首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of IL-23 in the development of arthritis and bone metabolism was studied using systemic IL-23 exposure in adult mice via hydrodynamic delivery of IL-23 minicircle DNA in vivo and in mice genetically deficient in IL-23. Systemic IL-23 exposure induced chronic arthritis, severe bone loss, and myelopoiesis in the bone marrow and spleen, which resulted in increased osteoclast differentiation and systemic bone loss. The effect of IL-23 was partly dependent on CD4(+) T cells, IL-17A, and TNF, but could not be reproduced by overexpression of IL-17A in vivo. A key role in the IL-23-induced arthritis was made by the expansion and activity of myeloid cells. Bone marrow macrophages derived from IL-23p19(-/-) mice showed a slower maturation into osteoclasts with reduced tartrate-resistant acid phosphatase-positive cells and dentine resorption capacity in in vitro osteoclastogenesis assays. This correlated with fewer multinucleated osteoclast-like cells and more trabecular bone volume and number in 26-wk-old male IL-23p19(-/-) mice compared with control animals. Collectively, our data suggest that systemic IL-23 exposure induces the expansion of a myeloid lineage osteoclast precursor, and targeting IL-23 pathway may combat inflammation-driven bone destruction as observed in rheumatoid arthritis and other autoimmune arthritides.  相似文献   

2.
3.
4.
Osteoclast motility is thought to depend on rapid podosome assembly and disassembly. Both mu-calpain and m-calpain, which promote the formation and disassembly of focal adhesions, were observed in the podosome belt of osteoclasts. Calpain inhibitors disrupted the podosome belt, blocked the constitutive cleavage of the calpain substrates filamin A, talin, and Pyk2, which are enriched in the podosome belt, induced osteoclast retraction, and reduced osteoclast motility and bone resorption. The motility and resorbing activity of mu-calpain(-/-) osteoclast-like cells were also reduced, indicating that mu-calpain is required for normal osteoclast activity. Histomorphometric analysis of tibias from mu-calpain(-/-) mice revealed increased osteoclast numbers and decreased trabecular bone volume that was apparent at 10 weeks but not at 5 weeks of age. In vitro studies suggested that the increased osteoclast number in the mu-calpain(-/-) bones resulted from increased osteoclast survival, not increased osteoclast formation. Calcitonin disrupted the podosome ring, induced osteoclast retraction, and reduced osteoclast motility and bone resorption in a manner similar to the effects of calpain inhibitors and had no further effect on these parameters when added to osteoclasts pretreated with calpain inhibitors. Calcitonin inhibited the constitutive cleavage of a fluorogenic calpain substrate and transiently blocked the constitutive cleavage of filamin A, talin, and Pyk2 by a protein kinase C-dependent mechanism, demonstrating that calcitonin induces the inhibition of calpain in osteoclasts. These results indicate that calpain activity is required for normal osteoclast activity and suggest that calcitonin inhibits osteoclast bone resorbing activity in part by down-regulating calpain activity.  相似文献   

5.
IL-23 stimulates the differentiation and function of the Th17 subset of CD4(+) T cells and plays a critical role in chronic inflammation. The IL-23 receptor-encoding gene is also an inflammatory disease susceptibility gene. IL-23 shares a common subunit with IL-12, a T cell-dependent osteoclast formation inhibitor, and we found that IL-23 also dose-dependently inhibited osteoclastogenesis in a CD4(+) T lymphocyte-dependent manner. When sufficiently enriched, gammadelta T cells also mediated IL-23 inhibition. Like IL-12, IL-23 acted synergistically with IL-18 to block osteoclastogenesis but, unlike IL-12, IL-23 action depended on T cell GM-CSF production. IL-23 did not mediate IL-12 action although IL-12 induced its expression. Male mice lacking IL-23 (IL-23p19(-/-)) had approximately 30% lower bone mineral density and tibial trabecular bone mass (bone volume (BV)/total volume (TV)) than wild-type littermates at 12 wk and 40% lower BV/TV at 26 wk of age; male heterozygotes also had lower bone mass. Female IL-23p19(-/-) mice also had reduced BV/TV. IL-23p19(-/-) mice had no detectable osteoclast defect in trabecular bone but IL-23p19(-/-) had thinner growth plate hypertrophic and primary spongiosa zones (and, in females, less cartilage remnants) compared with wild type. This suggests increased osteoclast action at and below the growth plate, leading to reduced amounts of mature trabecular bone. Thus, IL-23 inhibits osteoclast formation indirectly via T cells in vitro. Under nonpathological conditions (unlike inflammatory conditions), IL-23 favors higher bone mass in long bones by limiting resorption of immature bone forming below the growth plate.  相似文献   

6.
7.
8.
Osteoprotegerin (OPG) is a secreted decoy receptor that recognizes RANKL, and blocks the interaction between RANK and RANKL, leading to the inhibition of osteoclast differentiation and activation. As OPG is a major inhibitor of bone resorption, we wondered whether OPG could modulate osteoclast survival/apoptosis. Osteoclast apoptosis was evaluated by adding various doses of OPG to human osteoclast cultures obtained from cord blood monocytes. Surprisingly, apoptosis decreased after adding the OPG. We hypothesized that OPG may block its second ligand, TRAIL, which is involved in osteoclast apoptosis. We showed that osteoclasts expressed TRAIL, and that TRAIL levels in the culture medium dose-dependently decreased in presence of OPG, as did the level of activated caspase-8 in osteoclasts. In addition, the expression of TRAIL by osteoclasts was not affected in the presence of OPG. Our findings suggest that OPG inhibits osteoclast apoptosis, at least in part, by binding and thus inhibiting endogenously produced TRAIL in human osteoclast cultures. TRAIL could be an autocrine factor for the regulation of osteoclast survival/apoptosis.  相似文献   

9.
10.
11.
Although brain development abnormalities and brain cancer predisposition have been reported in some Fanconi patients, the possible role of Fanconi DNA repair pathway during neurogenesis is unclear. We thus addressed the role of fanca and fancg, which are involved in the activation of Fanconi pathway, in neural stem and progenitor cells during brain development and adult neurogenesis. Fanca(-/-) and fancg(-/-) mice presented with microcephalies and a decreased neuronal production in developing cortex and adult brain. Apoptosis of embryonic neural progenitors, but not that of postmitotic neurons, was increased in the neocortex of fanca(-/-) and fancg(-/-) mice and was correlated with chromosomal instability. In adult Fanconi mice, we showed a reduced proliferation of neural progenitor cells related to apoptosis and accentuated neural stem cells exhaustion with ageing. In addition, embryonic and adult Fanconi neural stem cells showed a reduced capacity to self-renew in vitro. Our study demonstrates a critical role for Fanconi pathway in neural stem and progenitor cells during developmental and adult neurogenesis.  相似文献   

12.
Yen ML  Hsu PN  Liao HJ  Lee BH  Tsai HF 《PloS one》2012,7(6):e38048
Human osteoclast formation from mononuclear phagocyte precursors involves interactions between tumor necrosis factor (TNF) ligand superfamily members and their receptors. Recent evidence indicates that in addition to triggering apoptosis, the TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation. To understand TRAIL-mediated signal transduction mechanism in osteoclastogenesis, we demonstrated that TRAIL induces osteoclast differentiation via a Tumor necrosis factor receptor-associated factor 6 (TRAF-6)-dependent signaling pathway. TRAIL-induced osteoclast differentiation was significantly inhibited by treatment with TRAF-6 siRNA and TRAF6 decoy peptides in both human monocytes and murine RAW264.7 macrophage cell lines, as evaluated in terms of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and bone resorption activity. Moreover, TRAIL-induced osteoclast differentiation was also abolished in TRAF6 knockout bone marrow macrophages. In addition to induction of NFATc1, treatment of TRAIL also induced ubiquitination of TRAF6 in osteoclast differentiation. Thus, our data demonstrate that TRAIL induces osteoclastic differentiation via a TRAF-6 dependent signaling pathway. This study suggests TRAF6-dependent signaling may be a central pathway in osteoclast differentiation, and that TNF superfamily molecules other than RANKL may modify RANK signaling by interaction with TRAF6-associated signaling.  相似文献   

13.
Accelerated osteoclastic bone resorption has a central role in the pathogenesis of osteoporosis and other bone diseases. Identifying the molecular pathways that regulate osteoclast activity provides a key to understanding the causes of these diseases and to the development of new treatments. Here we show that mice with inactivation of cannabinoid type 1 (CB1) receptors have increased bone mass and are protected from ovariectomy-induced bone loss. Pharmacological antagonists of CB1 and CB2 receptors prevented ovariectomy-induced bone loss in vivo and caused osteoclast inhibition in vitro by promoting osteoclast apoptosis and inhibiting production of several osteoclast survival factors. These studies show that the CB1 receptor has a role in the regulation of bone mass and ovariectomy-induced bone loss and that CB1- and CB2-selective cannabinoid receptor antagonists are a new class of osteoclast inhibitors that may be of value in the treatment of osteoporosis and other bone diseases.  相似文献   

14.
Adiponectin, an adipose-derived hormone, exhibits various biological functions, such as increasing insulin sensitivity, protecting hypertension, and suppression of atherosclerosis, liver fibrosis, and tumor growth. Here, we report the role of adiponectin on bone metabolism. C57BL/6J mice were treated with adenovirus expressing lacZ or adiponectin, and their bones were analyzed by three-dimensional microcomputed tomography. Adiponectin-adenovirus treatment increased trabecular bone mass, accompanied by decreased number of osteoclasts and levels of plasma NTx, a bone-resorption marker. In vitro studies showed that adiponectin inhibited M-CSF- and RANKL-induced differentiation of mouse bone marrow macrophages and human CD14-positive mononuclear cells into osteoclasts and also suppressed the bone-resorption activity of osteoclasts. Furthermore, adiponectin enhanced mRNA expression of alkaline phosphatase and mineralization activity of MC3T3-E1 osteoblasts. Our results indicate that adiponectin exerts an activity to increase bone mass by suppressing osteoclastogenesis and by activating osteoblastogenesis, suggesting that adiponectin manipulation could be therapeutically beneficial for patients with osteopenia.  相似文献   

15.
16.
RANKL-stimulation of osteoclast precursors results in up-regulation of genes involved in the process of differentiation and activation. In this report we describe the expression and functional characterization of Sorting Nexin 10 (snx10). Snx10 belongs to the sorting nexin (SNX) family, a diverse group of proteins with a common feature: the PX domain, which is involved in membrane trafficking and cargo sorting in endosomes. Snx10 is strongly up-regulated during RANKL-induced osteoclast differentiation in vitro and expressed in osteoclasts in vivo. qPCR analysis confirmed a significant increase in the expression of snx10 in in vitro-derived osteoclasts, as well as in femur and calvaria. Immunohistochemical analysis of mouse embryo sections showed expression in long bone, calvariae, and developing teeth. The expression was limited to cells that also expressed TRAP, demonstrating osteoclastic localization. Confocal immunofluorescence and subcellular fractionation analysis revealed Snx10 localization in the nucleus and in the endoplasmic reticulum (ER). To study a possible role for snx10 in osteoclast differentiation and function we silenced snx10 expression and found that snx10 silencing inhibited RANKL-induced osteoclast formation and osteoclast resorption on hydroxyapatite. Silencing also inhibited TRAP secretion. Taken together, these results confirm that snx10 is expressed in osteoclasts and is required for osteoclast differentiation and activity in vitro. Since inhibition of vesicular trafficking is essential for osteoclast formation and activity and SNX10 is involved in intracellular vesicular trafficking, these studies may identify a new candidate gene involved in the development of human bone diseases including osteoporosis.  相似文献   

17.
Ultraviolet (UV) radiation is a mutagen of major clinical importance in humans. UV-induced damage activates multiple signaling pathways, which initiate DNA repair, cell cycle arrest and apoptosis. To better understand these pathways, we studied the responses to UV-C light (254 nm) of germ cells in Caenorhabditis elegans. We found that UV activates the same cellular responses in worms as in mammalian cells. Both UV-induced apoptosis and cell cycle arrest were completely dependent on the p53 homolog CEP-1, the checkpoint proteins HUS-1 and CLK-2, and the checkpoint kinases CHK-2 and ATL-1 (the C. elegans homolog of ataxia telangiectasia and Rad3-related); ATM-1 (ataxia telangiectasia mutated-1) was also required, but only at low irradiation doses. Importantly, mutation of genes encoding nucleotide excision repair pathway components severely disrupted both apoptosis and cell cycle arrest, suggesting that these genes not only participate in repair, but also signal the presence of damage to downstream components of the UV response pathway that we delineate here. Our study suggests that whereas DNA damage response pathways are conserved in metazoans in their general outline, there is significant evolution in the relative importance of individual checkpoint genes in the response to specific types of DNA damage.  相似文献   

18.
Macrophage death is an important feature of atherosclerosis, but the cellular mechanism for this process is largely unknown. There is increasing interest in cellular free cholesterol (FC) excess as an inducer of lesional macrophage death because macrophages accumulate large amounts of FC in vivo, and FC loading of macrophages in culture causes cell death. In this study, a cell culture model was used to explore the cellular mechanisms involved in the initial stages of FC-induced macrophage death. After 9 h of FC loading, some of the macrophages exhibited externalization of phosphatidylserine and DNA fragmentation, indicative of an apoptotic mechanism. Incubation of the cells with Z-DEVD-fluoromethylketone blocked these events, indicating dependence upon effector caspases. Macrophages from mice with mutations in either Fas or Fas ligand (FasL) demonstrated substantial resistance to FC-induced apoptosis, and FC-induced death in wild-type macrophages was blocked by an anti-FasL antibody. FC loading had no effect on the expression of cell-surface Fas but caused a small yet reproducible increase in cell-surface FasL. To determine the physiological significance of this finding, unloaded and FC-loaded Fas-deficient macrophages, which can only present FasL, were compared for their ability to induce apoptosis in secondarily added Fas-bearing macrophages. The FC-loaded macrophages were much more potent inducers of apoptosis than the unloaded macrophages, and this effect was almost completely blocked by an inhibitory anti-FasL antibody. In summary, during the early stages of FC loading of macrophages, a fraction of cells exhibited biochemical changes that are indicative of apoptosis. An important part of this event is FC-induced activation of FasL that leads to Fas-mediated apoptosis. In light of recent in vivo findings that show that apoptotic macrophages in atherosclerotic lesions express both Fas and FasL, we present a cellular model of Fas-mediated death in lesional foam cells.  相似文献   

19.
It has been suggested that pituitary hormone might be associated with bone metabolism. To investigate the role of thyroid-stimulating hormone (TSH) in bone metabolism, we designed the present study as follows. After weaning, TSH receptor (TSHR) null mice (Tshr/) were randomly divided into a thyroxine treatment group (n=10) or non-treatment group (n=10); the treatment group received a dose of desiccated thyroid extract at 100 ppm daily for 5 weeks. Age-matched wild-type (Tshr+/+, n=10) and heterozygote mice (Tshr+/, n=10) served as controls. After 5 weeks, the animals were sacrificed, and the femurs were collected for histomorphometrical and biomechanical analyses. In addition, the effect of TSH on osteoclastogenesis was examined in the RAW264.7 osteoclast cell line. We found that compared with Tshr+/+ mice, Tshr/ and Tshr+/ mice had lower bone strength. The histomorphometric results showed that trabecular bone volume, osteoid surface, osteoid thickness and osteoblast surface were significantly decreased, whereas the osteoclast surface was significantly increased in both Tshr/ and Tshr+/ mice compared with Tshr+/+ mice. Bone resorption and formation in Tshr/ mice were further enhanced by thyroxine replacement. bTSH inhibited osteoclast differentiation in vitro, as demonstrated by reduced development of TRAP-positive cells and down-regulation of differentiation markers, including tartrate-resistant acid phosphatase, matrix metallo-proteinase-9 and cathepsin K in RAW264.7 cells. Our results confirm that TSH increased bone volume and improved bone microarchitecture and strength at least partly by inhibiting osteoclastogenesis.  相似文献   

20.
Estrogen deficiency in menopause is a major cause of osteoporosis in women. Estrogen acts to maintain the appropriate ratio between bone-forming osteoblasts and bone-resorbing osteoclasts in part through the induction of osteoclast apoptosis. Recent studies have suggested a role for Fas ligand (FasL) in estrogen-induced osteoclast apoptosis by an autocrine mechanism involving osteoclasts alone. In contrast, we describe a paracrine mechanism in which estrogen affects osteoclast survival through the upregulation of FasL in osteoblasts (and not osteoclasts) leading to the apoptosis of pre-osteoclasts. We have characterized a cell-type-specific hormone-inducible enhancer located 86 kb downstream of the FasL gene as the target of estrogen receptor-alpha induction of FasL expression in osteoblasts. In addition, tamoxifen and raloxifene, two selective estrogen receptor modulators that have protective effects in bone, induce apoptosis in pre-osteoclasts by the same osteoblast-dependent mechanism. These results demonstrate that estrogen protects bone by inducing a paracrine signal originating in osteoblasts leading to the death of pre-osteoclasts and offer an important new target for the prevention and treatment of osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号