共查询到20条相似文献,搜索用时 0 毫秒
1.
Lee Hsiang Liow John A. Finarelli 《Proceedings. Biological sciences / The Royal Society》2014,281(1778)
The ecological and evolutionary processes leading to present-day biological diversity can be inferred by reconstructing the phylogeny of living organisms, and then modelling potential processes that could have produced this genealogy. A more direct approach is to estimate past processes from the fossil record. The Carnivora (Mammalia) has both substantial extant species richness and a rich fossil record. We compiled species-level data for over 10 000 fossil occurrences of nearly 1400 carnivoran species. Using this compilation, we estimated extinction, speciation and net diversification for carnivorans through the Neogene (22–2 Ma), while simultaneously modelling sampling probability. Our analyses show that caniforms (dogs, bears and relatives) have higher speciation and extinction rates than feliforms (cats, hyenas and relatives), but lower rates of net diversification. We also find that despite continual species turnover, net carnivoran diversification through the Neogene is surprisingly stable, suggesting a saturated adaptive zone, despite restructuring of the physical environment. This result is strikingly different from analyses of carnivoran diversification estimated from extant species alone. Two intervals show elevated diversification rates (13–12 Ma and 4–3 Ma), although the precise causal factors behind the two peaks in carnivoran diversification remain open questions. 相似文献
2.
Rassim Khelifa Hayat Mahdjoub Leithen K. MGonigle Claire Kremen 《Ecology and evolution》2021,11(11):6033
Capture–mark–recapture (CMR) studies have been used extensively in ecology and evolution. While it is feasible to apply CMR in some animals, it is considerably more challenging in small fast‐moving species such as insects. In these groups, low recapture rates can bias estimates of demographic parameters, thereby handicapping effective analysis and management of wild populations. Here, we use high‐speed videos (HSV) to capture two large dragonfly species, Anax junius and Rhionaeschna multicolor, that rarely land and, thus, are particularly challenging for CMR studies. We test whether HSV, compared to conventional “eye” observations, increases the “resighting” rates and, consequently, improves estimates of both survival rates and the effects of demographic covariates on survival. We show that the use of HSV increases the number of resights by 64% in A. junius and 48% in R. multicolor. HSV improved our estimates of resighting and survival probability which were either under‐ or overestimated with the conventional observations. Including HSV improved credible intervals for resighting rate and survival probability by 190% and 130% in A. junius and R. multicolor, respectively. Hence, it has the potential to open the door to a wide range of research possibilities on species that are traditionally difficult to monitor with distance sampling, including within insects and birds. 相似文献
3.
Anne Y. Polyakov William D. Tietje Arjun Srivathsa Virginie Rolland James E. Hines Madan K. Oli 《Ecology and evolution》2021,11(18):12529
In semi‐arid environments, aperiodic rainfall pulses determine plant production and resource availability for higher trophic levels, creating strong bottom‐up regulation. The influence of climatic factors on population vital rates often shapes the dynamics of small mammal populations in such resource‐restricted environments. Using a 21‐year biannual capture–recapture dataset (1993 to 2014), we examined the impacts of climatic factors on the population dynamics of the brush mouse (Peromyscus boylii) in semi‐arid oak woodland of coastal‐central California. We applied Pradel''s temporal symmetry model to estimate capture probability (p), apparent survival (φ), recruitment (f), and realized population growth rate (λ) of the brush mouse and examined the effects of temperature, rainfall, and El Niño on these demographic parameters. The population was stable during the study period with a monthly realized population growth rate of 0.993 ± SE 0.032, but growth varied over time from 0.680 ± 0.054 to 1.450 ± 0.083. Monthly survival estimates averaged 0.789 ± 0.005 and monthly recruitment estimates averaged 0.175 ± 0.038. Survival probability and realized population growth rate were positively correlated with rainfall and negatively correlated with temperature. In contrast, recruitment was negatively correlated with rainfall and positively correlated with temperature. Brush mice maintained their population through multiple coping strategies, with high recruitment during warmer and drier periods and higher survival during cooler and wetter conditions. Although climatic change in coastal‐central California will likely favor recruitment over survival, varying strategies may serve as a mechanism by which brush mice maintain resilience in the face of climate change. Our results indicate that rainfall and temperature are both important drivers of brush mouse population dynamics and will play a significant role in predicting the future viability of brush mice under a changing climate. 相似文献
4.
Marine Desprez Robert Harcourt Mark A. Hindell Sarah Cubaynes Olivier Gimenez Clive R. McMahon 《Biology letters》2014,10(5)
When to commence breeding is a crucial life-history decision that may be the most important determinant of an individual''s lifetime reproductive output and can have major consequences on population dynamics. The age at which individuals first reproduce is an important factor influencing the intensity of potential costs (e.g. reduced survival) involved in the first breeding event. However, quantifying age-related variation in the cost of first reproduction in wild animals remains challenging because of the difficulty in reliably recording the first breeding event. Here, using a multi-event capture–recapture model that accounts for both imperfect detection and uncertainty in the breeding status on an 18-year dataset involving 6637 individuals, we estimated age and state-specific survival of female elephant seals (Mirounga leonina) in the declining Macquarie Island population. We detected a clear cost of first reproduction on survival. This cost was higher for both younger first-time breeders and older first-time breeders compared with females recruiting at age four, the overall mean age at first reproduction. Neither earlier primiparity nor delaying primiparity appear to confer any evolutionary advantage, rather the optimal strategy seems to be to start breeding at a single age, 4 years. 相似文献
5.
A. Shoji S. Aris-Brosou A. Culina A. Fayet H. Kirk O. Padget I. Juarez-Martinez D. Boyle T. Nakata C. M. Perrins T. Guilford 《Biology letters》2015,11(10)
Inter-seasonal events are believed to connect and affect reproductive performance (RP) in animals. However, much remains unknown about such carry-over effects (COEs), in particular how behaviour patterns during highly mobile life-history stages, such as migration, affect RP. To address this question, we measured at-sea behaviour in a long-lived migratory seabird, the Manx shearwater (Puffinus puffinus) and obtained data for individual migration cycles over 5 years, by tracking with geolocator/immersion loggers, along with 6 years of RP data. We found that individual breeding and non-breeding phenology correlated with subsequent RP, with birds hyperactive during winter more likely to fail to reproduce. Furthermore, parental investment during one year influenced breeding success during the next, a COE reflecting the trade-off between current and future RP. Our results suggest that different life-history stages interact to influence RP in the next breeding season, so that behaviour patterns during winter may be important determinants of variation in subsequent fitness among individuals. 相似文献
6.
Site fidelity refers to the restriction of dispersal distance of an animal and its tendency to return to a stationary site. To our knowledge, the homing ability of freshwater turtles and their fidelity is reportedly very low in Asia. We examined mark–recapture data spanning a 4‐year period in Diaoluoshan National Nature Reserve, Hainan Province, China, to investigate the site fidelity and homing behavior of big‐headed turtles Platysternon megacephalum. A total of 11 big‐headed turtles were captured, and all individuals were used in this mark–recapture study. The site fidelity results showed that the adult big‐headed turtles (n = 4) had a 71.43% recapture rate in the original site after their release at the same site, whereas the juveniles (n = 1) showed lower recapture rates (0%). Moreover, the homing behavior results showed that the adults (n = 5) had an 83.33% homing rate after displacement. Adult big‐headed turtles were able to return to their initial capture sites (home) from 150 to 2,400 m away and precisely to their home sites from either upstream or downstream of their capture sites or even from other streams. However, none of the juveniles (n = 4) returned home, despite only being displaced 25–150 m away. These results indicated that the adult big‐headed turtles showed high fidelity to their home site and strong homing ability. In contrast, the juvenile turtles may show an opposite trend but further research is needed. 相似文献
7.
Olivier Gimenez Stephen T. Buckland Byron J. T. Morgan Nicolas Bez Sophie Bertrand Rémi Choquet Stéphane Dray Marie-Pierre Etienne Rachel Fewster Frédéric Gosselin Bastien Mérigot Pascal Monestiez Juan M. Morales Frédéric Mortier Fran?ois Munoz Otso Ovaskainen Sandrine Pavoine Roger Pradel Frank M. Schurr Len Thomas Wilfried Thuiller Verena Trenkel Perry de Valpine Eric Rexstad 《Biology letters》2014,10(12)
The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1–4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data. 相似文献
8.
Jeffrey F. Bromaghin David C. Douglas George M. Durner Kristin S. Simac Todd C. Atwood 《Ecology and evolution》2021,11(20):14250
The Arctic Ocean is undergoing rapid transformation toward a seasonally ice‐free ecosystem. As ice‐adapted apex predators, polar bears (Ursus maritimus) are challenged to cope with ongoing habitat degradation and changes in their prey base driven by food‐web response to climate warming. Knowledge of polar bear response to environmental change is necessary to understand ecosystem dynamics and inform conservation decisions. In the southern Beaufort Sea (SBS) of Alaska and western Canada, sea ice extent has declined since satellite observations began in 1979 and available evidence suggests that the carrying capacity of the SBS for polar bears has trended lower for nearly two decades. In this study, we investigated the population dynamics of polar bears in Alaska''s SBS from 2001 to 2016 using a multistate Cormack–Jolly–Seber mark–recapture model. States were defined as geographic regions, and we used location data from mark–recapture observations and satellite‐telemetered bears to model transitions between states and thereby explain heterogeneity in recapture probabilities. Our results corroborate prior findings that the SBS subpopulation experienced low survival from 2003 to 2006. Survival improved modestly from 2006 to 2008 and afterward rebounded to comparatively high levels for the remainder of the study, except in 2012. Abundance moved in concert with survival throughout the study period, declining substantially from 2003 and 2006 and afterward fluctuating with lower variation around an average of 565 bears (95% Bayesian credible interval [340, 920]) through 2015. Even though abundance was comparatively stable and without sustained trend from 2006 to 2015, polar bears in the Alaska SBS were less abundant over that period than at any time since passage of the U.S. Marine Mammal Protection Act. The potential for recovery is likely limited by the degree of habitat degradation the subpopulation has experienced, and future reductions in carrying capacity are expected given current projections for continued climate warming. 相似文献
9.
Olaoluwa John Ademola Bram Vanden Broecke Herwig Leirs Loth S. Mulungu Apia W. Massawe Rhodes H. Makundi 《Ecology and evolution》2021,11(5):2391
Praomys delectorum occurs abundantly in both disturbed and intact forests in the Ukaguru Mountains within the Eastern Arc Mountains (EAM), Morogoro, Tanzania. While previous studies have reported that anthropogenic disturbances such as grazing, wood cutting, and harvesting have a positive effect on the population density of P. delectorum, the impact of habitat disturbance on its demographic traits is still unknown. We performed a capture–mark–recapture study in both disturbed and intact forests from June 2018 to February 2020 in order to investigate the effects of habitat disturbance on abundance and two demographic traits: survival and maturation of P. delectorum in the Ukaguru Mountains. We found no variation in abundance or maturation between intact and disturbed forests, but habitat type did affect survival. However, this effect was sex‐dependent since female survival was higher in disturbed forests, while male survival remained similar across the two forest types potentially due to differences in predation pressure or food availability between the two habitats. Continuous demographic monitoring of P. delectorum in EAM is necessary given that the increasing human population surrounding the landscape is leading to higher deforestation rates and expansion of the pine plantation in the forest reserve. 相似文献
10.
Louise Forsblom Andreas Lindn Jonna Engstrm
st Maiju Lehtiniemi Erik Bonsdorff 《Ecology and evolution》2021,11(9):4035
Benthic species and communities are linked to pelagic zooplankton through life‐stages encompassing both benthic and pelagic habitats and through a mutual dependency on primary producers as a food source. Many zooplankton taxa contribute to the sedimentary system as benthic eggs. Our main aim was to investigate the nature of the population level biotic interactions between and within these two seemingly independent communities, both dependent on the pelagic primary production, while simultaneously accounting for environmental drivers (salinity, temperature, and oxygen conditions). To this end, we applied multivariate autoregressive state‐space models to long (1966–2007) time series of annual abundance data, comparing models with and without interspecific interactions, and models with and without environmental variables included. We were not able to detect any direct coupling between sediment‐dwelling benthic taxa and pelagic copepods and cladocerans on the annual scale, but the most parsimonious model indicated that interactions within the benthic community are important. There were also positive residual correlations between the copepods and cladocerans potentially reflecting the availability of a shared resource or similar seasonal dependence, whereas both groups tended to correlate negatively with the zoobenthic taxa. The most notable single interaction within the benthic community was a tendency for a negative effect of Limecola balthica on the amphipods Monoporeia affinis and Pontoporeia femorata which can help explain the observed decrease in amphipods due to increased competitive interference. 相似文献
11.
Jonathan P. Rose Richard Kim Elliot J. Schoenig Patrick C. Lien Brian J. Halstead 《Ecology and evolution》2022,12(4)
Estimates of demographic rates for animal populations and individuals have many applications for ecological and conservation research. In many animals, survival is size‐dependent, but estimating the form of the size–survival relationship presents challenges. For elusive species with low recapture rates, individuals’ size will be unknown at many points in time. Integrating growth and capture–mark–recapture models in a Bayesian framework empowers researchers to impute missing size data, with uncertainty, and include size as a covariate of survival, capture probability, and presence on‐site. If there is no theoretical expectation for the shape of the size–survival relationship, spline functions can allow for fitting flexible, data‐driven estimates. We use long‐term capture–mark–recapture data from the endangered San Francisco gartersnake (Thamnophis sirtalis tetrataenia) to fit an integrated growth–survival model. Growth models showed that females reach longer asymptotic lengths than males and that the magnitude of sexual size dimorphism differed among populations. The capture probability and availability of San Francisco gartersnakes for capture increased with snout–vent length. The survival rate of female snakes exhibits a nonlinear relationship with snout–vent length (SVL), with survival flat between 300 mm and 550 mm SVL before decreasing for females between 550 mm and 700 mm SVL. For male snakes, survival decreased for adult males >550 mm SVL. The survival rates of the smallest and largest San Francisco gartersnakes were highly uncertain because recapture rates were very low for these sizes. By integrating growth and survival models and using penalized splines, we found support for size‐dependent survival in San Francisco gartersnakes. Our results have applications for devising management activities for this endangered subspecies, and our methods could be applied broadly to the study of size‐dependent demography among animals. 相似文献
12.
Masaki Hoso 《Proceedings. Biological sciences / The Royal Society》2012,279(1748):4811-4816
Autotomy of body parts offers various prey animals immediate benefits of survival in compensation for considerable costs. I found that a land snail Satsuma caliginosa of populations coexisting with a snail-eating snake Pareas iwasakii survived the snake predation by autotomizing its foot, whereas those out of the snake range rarely survived. Regeneration of a lost foot completed in a few weeks but imposed a delay of shell growth. Imprints of autotomy were found in greater than 10 per cent of S. caliginosa in the snake range but in only less than 1 per cent out of it, simultaneously demonstrating intense predation by the snakes and high efficiency of autotomy for surviving snake predation in the wild. However, in experiments, mature S. caliginosa performed autotomy less frequently. Instead of the costly autotomy, they can use defensive denticles on the inside of their shell apertures. Owing to the constraints from the additive growth of shells, most pulmonate snails can produce these denticles only when they have fully grown up. Thus, this developmental constraint limits the availability of the modified aperture, resulting in ontogenetic switching of the alternative defences. This study illustrates how costs of adaptation operate in the evolution of life-history strategies under developmental constraints 相似文献
13.
Swanne P. Gordon David Reznick Jeff D. Arendt Allen Roughton Michelle N. Ontiveros Hernandez Paul Bentzen Andrés López-Sepulcre 《Proceedings. Biological sciences / The Royal Society》2015,282(1813)
Evolutionary analyses of population translocations (experimental or accidental) have been important in demonstrating speed of evolution because they subject organisms to abrupt environmental changes that create an episode of selection. However, the strength of selection in such studies is rarely measured, limiting our understanding of the evolutionary process. This contrasts with long-term, mark–recapture studies of unmanipulated populations that measure selection directly, yet rarely reveal evolutionary change. Here, we present a study of experimental evolution of male colour in Trinidadian guppies where we tracked both evolutionary change and individual-based measures of selection. Guppies were translocated from a predator-rich to a low-predation environment within the same stream system. We used a combination of common garden experiments and monthly sampling of individuals to measure the phenotypic and genetic divergence of male coloration between ancestral and derived fish. Results show rapid evolutionary increases in orange coloration in both populations (1 year or three generations), replicating the results of previous studies. Unlike previous studies, we linked this evolution to an individual-based analysis of selection. By quantifying individual reproductive success and survival, we show, for the first time, that males with more orange and black pigment have higher reproductive success, but males with more black pigment also have higher risk of mortality. The net effect of selection is thus an advantage of orange but not black coloration, as reflected in the evolutionary response. This highlights the importance of considering all components of fitness when understanding the evolution of sexually selected traits in the wild. 相似文献
14.
Tamar Lok Chris J. Hassell Theunis Piersma Roger Pradel Olivier Gimenez 《Ecology and evolution》2019,9(11):6176-6188
- To successfully perform their long‐distance migrations, migratory birds require sites along their migratory routes to rest and refuel. Monitoring the use of so‐called stopover and staging sites provides insights into (a) the timing of migration and (b) the importance of a site for migratory bird populations. A recently developed Bayesian superpopulation model that integrates mark–recapture data and ring density data enabled the estimation of stopover timing, duration, and population size. Yet, this model did not account for heterogeneity in encounter (p) and staying (?) probabilities.
- Here we extended the integrated superpopulation model by implementing finite mixtures to account for heterogeneity in p and ?. We used simulations and real data (from 2009–2016) on red knots Calidris canutus, mostly of the subspecies piersmai, staging in Bohai Bay, China, during spring migration to (a) show the importance of accounting for heterogeneity in encounter and staying probabilities to get unbiased estimates of stopover timing, duration, and numbers of migratory birds at staging sites and (b) get accurate stopover parameter estimates for a migratory bird species at a key staging site that is threatened by habitat destruction.
- Our simulations confirmed that heterogeneity in p affected stopover parameter estimates more than heterogeneity in ?, especially when most birds had low p. Bias was particularly severe when most birds had both low ? and p. Bias was largest for population size, intermediate for stopover duration and negligible for stopover timing.
- A total of 50,000–100,000 red knots were estimated to annually stop for 5–9 days in Bohai Bay between 10 and 30 May. This shows the key importance of this staging site for this declining species. There were no clear changes in stopover parameters over time, although stopover population size was substantially lower in 2016 than in preceding years.
- Our study shows the importance of accounting for heterogeneity in both encounter and staying probabilities for accurately estimating stopover duration and population size and provides an appropriate modeling framework.
15.
Duane Diefenbach Leslie Hansen Justin Bohling Cassandra Miller‐Butterworth 《Ecology and evolution》2015,5(21):4885-4895
In 1988–1989, 32 bobcats Lynx rufus were reintroduced to Cumberland Island (CUIS), Georgia, USA, from which they had previously been extirpated. They were monitored intensively for 3 years immediately post‐reintroduction, but no estimation of the size or genetic diversity of the population had been conducted in over 20 years since reintroduction. We returned to CUIS in 2012 to estimate abundance and effective population size of the present‐day population, as well as to quantify genetic diversity and inbreeding. We amplified 12 nuclear microsatellite loci from DNA isolated from scats to establish genetic profiles to identify individuals. We used spatially explicit capture–recapture population estimation to estimate abundance. From nine unique genetic profiles, we estimate a population size of 14.4 (SE = 3.052) bobcats, with an effective population size (Ne) of 5–8 breeding individuals. This is consistent with predictions of a population viability analysis conducted at the time of reintroduction, which estimated the population would average 12–13 bobcats after 10 years. We identified several pairs of related bobcats (parent‐offspring and full siblings), but ~75% of the pairwise comparisons were typical of unrelated individuals, and only one individual appeared inbred. Despite the small population size and other indications that it has likely experienced a genetic bottleneck, levels of genetic diversity in the CUIS bobcat population remain high compared to other mammalian carnivores. The reintroduction of bobcats to CUIS provides an opportunity to study changes in genetic diversity in an insular population without risk to this common species. Opportunities for natural immigration to the island are limited; therefore, continued monitoring and supplemental bobcat reintroductions could be used to evaluate the effect of different management strategies to maintain genetic diversity and population viability. The successful reintroduction and maintenance of a bobcat population on CUIS illustrates the suitability of translocation as a management tool for re‐establishing felid populations. 相似文献
16.
Christopher C. Strelioff Dhanasekaran Vijaykrishna Steven Riley Yi Guan J. S. Malik Peiris James O. Lloyd-Smith 《Proceedings. Biological sciences / The Royal Society》2013,280(1762)
Swine populations are known to be an important source of new human strains of influenza A, including those responsible for global pandemics. Yet our knowledge of the epidemiology of influenza in swine is dismayingly poor, as highlighted by the emergence of the 2009 pandemic strain and the paucity of data describing its origins. Here, we analyse a unique dataset arising from surveillance of swine influenza at a Hong Kong abattoir from 1998 to 2010. We introduce a state–space model that estimates disease exposure histories by joint inference from multiple modes of surveillance, integrating both virological and serological data. We find that an observed decrease in virus isolation rates is not due to a reduction in the regional prevalence of influenza. Instead, a more likely explanation is increased infection of swine in production farms, creating greater immunity to disease early in life. Consistent with this, we find that the weekly risk of exposure on farms equals or exceeds the exposure risk during transport to slaughter. We discuss potential causes for these patterns, including competition between influenza strains and shifts in the Chinese pork industry, and suggest opportunities to improve knowledge and reduce prevalence of influenza in the region. 相似文献
17.
- White‐nose syndrome (WNS) has caused the death of millions of bats, but the impacts have been more difficult to identify in western North America. Understanding how WNS, or other threats, impacts western bats may require monitoring other roosts, such as maternity roosts and night roosts, where bats aggregate in large numbers.
- Little brown bats (Myotis lucifugus) are experiencing some of the greatest declines from WNS. Estimating survival and understanding population dynamics can provide valuable data for assessing population declines and informing conservation efforts.
- We conducted a 5‐year mark–recapture study of two M. lucifugus roosts in Colorado. We used the robust design model to estimate apparent survival, fidelity, and abundance to understand population dynamics, and environmental covariates to understand how summer and winter weather conditions impact adult female survival. We compared the fidelity and capture probability of M. lucifugus between colonies to understand how bats use such roosts.
- Overwinter survival increased with the number of days with temperatures below freezing (β > 0.100, SE = 0.003) and decreased with the number of days with snow cover (β < −0.40, SE < 0.13). Adult female fidelity was higher at one maternity roost than the other. Overwinter and oversummer adult female survival was high (>0.90), and based on survival estimates and fungal‐swabbing results, we believe these populations have yet to experience WNS.
- Recapture of M. lucifugus using antennas that continuously read passive integrated transponder tags allows rigorous estimation of bat population parameters that can elucidate trends in abundance and changes in survival. Monitoring populations at summer roosts can provide unique population ecology data that monitoring hibernacula alone may not. Because few adult males are captured at maternity colonies, and juvenile males have low fidelity, additional effort should focus on understanding male M. lucifugus population dynamics.
18.
Information on migration patterns is critical to using no-take migratory corridors and marine reserves to protect the spawning stock of commercially exploited species. Both active and passive acoustic tracking methods quantified movement of commercially and ecologically important blue crabs in the White Oak River estuary, NC, USA. We targeted post-mating female crabs migrating down-estuary to oceanic spawning grounds. Crabs travelled approximately 14.1 km mainly in deeper channels and over 12–26 days from mating areas to spawning grounds. No crabs were detected migrating down-estuary in the autumn and only 30% were detected migrating down-estuary in spring. None of the crabs detected near spawning grounds were detected or recaptured back up-estuary, suggesting that they either (i) do not return to the estuary after a one to two week period in the spawning area or (ii) were captured by fishermen. The results from this study demonstrate that (1) acoustic transmitters coupled with passive acoustic receivers provided reliable and valuable data on migration patterns of mature female blue crabs and (2) mature female blue crabs are capable of migrating primarily within deep channels to spawning grounds shortly after insemination. 相似文献
19.
Freddie W. Leith Jennifer L. Grigg Barbara J. Barham Peter J. Barham Katrin Ludynia Cuan McGeorge Andile Mdluli Nola J. Parsons Lauren J. Waller Richard B. Sherley 《Ecology and evolution》2022,12(9)
In long‐lived species, reproductive skipping is a common strategy whereby sexually mature animals skip a breeding season, potentially reducing population growth. This may be an adaptive decision to protect survival, or a non‐adaptive decision driven by individual‐specific constraints. Understanding the presence and drivers of reproductive skipping behavior can be important for effective population management, yet in many species such as the endangered African penguin (Spheniscus demersus), these factors remain unknown. This study uses multistate mark‐recapture methods to estimate African penguin survival and breeding probabilities at two colonies between 2013 and 2020. Overall, survival (mean ± SE) was higher at Stony Point (0.82 ± 0.01) than at Robben Island (0.77 ± 0.02). Inter‐colony differences were linked to food availability; under decreasing sardine (Sardinops sagax) abundance, survival decreased at Robben Island and increased at Stony Point. Additionally, reproductive skipping was evident across both colonies; at Robben Island the probability of a breeder becoming a nonbreeder was ~0.22, versus ~0.1 at Stony Point. Penguins skipping reproduction had a lower probability of future breeding than breeding individuals; this lack of adaptive benefit suggests reproductive skipping is driven by individual‐specific constraints. Lower survival and breeding propensity at Robben Island places this colony in greater need of conservation action. However, further research on the drivers of inter‐colony differences is needed. 相似文献
20.
Paternal but not maternal age influences early-life performance of offspring in a long-lived seabird
Rémi Fay Christophe Barbraud Karine Delord Henri Weimerskirch 《Proceedings. Biological sciences / The Royal Society》2016,283(1828)
Variability in demographic traits between individuals within populations has profound implications for both evolutionary processes and population dynamics. Parental effects as a source of non-genetic inheritance are important processes to consider to understand the causes of individual variation. In iteroparous species, parental age is known to influence strongly reproductive success and offspring quality, but consequences on an offspring fitness component after independence are much less studied. Based on 37 years longitudinal monitoring of a long-lived seabird, the wandering albatross, we investigate delayed effects of parental age on offspring fitness components. We provide evidence that parental age influences offspring performance beyond the age of independence. By distinguishing maternal and paternal age effects, we demonstrate that paternal age, but not maternal age, impacts negatively post-fledging offspring performance. 相似文献