首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MicroRNAs (miRNAs) regulate gene expression by binding to target sites and initiating translational repression and/or mRNA degradation. In our previous study, we have shown that expression of serum microRNA (miR)-21 is correlated with TNM stage and lymph node metastasis and might be an independent prognostic factor for NSCLC patients. However, the roles of miR-21 overexpression in NSCLC development are still unclear. The purpose of this study is to investigate the effect of miR-21 and determine whether miR-21 can be a therapeutic target for human NSCLC. Taqman real-time quantitative RT-PCR assay was performed to detect miR-21 expression in NSCLC cell lines and tissues. Next, the effects of miR-21 expression on NSCLC cell characteristics including growth, invasion, and chemo- or radioresistance were also determined. Results showed that miR-21 is commonly upregulated in NSCLC cell lines and tissues with important functional consequences. In addition, we found that anti-miR-21 could significantly inhibit growth, migration and invasion, and reverse chemo- or radioresistance of NSCLC cells, while miR-21 mimics could increase growth, promote migration and invasion, and enhance chemo- or radioresistance of NSCLC cells. Meanwhile, miR-21 mimics could inhibit expression of PTEN mRNA and protein and the luciferase activity of a PTEN 3??-untranslated region (UTR)-based reporter construct in A549 cells, while anti-miR-21 could increase expression of PTEN mRNA and protein and the luciferase activity of a PTEN 3??-UTR-based reporter construct in A549 cells. Furthermore, overexpression of PTEN could mimic the same effects of anti-miR-21 in NSCLC cells, and siRNA-mediated downregulation of PTEN could rescue the effects on NSCLC cells induced by anti-miR-21. Taken together, these results provide evidence to show the promotion role of miR-21 in NSCLC development through modulation of the PTEN signaling pathway.  相似文献   

3.
MicroRNAs (miRNAs) play an important role in the regulation of gene expression and are involved in many cellular processes including inhibition of viral replication in infected cells. In this study, three subtypes of influenza A viruses (pH1N1, H5N1 and H3N2) were analyzed to identify candidate human miRNAs targeting and silencing viral genes expression. Candidate human miRNAs were predicted by miRBase and RNAhybrid based on minimum free energy (MFE) and hybridization patterns between human miRNAs and viral target genes. In silico analysis presented 76 miRNAs targeting influenza A viruses, including 70 miRNAs that targeted specific subtypes (21 for pH1N1, 27 for H5N1 and 22 for H3N2) and 6 miRNAs (miR-216b, miR-3145, miR-3682, miR-4513, miR-4753 and miR-5693) that targeted multiple subtypes of influenza A viruses. Interestingly, miR-3145 is the only candidate miRNA targeting all three subtypes of influenza A viruses. The miR-3145 targets to PB1 encoding polymerase basic protein 1, which is the main component of the viral polymerase complex. The silencing effect of miR-3145 was validated by 3′-UTR reporter assay and inhibition of influenza viral replication in A549 cells. In 3′-UTR reporter assay, results revealed that miR-3145 triggered significant reduction of the luciferase activity. Moreover, expression of viral PB1 genes was also inhibited considerably (P value < 0.05) in viral infected cells expressing mimic miR-3145. In conclusion, this study demonstrated that human miR-3145 triggered silencing of viral PB1 genes and lead to inhibition of multiple subtypes of influenza viral replication. Therefore, hsa-miR-3145 might be useful for alternative treatment of influenza A viruses in the future.  相似文献   

4.
5.
We developed a simple, direct and cost-effective approach to search for the most likely target genes of a known microRNA (miRNA) in vitro. We term this method ‘labeled miRNA pull-down (LAMP)’ assay system. Briefly, the pre-miRNA is labeled with digoxigenin (DIG), mixed with cell extracts and immunoprecipitated by anti-DIG antiserum. When the DIG-labeled miRNA and bound mRNA complex are obtained, the total cDNAs are then subcloned and sequenced, or RT–PCR-amplified, to search for the putative target genes of a known miRNA. After successfully identifying the known target genes of Caenorhabditis elegans miRNAs lin-4 and let-7 and zebrafish let-7, we applied LAMP to find the unknown target gene of zebrafish miR-1, which resulted in the identification of hand2. We then confirmed hand2 as a novel target gene of miR-1 by whole-mount in situ hybridization and luciferase reporter gene assay. We further validated this target gene by microarray analysis, and the results showed that hand2 is the top-scoring among 302 predicted putative target genes. We concluded that LAMP is an experimental approach for high-throughput identification of the target gene of known miRNAs from both C. elegans and zebrafish, yielding fewer false positive results than those produced by using only the bioinformatics approach.  相似文献   

6.
7.
8.
The influence of UV irradiation on pigmentation is well established, but the molecular and cellular mechanisms controlling dendrite formation remain incompletely understood. MicroRNAs (miRNAs) are a class of small RNAs that participate in various cellular processes by suppressing the expression of target mRNAs. In this study, we investigated the expression of miRNAs in response to UVB irradiation using a microarray screen and then identified potential mRNA targets for differentially expressed miRNAs among the genes governing dendrite formation. We subsequently determined the ability of miRNA 340 (miR-340) to suppress the expression of RhoA, which is a predicted miR-340 target gene that regulates dendrite formation. The overexpression of miR-340 promoted dendrite formation and melanosome transport, and the downregulation of miR-340 inhibited UVB-induced dendrite formation and melanosome transport. Moreover, a luciferase reporter assay demonstrated direct targeting of RhoA by miR-340 in the immortalized human melanocyte cell line Pig1. In conclusion, this study has established an miRNA associated with UVB irradiation. The significant downregulation of RhoA protein and mRNA expression after UVB irradiation and the modulation of miR-340 expression suggest a key role for miR-340 in regulating UVB-induced dendrite formation and melanosome transport.  相似文献   

9.
Liu Q  Fu H  Sun F  Zhang H  Tie Y  Zhu J  Xing R  Sun Z  Zheng X 《Nucleic acids research》2008,36(16):5391-5404
  相似文献   

10.
An abnormal acyl-CoA synthetase/stearoyl-CoA desaturase (ACSL/SCD) lipid network fuels colon cancer progression, endowing cells with invasive and migratory properties. Therapies against this metabolic network may be useful to improve clinical outcomes. Because micro-RNAs (miRNAs/miRs) are important epigenetic regulators, we investigated novel miRNAs targeting this pro-tumorigenic axis; hence to be used as therapeutic or prognostic miRNAs. Thirty-one putative common miRNAs were predicted to simultaneously target the three enzymes comprising the ACSL/SCD network. Target validation by quantitative RT-PCR, Western blotting, and luciferase assays showed miR-544a, miR-142, and miR-19b-1 as major regulators of the metabolic axis, ACSL/SCD. Importantly, lower miR-19b-1 expression was associated with a decreased survival rate in colorectal cancer (CRC) patients, accordingly with ACSL/SCD involvement in patient relapse. Finally, miR-19b-1 regulated the pro-tumorigenic axis, ACSL/SCD, being able to inhibit invasion in colon cancer cells. Because its expression correlated with an increased survival rate in CRC patients, we propose miR-19b-1 as a potential noninvasive biomarker of disease-free survival and a promising therapeutic miRNA in CRC.  相似文献   

11.
microRNAs (miRNAs) are small non-coding RNAs that can function as endogenous silencers of target genes and play critical roles in human malignancies. To investigate the molecular pathogenesis of gastric mucosa-associated lymphoid tissue (MALT) lymphoma, the miRNA expression profile was analyzed. miRNA microarray analysis with tissue specimens from gastric MALT lymphomas and surrounding non-tumor mucosae revealed that a hematopoietic-specific miRNA miR-142 and an oncogenic miRNA miR-155 were overexpressed in MALT lymphoma lesions. The expression levels of miR-142-5p and miR-155 were significantly increased in MALT lymphomas which do not respond to Helicobacter pylori (H. pylori) eradication. The expression levels of miR-142-5p and miR-155 were associated with the clinical courses of gastric MALT lymphoma cases. Overexpression of miR-142-5p and miR-155 was also observed in Helicobacter heilmannii-infected C57BL/6 mice, an animal model of gastric MALT lymphoma. In addition, miR-142-5p and miR-155 suppress the proapoptotic gene TP53INP1 as their target. The results of this study indicate that overexpression of miR-142-5p and miR-155 plays a critical role in the pathogenesis of gastric MALT lymphoma. These miRNAs might have potential application as therapeutic targets and novel biomarkers for gastric MALT lymphoma.  相似文献   

12.

Background

Cellular miRNAs play an important role in the regulation of gene expression in eukaryotes. Recently, miRNAs have also been shown to be able to target and inhibit viral gene expression. Computational predictions revealed earlier that the HIV-1 genome includes regions that may be potentially targeted by human miRNAs. Here we report the functionality of predicted miR-29a target site in the HIV-1 nef gene.

Results

We find that the human miRNAs hsa-miR-29a and 29b are expressed in human peripheral blood mononuclear cells. Expression of a luciferase reporter bearing the nef miR-29a target site was decreased compared to the luciferase construct without the target site. Locked nucleic acid modified anti-miRNAs targeted against hsa-miR-29a and 29b specifically reversed the inhibitory effect mediated by cellular miRNAs on the target site. Ectopic expression of the miRNA results in repression of the target Nef protein and reduction of virus levels.

Conclusion

Our results show that the cellular miRNA hsa-miR29a downregulates the expression of Nef protein and interferes with HIV-1 replication.  相似文献   

13.
MicroRNA (miRNA) is small non-coding RNA with approximate 22 nt in length. Recent studies indicate that miRNAs play significant roles in pathogen-host interactions. Brucella organisms are Gram-negative facultative intracellular bacteria that cause Brucellosis. Brucella strains infect macrophages and establish chronic infection by altering host life activities including apoptosis and autophagy. Here, we report a comprehensive analysis of miRNA expression profiles in mock- and Brucella-infected RAW264.7 cells using high-throughput sequencing approach. In total, 344 unique miRNAs were co-expressed in the two libraries, in which 57 miRNAs were differentially expressed. Eight differentially expressed miRNAs with high abundance were subjected to further analysis. The GO enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in apoptosis, autophagy and immune response. In particular, a total of 25 target genes are involved in regulating apoptosis and autophagy, indicating that these miRNAs may play important regulatory roles in the Brucella-host interactions. Furthermore, the interactions of miR-1981 and its target genes, Bcl-2 and Bid, were validated by luciferase assay. The results show that miR-1981 mimic up-regulated the luciferase activity of psiCHECK-2 Bcl-2 3' UTR, but the luciferase activity of psiCHECK-2 Bid 3' UTR was not changed significantly. Taken together, these data provide valuable framework on Brucella induced miRNA expression in RAW264.7 cells, and suggest that Brucella may establish chronic infection by regulating miRNA expression profile.  相似文献   

14.

Background

MiR-155 has emerged as an “oncomiR”, which is the most significantly up-regulated miRNA in breast cancer. However, the mechanisms of miR-155 functions as an oncomiR are mainly unknown. In this study, the aims were to investigate the effects of miR-155 on cell proliferation, cell cycle, and cell apoptosis of ERalpha (+) breast cancer cells and to verify whether TP53INP1 (tumor protein 53-induced nuclear protein 1) is a target of miR-155, and tried to explore the mechanisms of miR-155 in this process.

Results

The expression of miR-155 is significantly higher in MCF-7 cells compared with MDA-MB-231 cells. Ectopic expression of TP53INP1 inhibits growth of MCF-7 cells by inducing cell apoptosis and inhibiting cell cycle progression. Overexpression of miR-155 increases cell proliferation and suppress cell apoptosis, whereas abrogating expression of miR-155 suppress cell proliferation and promotes cell apoptosis of MCF-7 cells. In addition, miR-155 negatively regulates TP53INP1 mRNA expression and the protein expression of TP53INP1, cleaved-caspase-3, -8, -9, and p21, and luciferase reporter reveals that TP53INP1 is targeted by miR-155.

Conclusions

TP53INP1 is the direct target of miR-155. MiR-155, which is overexpressed in MCF-7 cells, contributes to proliferation of MCF-7 cells possibly through down-regulating target TP53INP1.  相似文献   

15.
MicroRNAs (miRNAs) are short non-coding RNAs that interfere with translation of specific target mRNAs and thereby regulate diverse biological processes. Recent studies have suggested that miRNAs might have a role in osteoblast differentiation and bone formation. Here, we show that miR-542-3p, a well-characterized tumor suppressor whose downregulation is tightly associated with tumor progression via C-src-related oncogenic pathways, inhibits osteoblast proliferation and differentiation. miRNA array profiling in Medicarpin (a pterocarpan with proven bone-forming effects) induced mice calvarial osteoblast cells and further validation by quantitative real-time PCR revealed that miR-542-3p was downregulated during osteoblast differentiation. Over-expression of miR-542-3p inhibited osteoblast differentiation, whereas inhibition of miR-542-3p function by anti-miR-542-3p promoted expression of osteoblast-specific genes, alkaline phosphatase activity and matrix mineralization. Target prediction analysis tools and experimental validation by luciferase 3′ UTR reporter assay identified BMP-7 (bone morphogenetic protein 7) as a direct target of miR-542-3p. It was seen that over-expression of miR-542-3p leads to repression of BMP-7 and inhibition of BMP-7/PI3K- survivin signaling. This strongly suggests that miR-542-3p suppresses osteogenic differentiation and promotes osteoblast apoptosis by repressing BMP-7 and its downstream signaling. Furthermore, silencing of miR-542-3p led to increased bone formation, bone strength and improved trabecular microarchitecture in sham and ovariectomized (Ovx) mice. Although miR-542-3p is known to be a tumor repressor, we have identified second complementary function of miR-542-3p where it inhibits BMP-7-mediated osteogenesis. Our findings suggest that pharmacological inhibition of miR-542-3p by anti-miR-542-3p could represent a therapeutic strategy for enhancing bone formation in vivo.  相似文献   

16.
17.
18.
19.
20.
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that have an important regulatory function in animal growth and developmental processes. However, the differential expression of miRNA and the role of these miRNAs in heat-stressed Holstein cows are still unknown. In this study, the profile of differentially expressed miRNAs and the target genes analysis in the serum of heat-stressed and normal Holstein cows were investigated by a Solexa deep-sequencing approach and bioinformatics. The data identified 52 differentially expressed miRNAs in 486 known miRNAs which were changed significantly between heat-stressed and normal Holstein cows (fold change >2, P < 0.001). Target genes analysis showed that at least 7 miRNAs (miR-19a, miR-19b, miR-146a, miR-30a-5p, miR-345-3p, miR-199a-3p, and miR-1246) were involved in the response to stress, oxidative stress, development of the immune system, and immune response among the identified 52 differentially expressed miRNAs. Five miRNAs (miR-27b, miR-181a, miR-181b, miR-26a, and miR-146b) were involved in stress and immune responses and the expression of five miRNAs was striking (P < 0.001). In addition, RT-qPCR and deep-sequencing methods showed that 8 miRNAs among the 12 selected miRNAs (miR-19a, miR-19b, miR-27b, miR-30a-5p, miR-181a, miR-181b, miR-345-3p, and miR-1246) were highly expressed in the serum of heat-stressed Holstein cows. GO and KEGG pathway analysis showed that these differentially expressed miRNAs were involved in a pathway that may differentially regulate the expression of stress response and immune response genes. Our study provides an overview of miRNAs expression profile and the interaction between miRNAs and their target genes, which will lead to further understanding of the important roles of miRNAs in heat-stressed Holstein cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号