首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (∼61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (∼59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this region.  相似文献   

2.

Background

The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species.

Methodology/Principal Findings

We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000hrs.

Conclusions/Significance

This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region.  相似文献   

3.

Background

Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission.

Methods

The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket.

Results

Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates.

Conclusion

Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.  相似文献   

4.

Background

The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.

Methods

Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.

Results

Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.

Conclusions

Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.  相似文献   

5.

Introduction

There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated.

Methods

This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured.

Results

On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients.

Conclusion

In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status.  相似文献   

6.

Background

A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use.

Methods

We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15μg, 30μg, or 60μg respectively of VMP001, all formulated in 500μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls.

Results

The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period.

Significance

This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.  相似文献   

7.
Infection with Plasmodium knowlesi, a zoonotic primate malaria, is a growing human health problem in Southeast Asia. P. knowlesi is being used in malaria vaccine studies, and a number of proteins are being considered as candidate malaria vaccine antigens, including the Apical Membrane Antigen 1 (AMA1). In order to determine genetic diversity of the ama1 gene and to identify epitopes of AMA1 under strongest immune selection, the ama1 gene of 52 P. knowlesi isolates derived from human infections was sequenced. Sequence analysis of isolates from two geographically isolated regions in Sarawak showed that polymorphism in the protein is low compared to that of AMA1 of the major human malaria parasites, P. falciparum and P. vivax. Although the number of haplotypes was 27, the frequency of mutations at the majority of the polymorphic positions was low, and only six positions had a variance frequency higher than 10%. Only two positions had more than one alternative amino acid. Interestingly, three of the high-frequency polymorphic sites correspond to invariant sites in PfAMA1 or PvAMA1. Statistically significant differences in the quantity of three of the six high frequency mutations were observed between the two regions. These analyses suggest that the pkama1 gene is not under balancing selection, as observed for pfama1 and pvama1, and that the PkAMA1 protein is not a primary target for protective humoral immune responses in their reservoir macaque hosts, unlike PfAMA1 and PvAMA1 in humans. The low level of polymorphism justifies the development of a single allele PkAMA1-based vaccine.  相似文献   

8.

Background

HIV-1 and Plasmodium falciparum malaria cause substantial morbidity in Sub-Saharan Africa, especially as co-infecting pathogens. We examined the relationship between presence of P. falciparum DNA in plasma samples and clinical malaria as well as the impact of atazanavir, an HIV-1 protease inhibitor (PI), on P. falciparum PCR positivity.

Methods

ACTG study A5175 compared two NNRTI-based regimens and one PI-based anti-retroviral (ARV) regimen in antiretroviral therapy naïve participants. We performed nested PCR on plasma samples for the P. falciparum 18s rRNA gene to detect the presence of malaria DNA in 215 of the 221 participants enrolled in Blantyre and Lilongwe, Malawi. We also studied the closest sample preceding the first malaria diagnosis from 102 persons with clinical malaria and randomly selected follow up samples from 88 persons without clinical malaria.

Results

PCR positivity was observed in 18 (8%) baseline samples and was not significantly associated with age, sex, screening CD4+ T-cell count, baseline HIV-1 RNA level or co-trimoxazole use within the first 8 weeks. Neither baseline PCR positivity (p = 0.45) nor PCR positivity after initiation of antiretroviral therapy (p = 1.0) were significantly associated with subsequent clinical malaria. Randomization to the PI versus NNRTI ARV regimens was not significantly associated with either PCR positivity (p = 0.5) or clinical malaria (p = 0.609). Clinical malaria was associated with a history of tuberculosis (p = 0.006) and a lower BMI (p = 0.004).

Conclusion

P. falciparum DNA was detected in 8% of participants at baseline, but was not significantly associated with subsequent development of clinical malaria. HIV PI therapy did not decrease the prevalence of PCR positivity or incidence of clinical disease.  相似文献   

9.

Background and Objectives

Co-trimoxazole prophylaxis, currently recommended in HIV-exposed, uninfected (HEU) children as protection against opportunistic infections, also has some anti-malarial efficacy. We determined whether daily co-trimoxazole prophylaxis affects the natural development of antibody-mediated immunity to blood-stage Plasmodium falciparum malaria infection.

Methods

Using an enzyme-linked immunosorbent assay, we measured antibodies to 8Plasmodium falciparum antigens (AMA-1, MSP-119, MSP-3, PfSE, EBA-175RII, GLURP R0, GLURP R2 and CSP) in serum samples from 33 HEU children and 31 HIV-unexposed, uninfected (HUU) children, collected at 6, 12 and 18 months of age.

Results

Compared to HIV-uninfected children, HEU children had significantly lower levels of specific IgG against AMA-1 at 6 months (p = 0.001), MSP-119 at 12 months (p = 0.041) and PfSE at 6 months (p = 0.038), 12 months (p = 0.0012) and 18 months (p = 0.0097). No differences in the IgG antibody responses against the rest of the antigens were observed between the two groups at all time points. The breadth of specificity of IgG response was reduced in HEU children compared to HUU children during the follow up period.

Conclusions

Co-trimoxazole prophylaxis seems to reduce IgG antibody responses to P. falciparum blood stage antigens, which could be as a result of a reduction in exposure of those children under this regime. Although antibody responses were regarded as markers of exposure in this study, further studies are required to establish whether these responses are correlated in any way to clinical immunity to malaria.  相似文献   

10.

Background

Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans.

Methodology/Principal Findings

We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia) for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA) and two antigens: merozoite surface protein 1 42 kDa (MSP-142) and circumsporozoite protein gene (CSP) were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-142 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite) and P. hylobati (a gibbon parasite) suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-142 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites.

Conclusion

The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host switches from other non-human primates.  相似文献   

11.

Background

Outside of Africa, P. falciparum and P. vivax usually coexist. In such co-endemic regions, successful malaria control programs have a greater impact on reducing falciparum malaria, resulting in P. vivax becoming the predominant species of infection. Adding to the challenges of elimination, the dormant liver stage complicates efforts to monitor the impact of ongoing interventions against P. vivax. We investigated molecular approaches to inform the respective transmission dynamics of P. falciparum and P. vivax and how these could help to prioritize public health interventions.

Methodology/ Principal Findings

Genotype data generated at 8 and 9 microsatellite loci were analysed in 168 P. falciparum and 166 P. vivax isolates, respectively, from four co-endemic sites in Indonesia (Bangka, Kalimantan, Sumba and West Timor). Measures of diversity, linkage disequilibrium (LD) and population structure were used to gauge the transmission dynamics of each species in each setting. Marked differences were observed in the diversity and population structure of P. vivax versus P. falciparum. In Bangka, Kalimantan and Timor, P. falciparum diversity was low, and LD patterns were consistent with unstable, epidemic transmission, amenable to targeted intervention. In contrast, P. vivax diversity was higher and transmission appeared more stable. Population differentiation was lower in P. vivax versus P. falciparum, suggesting that the hypnozoite reservoir might play an important role in sustaining local transmission and facilitating the spread of P. vivax infections in different endemic settings. P. vivax polyclonality varied with local endemicity, demonstrating potential utility in informing on transmission intensity in this species.

Conclusions/ Significance

Molecular approaches can provide important information on malaria transmission that is not readily available from traditional epidemiological measures. Elucidation of the transmission dynamics circulating in a given setting will have a major role in prioritising malaria control strategies, particularly against the relatively neglected non-falciparum species.  相似文献   

12.
13.
The malaria vaccine candidate RTS,S/AS01 is based on immunogenic regions of Plasmodium falciparum circumsporozoite protein (CSP) from the 3D7 reference strain and has shown modest efficacy against clinical disease in African children. It remains unclear what aspect(s) of the immune response elicited by this vaccine are protective. The goals of this study were to measure diversity in immunogenic regions of CSP, and to identify associations between polymorphism in CSP and the risk of P. falciparum infection and clinical disease. The present study includes data and samples from a prospective cohort study designed to measure incidence of malaria infection and disease in children in Bandiagara, Mali. A total of 769 parasite-positive blood samples corresponding to both acute clinical malaria episodes and asymptomatic infections experienced by 100 children were included in the study. Non-synonymous SNP data were generated by 454 sequencing for the T-cell epitopes, and repeat length data were generated for the B-cell epitopes of the cs gene. Cox proportional hazards models were used to determine the effect of sequence variation in consecutive infections occurring within individuals on the time to new infection and new clinical malaria episode. Diversity in the T-cell epitope-encoding regions Th2R and Th3R remained stable throughout seasons, between age groups and between clinical and asymptomatic infections with the exception of a higher proportion of 3D7 haplotypes found in the oldest age group. No associations between sequence variation and hazard of infection or clinical malaria were detected. The lack of association between sequence variation and hazard of infection or clinical malaria suggests that naturally acquired immunity to CSP may not be allele-specific.  相似文献   

14.

Introduction

Low Clostridium leptum levels are a risk factor for the development of asthma. C. leptum deficiency exacerbates asthma; however, the impact of early-life C. leptum exposure on cesarean-delivered mice remains unclear. This study is to determine the effects of early-life C. leptum exposure on asthma development in infant mice.

Methods

We exposed infant mice to C. leptum (fed-CL) and then induced asthma using the allergen ovalbumin (OVA).

Results

Fed-CL increased regulatory T (Treg) cells in cesarean-delivered mice compared with vaginally delivered mice. Compared with OVA-exposed mice, mice exposed to C. leptum + OVA did not develop the typical asthma phenotype, which includes airway hyper-responsiveness, cell infiltration, and T helper cell subset (Th1, Th2, Th9, Th17) inflammation. Early-life C. leptum exposure induced an immunosuppressive environment in the lung concurrent with increased Treg cells, resulting in the inhibition of Th1, Th2, Th9, and Th17 cell responses.

Conclusion

These findings demonstrate a mechanism whereby C. leptum exposure modulates adaptive immunity and leads to failure to develop asthma upon OVA sensitization later in life.  相似文献   

15.
BackgroundInfection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated.Conclusions/SignificanceWe have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.  相似文献   

16.

Introduction

Plasmodium vivax is the most prevalent malaria species in the American region. Brazil accounts for the higher number of the malaria cases reported in pregnant women in the Americas. This study aims to describe the characteristics of pregnant women with malaria in an endemic area of the Brazilian Amazon and the risk factors associated with prematurity and low birth weight (LBW).

Methods/Principal Findings

Between December 2005 and March 2008, 503 pregnant women with malaria that attended a tertiary health centre were enrolled and followed up until delivery and reported a total of 1016 malaria episodes. More than half of study women (54%) were between 20–29 years old, and almost a third were adolescents. The prevalence of anaemia at enrolment was 59%. Most women (286/503) reported more than one malaria episode and most malaria episodes (84.5%, 846/1001) were due to P. vivax infection. Among women with only P. vivax malaria, the risk of preterm birth and low birth weight decreased in multigravidae (OR, 0.36 [95% CI, 0.16–0.82]; p = 0.015 and OR 0.24 [95% CI, 0.10–0.58]; p = 0.001, respectively). The risk of preterm birth decreased with higher maternal age (OR 0.43 [95% CI, 0.19–0.95]; p = 0.037) and among those women who reported higher antenatal care (ANC) attendance (OR, 0.32 [95% CI, 0.15–0.70]; p = 0.005).

Conclusion

This study shows that P. vivax is the prevailing species among pregnant women with malaria in the region and shows that vivax clinical malaria may represent harmful consequences for the health of the mother and their offsprings particularly on specific groups such as adolescents, primigravidae and those women with lower ANC attendance.  相似文献   

17.

Background

Vivax malaria was successfully eliminated from the Republic of Korea (ROK) in the late 1970s but re-emerged in 1993. Two decades later as the ROK enters the final stages of malaria elimination, dedicated surveillance of the local P. vivax population is critical. We apply a population genetic approach to gauge P. vivax transmission dynamics in the ROK between 2010 and 2012.

Methodology/Principal Findings

P. vivax positive blood samples from 98 autochthonous cases were collected from patients attending health centers in the ROK in 2010 (n = 27), 2011 (n = 48) and 2012 (n = 23). Parasite genotyping was undertaken at 9 tandem repeat markers. Although not reaching significance, a trend of increasing population diversity was observed from 2010 (HE = 0.50 ± 0.11) to 2011 (HE = 0.56 ± 0.08) and 2012 (HE = 0.60 ± 0.06). Conversely, linkage disequilibrium declined during the same period: IAS = 0.15 in 2010 (P = 0.010), 0.09 in 2011 (P = 0.010) and 0.05 in 2012 (P = 0.010). In combination with data from other ROK studies undertaken between 1994 and 2007, our results are consistent with increasing parasite divergence since re-emergence. Polyclonal infections were rare (3% infections) suggesting that local out-crossing alone was unlikely to explain the increased divergence. Cases introduced from an external reservoir may therefore have contributed to the increased diversity. Aside from one isolate, all infections carried a short MS20 allele (142 or 149 bp), not observed in other studies in tropical endemic countries despite high diversity, inferring that these regions are unlikely reservoirs.

Conclusions

Whilst a number of factors may explain the observed population genetic trends, the available evidence suggests that an external geographic reservoir with moderate diversity sustains the majority of P. vivax infection in the ROK, with important implications for malaria elimination.  相似文献   

18.
The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P. falciparum. Recent vaccine trials in macaques using the P. knowlesi orthologue PkAMA1 have shown that it protects against infection by this parasite species and thus should be developed for human vaccination as well. Here, we present the crystal structure of Domains 1 and 2 of the PkAMA1 ectodomain, and of its complex with the invasion-inhibitory monoclonal antibody R31C2. The Domain 2 (D2) loop, which is displaced upon binding the Rhoptry Neck Protein 2 (RON2) receptor, makes significant contacts with the antibody. R31C2 inhibits binding of the Rhoptry Neck Protein 2 (RON2) receptor by steric blocking of the hydrophobic groove and by preventing the displacement of the D2 loop which is essential for exposing the complete binding site on AMA1. R31C2 recognizes a non-polymorphic epitope and should thus be cross-strain reactive. PkAMA1 is much less polymorphic than the P. falciparum and P. vivax orthologues. Unlike these two latter species, there are no polymorphic sites close to the RON2-binding site of PkAMA1, suggesting that P. knowlesi has not developed a mechanism of immune escape from the host’s humoral response to AMA1.  相似文献   

19.

Background

Impact of the pathophysiology of Plasmodium falciparum placental malaria (PM) on the profile of some oxidative stress biomarkers and their relationship with poor pregnancy outcomes in women remain unknown.

Methods

Between 2013 and 2014, peripheral blood and placenta tissue from 120 Cameroonian women at delivery were assessed for maternal haemoglobin and, parasitaemia respectively. Parasite accumulation in the placenta was investigated histologically. The levels of oxidative stress biomarkers Malondialdehyde (MDA), Nitric Oxide (NO), Superoxide dismutase (SOD), Catalase (CAT) and Gluthatione (GSH) in the supernatant of teased placenta tissues were determined by Colorimetric enzymatic assays.

Results

Parasitaemia was inversely related to haemoglobin levels and birth weight (P <0.001 and 0.012, respectively). The level of lipid peroxide product (MDA) was significantly higher in the malaria infected (P = 0.0047) and anaemic (P = 0.024) women compared to their non-infected and non-anaemic counterparts, respectively. A similar trend was observed with SOD levels, though not significant. The levels of MDA also correlated positively with parasitaemia (P = 0.0024) but negatively with haemoglobin levels (P = 0.002). There was no association between parasitaemia, haemoglobin level and the other oxidative stress biomarkers. From histological studies, levels of MDA associated positively and significantly with placenta malaria infection and the presence of malaria pigments. The levels of SOD, NO and CAT increased with decreasing leukocyte accumulation in the intervillous space. Baby birth weight increased significantly with SOD and CAT levels, but decreased with levels of GSH.

Conclusions

Placental P. falciparum infection may cause oxidative stress of the placenta tissue with MDA as a potential biomarker of PM, which alongside GSH could lead to poor pregnancy outcomes (anaemia and low birth weight). This finding contributes to the understanding of the pathophysiology of P. falciparum placental malaria in women.  相似文献   

20.

Background

Multiplicity of infection (MOI) refers to the average number of distinct parasite genotypes concurrently infecting a patient. Although several studies have reported on MOI and the frequency of multiclonal infections in Plasmodium falciparum, there is limited data on Plasmodium vivax. Here, MOI and the frequency of multiclonal infections were studied in areas from South America where P. vivax and P. falciparum can be compared.

Methodology/Principal Findings

As part of a passive surveillance study, 1,328 positive malaria patients were recruited between 2011 and 2013 in low transmission areas from Colombia. Of those, there were only 38 P. vivax and 24 P. falciparum clinically complicated cases scattered throughout the time of the study. Samples from uncomplicated cases were matched in time and location with the complicated cases in order to compare the circulating genotypes for these two categories. A total of 92 P. vivax and 57 P. falciparum uncomplicated cases were randomly subsampled. All samples were genotyped by using neutral microsatellites. Plasmodium vivax showed more multiclonal infections (47.7%) than P. falciparum (14.8%). Population genetics and haplotype network analyses did not detect differences in the circulating genotypes between complicated and uncomplicated cases in each parasite. However, a Fisher exact test yielded a significant association between having multiclonal P. vivax infections and complicated malaria. No association was found for P. falciparum infections.

Conclusion

The association between multiclonal infections and disease severity in P. vivax is consistent with previous observations made in rodent malaria. The contrasting pattern between P. vivax and P. falciparum could be explained, at least in part, by the fact that P. vivax infections have lineages that were more distantly related among them than in the case of the P. falciparum multiclonal infections. Future research should address the possible role that acquired immunity and exposure may have on multiclonal infections and their association with disease severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号