首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitis group streptococci express variable pilus islet 2 pili   总被引:1,自引:0,他引:1  

Background

Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2)-encoded pili to facilitate adhesion to eukaryotic cells.

Methodology/Principal Findings

PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae) and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains.

Conclusions/Significance

This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with pathogenic traits in the Mitis group streptococci.  相似文献   

2.
Streptococcus pneumoniae type 2 pili are recently identified fimbrial structures extending from the bacterial surface and formed by polymers of the structural protein PitB. Intramolecular isopeptide bonds are a characteristic of the related pilus backbone protein Spy0128 of group A streptococci. Based on the identification of conserved residues in PitB, we predicted two intramolecular isopeptide bonds in PitB. Using a combination of tandem mass spectrometry and Edman sequencing, we show that these bonds were formed between Lys63-Asn214 and Lys243-Asn372 in PitB. Mutant proteins lacking the intramolecular isopeptide bonds retained the proteolytic stability observed with the wild type protein. However, absence of these bonds substantially decreased the melting temperature of the PitB-derivatives, indicating a stabilizing function of these bonds in PitB of the pneumococcal type 2 pilus.  相似文献   

3.
Analysis of publicly available genomes of Streptococcus pneumoniae has led to the identification of a new genomic element containing genes typical of gram-positive pilus islets (PIs). Here, we demonstrate that this genomic region, herein referred to as PI-2 (consisting of pitA, sipA, pitB, srtG1, and srtG2) codes for a second functional pilus in pneumococcus. Polymerization of the PI-2 pilus requires the backbone protein PitB as well as the sortase SrtG1 and the signal peptidase-like protein SipA. Presence of PI-2 correlates with the genotype as defined by multilocus sequence typing and clonal complex (CC). The PI-2-positive CCs are associated with serotypes 1, 2, 7F, 19A, and 19F, considered to be emerging serotypes in both industrialized and developing countries. Interestingly, strains belonging to CC271 (where sequence type 271 is the predicted founder of the CC) contain both PI-1 and PI-2, as revealed by genome analyses. In these strains both pili are surface exposed and independently assembled. Furthermore, in vitro experiments provide evidence that the pilus encoded by PI-2 of S. pneumoniae is involved in adherence. Thus, pneumococci encode at least two types of pili that play a role in the initial host cell contact to the respiratory tract and are potential antigens for inclusion in a new generation of pneumococcal vaccines.  相似文献   

4.
Previous studies have implicated the obligatory requirement for the vir regulon (or “virulon”) of the Ti plasmid for the transfer of oncogenes from Agrobacterium tumefaciens to plant cells. The machinery used in this horizontal gene transfer has been long thought to be a transformation or conjugative delivery system. Based on recent protein sequence comparisons, the proteins encoded by the virB operon are strikingly similar to proteins involved in the synthesis and assembly of conjugative pili such as the conjugative pilus of F plasmid in Escherichia coli. The F pilus is composed of TraA pilin subunits derived from TraA propilin. In the present study, evidence is provided showing that the counterpart of TraA is VirB2, which like TraA propilin is processed into a 7.2-kDa product that comprises the pilus subunit as demonstrated by biochemical and electron microscopic analyses. The processed VirB2 protein is present exocellularly on medium on which induced A. tumefaciens had grown and appears as thin filaments of 10 nm that react specifically to VirB2 antibody. Exocellular VirB2 is produced abundantly at 19°C as compared with 28°C, an observation that parallels the effect of low temperature on the production of vir gene-specific pili observed previously (K. J. Fullner, L. C. Lara, and E. W. Nester, Science 273:1107–1109, 1996). Export of the processed VirB2 requires other virB genes since mutations in these genes cause the loss of VirB2 pilus formation and result in processed VirB2 accumulation in the cell. The presence of exocellular processed VirB2 is directly correlated with the formation of pili, and it appears as the major protein in the purified pilus preparation. The evidence provides a compelling argument for VirB2 as the propilin whose 7.2-kDa processed product is the pilin subunit of the promiscuous conjugative pilus, hereafter called the “T pilus” of A. tumefaciens.  相似文献   

5.
Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility.  相似文献   

6.
The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the “core complex” that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10''s TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis.  相似文献   

7.
8.
Bacterial cell-surface proteins play integral roles in host-pathogen interactions. These proteins are often architecturally and functionally sophisticated and yet few studies of such proteins involved in host-pathogen interactions have defined the domains or modules required for specific functions. Streptococcus pneumoniae (pneumococcus), an opportunistic pathogen that is a leading cause of community acquired pneumonia, otitis media and bacteremia, is decorated with many complex surface proteins. These include β-galactosidase BgaA, which is specific for terminal galactose residues β-1–4 linked to glucose or N-acetylglucosamine and known to play a role in pneumococcal growth, resistance to opsonophagocytic killing, and adherence. This study defines the domains and modules of BgaA that are required for these distinct contributions to pneumococcal pathogenesis. Inhibitors of β-galactosidase activity reduced pneumococcal growth and increased opsonophagocytic killing in a BgaA dependent manner, indicating these functions require BgaA enzymatic activity. In contrast, inhibitors increased pneumococcal adherence suggesting that BgaA bound a substrate of the enzyme through a distinct module or domain. Extensive biochemical, structural and cell based studies revealed two newly identified non-enzymatic carbohydrate-binding modules (CBMs) mediate adherence to the host cell surface displayed lactose or N-acetyllactosamine. This finding is important to pneumococcal biology as it is the first adhesin-carbohydrate receptor pair identified, supporting the widely held belief that initial pneumococcal attachment is to a glycoconjugate. Perhaps more importantly, this is the first demonstration that a CBM within a carbohydrate-active enzyme can mediate adherence to host cells and thus this study identifies a new class of carbohydrate-binding adhesins and extends the paradigm of CBM function. As other bacterial species express surface-associated carbohydrate-active enzymes containing CBMs these findings have broad implications for bacterial adherence. Together, these data illustrate that comprehending the architectural sophistication of surface-attached proteins can increase our understanding of the different mechanisms by which these proteins can contribute to bacterial pathogenesis.  相似文献   

9.
Group B streptococcus (GBS) pili may enhance colonization and infection by mediating bacterial adhesion to host cells, invasion across endothelial and epithelial barriers, and resistance to bacterial ingestion and killing by host phagocytes. However, it remains unclear how pilus expression is regulated and how modulation of pilus production affects GBS interactions with the human host. We investigated the regulation and function of pilus island 1 (PI-1) pili in GBS strain 2603. We found that PI-1 gene expression was controlled by the CsrRS two-component system, by Ape1, an AraC-type regulator encoded by a divergently transcribed gene immediately upstream of PI-1, and by environmental pH. The response regulator CsrR repressed expression of Ape1, which is an activator of PI-1 gene expression. In addition, CsrR repressed PI-1 gene expression directly, independent of its regulation of Ape1. In vitro assays demonstrated specific binding of both CsrR and Ape1 to chromosomal DNA sequences upstream of PI-1. Pilus gene expression was activated by acidic pH, and this effect was independent of CsrRS and Ape1. Unexpectedly, characterization of PI-1 deletion mutants revealed that PI-1 pili do not mediate adhesion of strain 2603 to A549 respiratory epithelial cells, ME180 cervical cells, or VK2 vaginal cells in vitro. PI-1 pili reduced internalization and intracellular killing of GBS by human monocyte-derived macrophages, by approximately 50%, but did not influence complement-mediated opsonophagocytic killing by human neutrophils. These findings shed new light on the complex nature of pilus regulation and function in modulating GBS interactions with the human host.  相似文献   

10.
Type IV pili (T4P) contain hundreds of major subunits, but minor subunits are also required for assembly and function. Here we show that Pseudomonas aeruginosa minor pilins prime pilus assembly and traffic the pilus-associated adhesin and anti-retraction protein, PilY1, to the cell surface. PilV, PilW, and PilX require PilY1 for inclusion in surface pili and vice versa, suggestive of complex formation. PilE requires PilVWXY1 for inclusion, suggesting that it binds a novel interface created by two or more components. FimU is incorporated independently of the others and is proposed to couple the putative minor pilin-PilY1 complex to the major subunit. The production of small amounts of T4P by a mutant lacking the minor pilin operon was traced to expression of minor pseudopilins from the P. aeruginosa type II secretion (T2S) system, showing that under retraction-deficient conditions, T2S minor subunits can prime T4P assembly. Deletion of all minor subunits abrogated pilus assembly. In a strain lacking the minor pseudopilins, PilVWXY1 and either FimU or PilE comprised the minimal set of components required for pilus assembly. Supporting functional conservation of T2S and T4P minor components, our 1.4 Å crystal structure of FimU revealed striking architectural similarity to its T2S ortholog GspH, despite minimal sequence identity. We propose that PilVWXY1 form a priming complex for assembly and that PilE and FimU together stably couple the complex to the major subunit. Trafficking of the anti-retraction factor PilY1 to the cell surface allows for production of pili of sufficient length to support adherence and motility.  相似文献   

11.
In many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V. cholerae. Previously, we reported that cdgJ encodes a c-di-GMP phosphodiesterase and a ΔcdgJ mutant has reduced motility and enhanced biofilm formation. Here we show that loss of the genes required for the mannose-sensitive hemagglutinin (MshA) pilus biogenesis restores motility in the ΔcdgJ mutant. Mutations of the predicted ATPase proteins mshE or pilT, responsible for polymerizing and depolymerizing MshA pili, impair near surface motility behavior and initial surface attachment dynamics. A ΔcdgJ mutant has enhanced surface attachment, while the ΔcdgJmshA mutant phenocopies the high motility and low attachment phenotypes observed in a ΔmshA strain. Elevated concentrations of c-di-GMP enhance surface MshA pilus production. MshE, but not PilT binds c-di-GMP directly, establishing a mechanism for c-di-GMP signaling input in MshA pilus production. Collectively, our results suggest that the dynamic nature of the MshA pilus established by the assembly and disassembly of pilin subunits is essential for transition from the motile to sessile lifestyle and that c-di-GMP affects MshA pilus assembly and function through direct interactions with the MshE ATPase.  相似文献   

12.
Colony-stimulating factor 1 (CSF-1) triggers the activation of intracellular proteins in macrophages through selective assembly of signalling complexes. The separation of multimeric complexes of the CSF-1 receptor (CSF-1R) by anion-exchange chromatography enabled the enrichment of low-stoichiometry complexes. A significant proportion of the receptor in CSF-1-stimulated cells that neither possessed detectable tyrosine kinase activity nor formed complexes was separated from the receptor pool displaying autokinase activity that formed chromatographically distinct multimeric complexes. A small pool of CSF-1R formed a multimeric complex with phosphatidylinositol-3 kinase (PI-3 kinase), SHP-1, Grb2, Shc, c-Src, Cbl, and a significant number of tyrosine-phosphorylated proteins in CSF-1-stimulated cells. The complex showed a considerable amount of CSF-1R complex-associated kinase activity. A detectable level of the complex was also present in untreated cells. PI-3 kinase in the multimeric complex displayed low lipid kinase activity despite the association with several proteins. The major pool of activated CSF-1R formed transient multimeric complexes with distinctly different tyrosine-phosphorylated proteins, which included STAT3 but also PI-3 kinase, Shc, SHP-1, and Grb2. A significant level of lipid kinase activity was detected in PI-3 kinase in the latter complexes. The different specific enzyme activities of PI-3 kinase in these complexes support the notion that the activity of PI-3 kinase is modulated by its association with CSF-1R and other associated cellular proteins. Specific structural proteins associated with the separate CSF-1R multimeric complexes upon CSF-1 stimulation and the presence of the distinct pools of the CSF-1R were dependent on the integrity of the microtubular network.  相似文献   

13.
The Gram-positive pathogen Streptococcus agalactiae, known as group B Streptococcus (GBS), is the leading cause of bacterial septicemia, pneumonia, and meningitis among neonates. GBS assembles two types of pili—pilus islands (PIs) 1 and 2—on its surface to adhere to host cells and to initiate colonization for pathogenesis. The GBS PI-1 pilus is made of one major pilin, GBS80, which forms the pilus shaft, and two secondary pilins, GBS104 and GBS52, which are incorporated into the pilus at various places. We report here the crystal structure of the 35-kDa C-terminal fragment from GBS80, which is composed of two IgG-like domains (N2-N3). The structure was solved by single-wavelength anomalous dispersion using sodium-iodide-soaked crystals and diffraction data collected at the home source. The N2 domain exhibits a cnaA/DEv-IgG fold with two calcium-binding sites, while the N3 domain displays a cnaB/IgG-rev fold. We have built a model for full-length GBS80 (N1, N2, and N3) with the help of available homologous major pilin structures, and we propose a model for the GBS PI-1 pilus shaft. The N2 and N3 domains are arranged in tandem along the pilus shaft, whereas the respective N1 domain is tilted by approximately 20° away from the pilus axis. We have also identified a pilin-like motif in the minor pilin GBS52, which might aid its incorporation at the pilus base.  相似文献   

14.
Streptococcus pneumoniae expresses on its surface adhesive pili, involved in bacterial attachment to epithelial cells and virulence. The pneumococcal pilus is composed of three proteins, RrgA, RrgB, and RrgC, each stabilized by intramolecular isopeptide bonds and covalently polymerized by means of intermolecular isopeptide bonds to form an extended fiber. RrgB is the pilus scaffold subunit and is protective in vivo in mouse models of sepsis and pneumonia, thus representing a potential vaccine candidate. The crystal structure of a major RrgB C-terminal portion featured an organization into three independently folded protein domains (D2-D4), whereas the N-terminal D1 domain (D1) remained unsolved. We have tested the four single recombinant RrgB domains in active and passive immunization studies and show that D1 is the most effective, providing a level of protection comparable with that of the full-length protein. To elucidate the structural features of D1, we solved the solution structure of the recombinant domain by NMR spectroscopy. The spectra analysis revealed that D1 has many flexible regions, does not contain any intramolecular isopeptide bond, and shares with the other domains an Ig-like fold. In addition, we demonstrated, by site-directed mutagenesis and complementation in S. pneumoniae, that the D1 domain contains the Lys residue (Lys-183) involved in the formation of the intermolecular isopeptide bonds and pilus polymerization. Finally, we present a model of the RrgB protein architecture along with the mapping of two surface-exposed linear epitopes recognized by protective antisera.  相似文献   

15.
Pili are surface-exposed virulence factors involved in the adhesion of bacteria to host cells. The human pathogen Streptococcus pneumoniae expresses a pilus composed of three structural proteins, RrgA, RrgB, and RrgC, and requires the action of three transpeptidase enzymes, sortases SrtC-1, SrtC-2, and SrtC-3, to covalently associate the Rrg pilins. Using a recombinant protein expression platform, we have previously shown the requirement of SrtC-1 in RrgB fiber formation and the association of RrgB with RrgC. To gain insights into the substrate specificities of the two other sortases, which remain controversial, we have exploited the same robust strategy by testing various combinations of pilins and sortases coexpressed in Escherichia coli. We demonstrate that SrtC-2 catalyzes the formation of both RrgA-RrgB and RrgB-RrgC complexes. The deletion and swapping of the RrgA-YPRTG and RrgB-IPQTG sorting motifs indicate that SrtC-2 preferentially recognizes RrgA and attaches it to the pilin motif lysine 183 of RrgB. Finally, SrtC-2 is also able to catalyze the multimerization of RrgA through the C-terminal D4 domains. Similar experiments have been performed with SrtC-3, which catalyzes the formation of RrgB-RrgC and RrgB-RrgA complexes. Altogether, these results provide evidence of the molecular mechanisms of association of RrgA and RrgC with the RrgB fiber shaft by SrtC-2 and SrtC-3 and lead to a revised model of the pneumococcal pilus architecture accounting for the respective contribution of each sortase.  相似文献   

16.
Streptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host.  相似文献   

17.
The core PI-2b pilus present in “hypervirulent” ST-17 Streptococcus agalactiae strains consists of three pilin subunits (Spb1, Ap1 and Ap2) assembled by sortase SrtC1 and cell-wall anchored by Srt2. Spb1 was shown to be the major pilin and Ap2 the anchor pilin. Ap1 is a putative adhesin. Two additional genes, orf and lep, are part of this operon. The contribution of Lep and Ap1 to the biogenesis of the PI-2b pilus was investigated. Concerning the role of PI-2b, we found that higher PI-2b expression resulted in higher adherence to human brain endothelial cells and higher phagocytosis by human THP1 macrophages.  相似文献   

18.
A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins (“tāpirins,” origin from Māori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tāpirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tāpirins are specific to these extreme thermophiles. Tāpirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tāpirins for cellulose. Crystallization of a cellulose-binding truncation from one tāpirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tāpirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.  相似文献   

19.
The pneumococcal serine threonine protein kinase (StkP) acts as a global regulator in the pneumococcus. Bacterial mutants deficient in StkP are less virulent in animal models of infection. The gene for this regulator is located adjacent to the gene for its cognate phosphatase in the pneumococcal genome. The phosphatase dephosphorylates proteins phosphorylated by StkP and has been shown to regulate a number of key pneumococcal virulence factors and to modulate adherence to eukaryotic cells. The role of StkP in adherence of pneumococci to human cells has not previously been reported. In this study we show StkP represses the pneumococcal pilus, a virulence factor known to be important for bacterial adhesion. In a serotype 4 strain regulation of the pilus by StkP modulates adherence to human brain microvascular endothelial cells (HBMEC) and human lung epithelial cells. This suggests that the pneumococcal pilus may play a role in adherence during infections such as meningitis and pneumonia. We show that regulation of the pilus occurs at the population level as StkP alters the number of pili-positive cells within a single culture. As far as we are aware this is the first gene identified outside of the pilus islet that regulates the biphasic expression of the pilus. These findings suggest StkPs role in cell division may be linked to regulation of expression of a cell surface adhesin.  相似文献   

20.
Type IV pili are polymeric fibers which protrude from the cell surface and play a critical role in adhesion and invasion by pathogenic bacteria. The secretion of pili across the periplasm and outer membrane is mediated by a specialized secretin protein, PilQ, but the way in which this large channel is formed is unknown. Using NMR, we derived the structures of the periplasmic domains from N. meningitidis PilQ: the N-terminus is shown to consist of two β-domains, which are unique to the type IV pilus-dependent secretins. The structure of the second β-domain revealed an eight-stranded β-sandwich structure which is a novel variant of the HSP20-like fold. The central part of PilQ consists of two α/β fold domains: the structure of the first of these is similar to domains from other secretins, but with an additional α-helix which links it to the second α/β domain. We also determined the structure of the entire PilQ dodecamer by cryoelectron microscopy: it forms a cage-like structure, enclosing a cavity which is approximately 55 Å in internal diameter at its largest extent. Specific regions were identified in the density map which corresponded to the individual PilQ domains: this allowed us to dock them into the cryoelectron microscopy density map, and hence reconstruct the entire PilQ assembly which spans the periplasm. We also show that the C-terminal domain from the lipoprotein PilP, which is essential for pilus assembly, binds specifically to the first α/β domain in PilQ and use NMR chemical shift mapping to generate a model for the PilP:PilQ complex. We conclude that passage of the pilus fiber requires disassembly of both the membrane-spanning and the β-domain regions in PilQ, and that PilP plays an important role in stabilising the PilQ assembly during secretion, through its anchorage in the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号