首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
棉花细胞核雄性不育两用系差异表达基因分析   总被引:2,自引:0,他引:2  
应用cDNA-AFLP对棉花ms5ms6双隐性核雄性不育两用系的不育株和可育株花粉发育的3个时期—造孢细胞时期、花粉母细胞时期和花粉粒时期进行对比分析,共得到17个差异表达片段,它们分别属于11种表达模式,其中14个片段可以在NCBI数据库中找到同源序列,功能分析表明这些片段所编码的基因可能参与了信号转导、转录、能量代谢、细胞壁发育等相关过程。Northern杂交结果证明检测片段的表达模式与cDNA-AFLP结果吻合。同时还在可育花药中发现了与玉米T型细胞质雄性不育恢复因子RF2基因高度同源的育性恢复因子类基因。  相似文献   

2.
Cucumber (Cucumis sativus L.) pollen development involves a diverse range of gene interactions between sporophytic and gametophytic tissues. Previous studies in our laboratory showed that male sterility was controlled by a single recessive nuclear gene, and occurred in pollen mother cell meiophase. To fully explore the global gene expression and identify genes related to male sterility, a RNA-seq analysis was adopted in this study. Young male flower-buds (1–2 mm in length) from genetic male sterility (GMS) mutant and homozygous fertile cucumber (WT) were collected for two sequencing libraries. Total 545 differentially expressed genes (DEGs), including 142 up-regulated DEGs and 403 down-regulated DEGs, were detected in two libraries (Fold Change ≥ 2, FDR < 0.01). These genes were involved in a variety of metabolic pathways, like ethylene-activated signaling pathway, sporopollenin biosynthetic pathway, cell cycle and DNA damage repair pathway. qRT-PCR analysis was performed and showed that the correlation between RNA-Seq and qRT-PCR was 0.876. These findings contribute to a better understanding of the mechanism that leads to GMS in cucumber.  相似文献   

3.
4.
雄性不育是指植物雄蕊不能正常生长和产生有活力花粉粒的现象。利用雄性不育突变体开展杂交育种工作,是快速提高作物单产的有效途径。目前,通过杂种制种已大幅度提高了水稻(Oryza sativa L.)、玉米(Zea mays L.)和小麦(Triticum aestivum L.)等作物的产量。大豆(Glycinemax(L.)Merr.)作为自花授粉作物,通过人工去雄生产杂交种子不仅困难而且经济上不可行。由于适用于杂交种生产的不育系资源短缺,目前大豆还没有实现大规模杂种优势利用。因此,快速实现大豆杂种优势利用迫切需要鉴定稳定的大豆雄性不育系统。本文总结了大豆细胞核雄性不育(genic male sterility, GMS)突变体及不育基因研究进展,同时结合拟南芥(Arabidopsis thaliana)、水稻和玉米中已报道的细胞核雄性不育基因,从反向遗传学的角度,为大豆核雄性不育基因的鉴定提供依据。  相似文献   

5.
稻类雄性不育系的花粉败育途径研究   总被引:7,自引:0,他引:7  
对水、旱稻5 个两系不育系和1 个三系不育系的花粉败育途径的观察发现,野败三系不育系珍汕97A 和3 个两系不育系是以核退化为典型特征的花粉败育途径,其败育时期发生在单核晚期。新选育成的旱稻昆植S-1 和水稻昆植S-2两个两系不育系则是以核增生为典型特征的花粉败育途径。对两类花粉败育途径的细胞学特点和不育的稳定性进行了比较分析  相似文献   

6.
The abortive processes of pollen in five genic male sterile lines and one cytoplasmic genetic male sterile line with cytoplasm of wild rice are reported. The authors found that the cytoplasmic-genetic MS Zhenshan 97A line is a typical nuclear degenerative type of pollen abortion. The sign of abortion manifested at the late mononuclear stage. The genic male sterile lines are all typical nuclear proliferative type. They show their apparent abnormality as failure of membrane formation between the two daughter nuclei at the telophase of the first meiotic division. This type of male sterility is very stable, and no flower with dehiscent anthers is present in the panicles.  相似文献   

7.
A fundamental focus of plant biology is to understand the relationship between flowering and plant reproduction, but it is also of practical interest in agriculture. To investigate the genes involved in flowering, reproduction and male sterility, DDRT-PCR was performed in vegetative and reproductive tissues of the cotton genic male sterile line LangA. A 683 bp partial peroxidase cDNA was amplified from cotton (G. hirsutum) pollen, using degenerate oligonucleotide primers and arbitrary primers in DDRT-PCR. The full-length cDNA clone, designated Ghpod (cDNA GenBank accession number: EU196676), was isolated using 5'-RACE strategy and a partial 5'-UTR was isolated applying TAIL-PCR. Ghpod was characterized as a mature 330 amino acid protein, containing all evolutionarily conserved residues present in different members of the plant peroxidase family. The molecular mass of this unprocessed and unmodified deduced protein was estimated to be 35.54 kDa, and the pI value was 4.34. According to the Ghpod protein localization prediction by PSORT, Ghpod may be secreted extracellularly. Unlike other cotton class III peroxidases, Ghpod was expressed exclusively in reproductive organs, particularly pollen. A genomic DNA fragment encoding Ghpod was also cloned and fully sequenced, revealing a "three intron" structural organization in a category of genes belonging to a normal class III plant secretory peroxidase. In conclusion, the flower-specific expression of Ghpod, predominantly in pollen, suggested that the peroxidase is involved in the male reproductive processes of angiosperms.  相似文献   

8.
Stable genic male sterility (GMS), which is not influenced by environmental factors, has not been used for F1 hybrid seed production because male-sterile inbred lines cannot be developed and male-sterile plants must be selected from segregating populations every time. However, the stability of male sterility may provide a reliable system for F1 seed production without contamination of selfed seeds. A genic male-sterile mutant in rice (Oryza sativa L.), C204, which was selected from progeny of the cultivar ‘Koshihikari’ irradiated by gamma rays, has shorter and whiter anthers than those of ‘Koshihikari’ and has no pollen grains. Segregation analysis of C204 suggested the male sterility of this mutant to be controlled by a recessive allele of a single gene. Linkage analysis of a mutated gene responsible for the male sterility revealed the gene to be in a region of ca. 75 kb on the long arm of chromosome 9. The nine genes predicted in the 75-kb region were sequenced, and compared with the published Nipponbare genome sequences. A single-base deletion was found in the first exon of a C204 allele of Os09g0493500, which encodes an NAD-dependent epimerase/dehydratase family protein, resulting in a frameshift causing a premature stop codon. A dot-blot single nucleotide polymorphism marker for detection of the single-base deletion in Os09g0493500 was developed. We herein propose an F1 hybrid seed production system using stable GMS with a simple selection method of GMS plants.  相似文献   

9.
10.
Many genes in the genic male sterile A/B line (Bajh97-01A/B) of Chinese cabbage pak choi (Brassica campestris L. subsp. chinensis Makino) are expressed differentially, and some play critical roles in the formation of pollen walls. In this study, one of these genes, Brassica campestris Male Fertility 16 (BcMF16), has been isolated and characterized. The BcMF16 gene shares approximately 85% nucleotide sequence homology with two exopolygalacturonase (EC3.2.1.67) genes of Arabidopsis thaliana. Cluster analysis of polygalacturonase peptides indicate that BcMF16 belongs to the pollen polygalacturonase clade. Quantitative real-time PCR analysis has revealed that BcMF16 is specifically expressed in reproductive tissues of the fertile line of genic male sterile A/B line of Chinese cabbage pak choi, and that expression levels dramatically increased during later stages of pollen development. In situ hybridization has demonstrated that BcMF16 is specifically and transiently expressed in both tapetum and pollen following microspore separation at the tetrad stage.  相似文献   

11.
12.
高通量转录组测序技术在植物雄性不育研究中的应用   总被引:1,自引:0,他引:1  
刘永明  张玲  邱涛  赵卓凡  曹墨菊 《遗传》2016,38(8):677-687
植物雄性不育是指植物雄蕊发育受阻不能产生正常有功能花粉的现象。植物雄性不育不仅是生殖生理研究的宝贵材料,也是植物杂种优势利用的重要工具。由于高通量转录组测序技术几乎可以检测细胞内所有mRNA及非编码RNA的信息,已被广泛应用于生命科学研究的各项领域。在植物雄性不育相关研究中,高通量转录组测序技术在不同物种、不同败育类型中的应用已有报道,这为研究者在转录组水平综合了解植物雄性不育的分子机制及代谢网络提供了帮助。本文从测序文库构建策略、差异表达基因、非编码RNA的功能特征等方面综述了高通量转录组测序在植物雄性不育机理方面的研究进展,并探讨了转录组测序技术在花粉败育机制解析及育性相关基因定位中的应用价值,以期为植物雄性不育的相关研究提供参考。  相似文献   

13.
14.
Chalcone synthase (CHS) is a key enzyme and producing flavonoid derivatives as well play a vital roles in sustaining plant growth and development. However, the systematic and comprehensive analysis of CHS genes in island cotton (G. barbadense) has not been reported yet especially response to cytoplasmic male sterility (CMS). To fill this knowledge gap, a genome-wide investigation of CHS genes were studied in island cotton. A total of 20 GbCHS genes were identified and grouped into five GbCHSs. The gene structure analysis revealed that most of GbCHS genes consisted of two exons and one intron, and 20 motifs were identified. Twenty five pairs duplicated events (12 GbCHS genes) were identified including 23 segmental duplication pairs and two tandem duplication events, representing that GbCHS gene family amplification mainly owned to segmental duplication events and evolving slowly. Gene expression analysis exhibited that the GbCHS family genes presented a diversity expression patterns in various organs of cotton. Coupled with functional predictions and gene expression, the abnormal expression of GbCHS06, 10, 16 and 19 might be associated with pollen abortion of CMS line in island cotton. Conclusively, GbCHS genes exhibited diversity and conservation in many aspects, which will help to better understand functional studies and a reference for CHS research in island cotton and other plants.  相似文献   

15.
为了揭示蓝标型小麦核雄性不育的分子机制,更好地利用隐性核不育小麦杂种优势,本研究以蓝标型白粒小麦WS(不育)和浅蓝粒小麦WF(育性正常)植株花药为试验材料,利用转录物组学技术对两者差异表达基因进行了分析,并对其中涉及花色素苷合成相关基因进行了验证。结果表明: WF与WS相比,共检测到2 352个差异表达基因,这些基因经GO功能注释分为3大类43个小类,主要涉及生物合成、苯丙烷代谢、L-苯丙氨酸分解代谢、膜组成部分、质膜、细胞质、ATP结合和蛋白质丝氨酸/苏氨酸激酶活性等。 KEGG通路分析结果显示,苯丙烷类生物合成通路富集基因最多,有159个,其次是苯丙氨酸代谢通路,包含136个显著差异表达基因,其他还涉及多种氨基酸代谢、嘌呤代谢、嘧啶代谢及糖代谢通路;与花青素代谢直接相关的通路中,多个控制关键酶结构基因存在差异表达,且大多数在WF中上调表达,只有黄烷酮3-羟化酶基因(flavanone 3-hydroxylase,F3H)和无色花青素双加氧酶基因(anthocyanin dioxygenase,ANS)下调表达;实时荧光定量分析显示,10个与花青素代谢相关基因实际表达情况和转录物组测序数据中基因表达情况具有相同的上下调趋势;差异基因序列同源性分析显示,筛选出的2个转录因子(DN48762c2g1、DN25944c0g1)与玉米、水稻及拟南芥花色素苷合成调控转录因子聚为同一簇,可能是蓝标型小麦浅蓝粒植株蓝色糊粉层性状的候选基因。并且荧光定量分析表明,DN48762c2g1和DN25944c0g1在WF中的表达量要明显高于WS。综上认为,花青素的生物合成途径相关基因不仅与籽粒蓝色性状有关,而且可能参与了蓝标型核不育系的花药败育。  相似文献   

16.
17.
通过连续回交,将抗除草剂基因EPSPS-G6转育花粉败育彻底(无微量花粉,不育度达100%)的棉花单基因隐性控制的核不育系Yu98-8A,进而培育成抗除草剂核不育系Yu98-8A1。对该转育不育系花冠表型测量观察表明,与同质系正常可育株比较,不育株花冠较小, 不育株子房直径略大于可育株,花柱长和花柱外露长度均明显高于同质系正常可育株,花柱头外露为其最显著的表型特征;显微观察显示,不育系Yu98-8A1小孢子败育主要是在四分体形成后的小孢子发育期。小孢子败育特征表现为花粉粒无内含物、无刺突产生,最后解体、退化。PCR分子鉴定表明,抗除草剂基因EPSPS-G6转育入Yu98-8A1,除草剂抗性试验表明,该转育不育系可抗质量百分比浓度达0.3%的草甘膦。该抗除草剂核不育系的培育在棉花杂种优势利用方面有重大利用价值。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号