediated adhesions, and its phosphorylation-triggered release from adhesions causes localized growth cone detachment critical for turning and collapse.  相似文献   

8.
9.
Syndecan-syntenin-ALIX regulates the biogenesis of exosomes   总被引:2,自引:0,他引:2  
The biogenesis of exosomes, small secreted vesicles involved in signalling processes, remains incompletely understood. Here, we report evidence that the syndecan heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin control the formation of exosomes. Syntenin interacts directly with ALIX through LYPX(n)L motifs, similarly to retroviral proteins, and supports the intraluminal budding of endosomal membranes. Syntenin exosomes depend on the availability of heparan sulphate, syndecans, ALIX and ESCRTs, and impact on the trafficking and confinement of FGF signals. This study identifies a key role for syndecan-syntenin-ALIX in membrane transport and signalling processes.  相似文献   

10.
Circular RNAs (circRNAs) are highly expressed in the brain and their expression increases during neuronal differentiation. The factors regulating circRNAs in the developing mouse brain are unknown. NOVA1 and NOVA2 are neural-enriched RNA-binding proteins with well-characterized roles in alternative splicing. Profiling of circRNAs from RNA-seq data revealed that global circRNA levels were reduced in embryonic cortex of Nova2 but not Nova1 knockout mice. Analysis of isolated inhibitory and excitatory cortical neurons lacking NOVA2 revealed an even more dramatic reduction of circRNAs and establishes a widespread role for NOVA2 in enhancing circRNA biogenesis. To investigate the cis-elements controlling NOVA2-regulation of circRNA biogenesis, we generated a backsplicing reporter based on the Efnb2 gene. We found that NOVA2-mediated backsplicing of circEfnb2 was impaired when YCAY clusters located in flanking introns were mutagenized. CLIP (cross-linking and immunoprecipitation) and additional reporter analyses demonstrated the importance of NOVA2 binding sites located in both flanking introns of circRNA loci. NOVA2 is the first RNA-binding protein identified to globally promote circRNA biogenesis in the developing brain.  相似文献   

11.
12.
13.
  1. Download : Download high-res image (190KB)
  2. Download : Download full-size image
  相似文献   

14.
LRRK2 regulates synaptic vesicle endocytosis   总被引:1,自引:0,他引:1  
The leucine-rich repeat kinase 2 (LRRK2) has been identified as the defective gene at the PARK8 locus causing the autosomal dominant form of Parkinson's disease (PD). Although several LRRK2 mutations were found in familial as well as sporadic PD patients, its physiological functions are not clearly defined. In this study, using yeast two-hybrid screening, we report the identification of Rab5b as an LRRK2-interacting protein. Indeed, our GST pull down and co-immunoprecipitation assays showed that it specifically interacts with LRRK2. In addition, subcellular fractionation and immunocytochemical analyses confirmed that a fraction of both proteins co-localize in synaptic vesicles. Interestingly, we found that alteration of LRRK2 expression by either overexpression or knockdown of endogenous LRRK2 in primary neuronal cells significantly impairs synaptic vesicle endocytosis. Furthermore, this endocytosis defect was rescued by co-expression of functional Rab5b protein, but not by its inactive form. Taken together, we propose that LRRK2, in conjunction with its interaction with Rab5b, plays an important role in synaptic function by modulating the endocytosis of synaptic vesicles.  相似文献   

15.
The AAA protein p97 requires adaptor-like cofactors for its numerous cellular functions. In this issue of Developmental Cell, Uchiyama et al. (2006) identify p37 as a p97 adaptor that is required constitutively for ER and Golgi membrane fusion, analogous to the mitotic membrane fusion role of the adaptor p47. Their study suggests that related p97 adaptors involved in similar cellular pathways can be subject to differential regulation.  相似文献   

16.
Intensification of ciliary motility by extracellular ATP   总被引:3,自引:0,他引:3  
D Ovadyahu  D Eshel  Z Priel 《Biorheology》1988,25(3):489-501
Ciliary metachronism and motility were examined optically in tissue cultures from frog palate epithelium as a function of extracellular ATP concentration in the range of 10(-7)-10(-3) M. The main findings were: a) upon addition of ATP the metachronal wavelength increased by a factor of up to 2. b) the velocity of the metachronal wave increased by a factor of up to 5. c) the frequency of ciliary beating increased by a factor of up to 2-3, the increase being temperature insensitive in the range of 15 degrees C-25 degrees C. d) the area under the 1-second FFT spectrum decreased by a factor of up to 2.5. e) the energy of the metachronal wave is increased by a factor of up to 9.5. f) all the spectrum parameters are subject to influence by ATP, as also by ADP and AMP. However, there are pronounced differences in the various responses to them. Based on these findings, physical aspects of the rate increase of particle transport caused by addition of extracellular ATP are explained. A plausible overall chemical mechanism causing pronounced changes in ciliary motility is discussed.  相似文献   

17.
Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis.  相似文献   

18.
19.
Primary cilia start forming within the G1 phase of the cell cycle and continue to grow as cells exit the cell cycle (G0). They start resorbing when cells re-enter the cell cycle (S phase) and are practically invisible in mitosis. The mechanisms by which cilium biogenesis and disassembly are coupled to the cell cycle are complex and not well understood. We previously identified the centrosomal phosphoprotein NDE1 as a negative regulator of ciliary length and showed that its levels inversely correlate with ciliogenesis. Here, we identify the tumor suppressor FBW7 (also known as FBXW7, CDC4, AGO, or SEL-10) as the E3 ligase that mediates the destruction of NDE1 upon entry into G1. CDK5, a kinase active in G1/G0, primes NDE1 for FBW7-mediated recognition. Cells depleted of FBW7 or CDK5 show enhanced levels of NDE1 and a reduction in ciliary length, which is corrected in cells depleted of both FBW7 or CDK5 and NDE1. These data show that cell cycle-dependent mechanisms can control ciliary length through a CDK5-FBW7-NDE1 pathway.  相似文献   

20.
Autophagy is an evolutionarily conserved lysosome-based degradation process.Atg5 plays a very important role in autophagosome formation.Here we show that Atg5 is required for biogenesis of late endosomes and lysosomes in an autophagy-independent manner.In Atg5 cells,but not in other essential autophagy genes defecting cells,recycling and retrieval of late endosomal components from hybrid organelles are impaired,causing persistent hybrid organelles and defective formation of late endosomes and lysosomes.Defective retrieval of late endosomal components from hybrid organelles resulting from impaired recruitment of a component of V1-ATPase to acidic organelles blocks the pH-dependent retrieval of late endosomal components from hybrid organelles.Lowering the intracellular pH restores late endosome/lysosome biogenesis in Atg5 cells.Our data demonstrate an unexpected role of Atg5 and shed new light on late endosome and lysosome biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号