首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To investigate perceptual and neural correlates of future self-appraisals as a function of temporal distance, event-related potentials (ERPs) were recorded while participants (11 women, eight men) made judgments about the applicability of trait adjectives to their near future selves (i.e., one month from now) and their distant future selves (i.e., three years from now). Behavioral results indicated people used fewer positive adjectives, more negative adjectives, recalled more specific events coming to mind and felt more psychologically connected to the near future self than the distant future self. Electrophysiological results demonstrated that negative trait adjectives elicited more positive ERP deflections than did positive trait adjectives in the interval between 550 and 800 ms (late positive component) within the near future self condition. However, within the same interval, there were no significant differences between negative and positive traits adjectives in the distant future self condition. The results suggest that negative emotional processing in future self-appraisals is modulated by temporal distance, consistent with predictions of construal level theory.  相似文献   

3.
4.
Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs) to examine sex differences in N1 and N2 components (reflecting early emotional reactivity) and P3 and LPP components (reflecting emotion regulation). N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to “increase,” “decrease,” and “maintain” their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity) to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the “increase” instruction, and women displayed greater LPP amplitudes than men to the “increase” instruction. There were no differences to the “decrease” instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.  相似文献   

5.
Previous studies have shown that early posterior components of event-related potentials (ERPs) are modulated by facial expressions. The goal of the current study was to investigate individual differences in the recognition of facial expressions by examining the relationship between ERP components and the discrimination of facial expressions. Pictures of 3 facial expressions (angry, happy, and neutral) were presented to 36 young adults during ERP recording. Participants were asked to respond with a button press as soon as they recognized the expression depicted. A multiple regression analysis, where ERP components were set as predictor variables, assessed hits and reaction times in response to the facial expressions as dependent variables. The N170 amplitudes significantly predicted for accuracy of angry and happy expressions, and the N170 latencies were predictive for accuracy of neutral expressions. The P2 amplitudes significantly predicted reaction time. The P2 latencies significantly predicted reaction times only for neutral faces. These results suggest that individual differences in the recognition of facial expressions emerge from early components in visual processing.  相似文献   

6.
The present study examined the neural mechanisms of attention modulation on timing using ERP and sLORETA measurements in a dual-task paradigm. We parametrically varied the attention to the durations of a 1000-Hz pure tone and further localized the cortical regions that were sensitive to the attention modulation on timing. Results demonstrated that the attention modulation might happen at early stage, approximately 200 ms after stimulus presentation. The P2 component at frontal area served as an early neural correlate of attention effects on timing. More importantly, the contingent negative variation (CNV) appeared at fronto-central area was sensitive to the attention effect. In addition, the supplementary motor area (SMA) was assumed to be one of the key regions for selectively attending to and estimating time. These findings provide temporal and spatial correlates of attention-modulated time processing and potentially help to investigate the neural mechanisms of patients with time perception deficits.  相似文献   

7.
The neural correlates of rejection in bargaining situations when proposing a fair or unfair offer are not yet well understood. We measured neural responses to rejection and acceptance of monetary offers with event-related potentials (ERPs) in mid-adolescents (14–17 years) and early adults (19–24 years). Participants played multiple rounds of the Ultimatum Game as proposers, dividing coins between themselves and a second player (responder) by making a choice between an unfair distribution (7 coins for proposer and 3 for responder; 7/3) and one of two alternatives: a fair distribution (5/5) or a hyperfair distribution (3/7). Participants mostly made fair offers (5/5) when the alternative was unfair (7/3), but made mostly unfair offers (7/3) when the alternative was hyperfair (3/7). When participants’ fair offers (5/5; alternative was 7/3) were rejected this was associated with a larger Medial Frontal Negativity (MFN) compared to acceptance of fair offers and rejection of unfair offers (7/3; alternative was 3/7). Also, the MFN was smaller after acceptance of unfair offers (7/3) compared to rejection. These neural responses did not differ between adults and mid-adolescents, suggesting that the MFN reacts as a neural alarm system to social prediction errors which is already prevalent during adolescence.  相似文献   

8.
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.  相似文献   

9.
During sentence production, linguistic information (semantics, syntax, phonology) of words is retrieved and assembled into a meaningful utterance. There is still debate on how we assemble single words into more complex syntactic structures such as noun phrases or sentences. In the present study, event-related potentials (ERPs) were used to investigate the time course of syntactic planning. Thirty-three volunteers described visually animated scenes using naming formats varying in syntactic complexity: from simple words (‘W’, e.g., “triangle”, “red”, “square”, “green”, “to fly towards”), to noun phrases (‘NP’, e.g., “the red triangle”, “the green square”, “to fly towards”), to a sentence (‘S’, e.g., “The red triangle flies towards the green square.”). Behaviourally, we observed an increase in errors and corrections with increasing syntactic complexity, indicating a successful experimental manipulation. In the ERPs following scene onset, syntactic complexity variations were found in a P300-like component (‘S’/‘NP’>‘W’) and a fronto-central negativity (linear increase with syntactic complexity). In addition, the scene could display two actions - unpredictable for the participant, as the disambiguation occurred only later in the animation. Time-locked to the moment of visual disambiguation of the action and thus the verb, we observed another P300 component (‘S’>‘NP’/‘W’). The data show for the first time evidence of sensitivity to syntactic planning within the P300 time window, time-locked to visual events critical of syntactic planning. We discuss the findings in the light of current syntactic planning views.  相似文献   

10.
The present study used event-related potentials (ERPs) to investigate deficits in error-monitoring by college students with schizotypal traits. Scores on the Schizotypal Personality Questionnaire (SPQ) were used to categorize the participants into schizotypal-trait (n = 17) and normal control (n = 20) groups. The error-monitoring abilities of the participants were evaluated using the Simon task, which consists of congruent (locations of stimulus and response are the same) and incongruent (locations of stimulus and response are different) conditions. The schizotypal-trait group committed more errors on the Simon task and exhibited smaller error-related negativity (ERN) amplitudes than did the control group. Additionally, ERN amplitude measured at FCz was negatively correlated with the error rate on the Simon task in the schizotypal-trait group but not in the control group. The two groups did not differ in terms of correct-related potentials (CRN), error positivity (Pe) and correct-related positivity (Pc) amplitudes. The present results indicate that individuals with schizotypal traits have deficits in error-monitoring and that reduced ERN amplitudes may represent a biological marker of schizophrenia.  相似文献   

11.
Adult subjects were asked to recognize a hierarchical visual stimulus (a letter) while their attention was drawn to either the global or local level of the stimulus. Event-related potentials (ERP) and behavioral indices (reaction time and percentage of correct responses) were measured. An analysis of behavioral indices showed the global level precedence effect, i.e. the increase in a small letter recognition time when this letter is a part of incongruent stimulus. An analysis of ERP components showed level-related (global vs. local) differences in the timing and topography of the brain organization of perceptual processing and regulatory mechanisms of attention. Visual recognition at the local level was accompanied by (1) stronger activation of the visual associative areas (P z and T 6) at the stage of sensory features analysis (P1 ERP component), (2) involvement mainly of inferior temporal cortices of the right hemisphere (T 6) at the stage of sensory categorization (P2 ERP component), and (3) involvement of prefrontal cortex of the right hemisphere at the stage of selection of the relevant features of the target (N2 ERP component). Visual recognition at the global level was accompanied by (1) pronounced involvement of mechanisms of early sensory selection (N1 ERP component), (2) prevailing activation of parietal cortex of the right hemisphere (P 4) at the stage of sensory categorization (P2 ERP component) as well as at the stage of the target stimulus identification (P3 ERP component). We suggested that perception of the hierarchical stimulus at the global level is related primarily to the analysis of its spatial features in the dorsal visual system whereas the perception at the local level primarily involves an analysis of the object-related features in the ventral visual system.  相似文献   

12.
13.
The effect of cannabis on emotional processing was investigated using event-related potential paradigms (ERPs). ERPs associated with emotional processing of cannabis users, and non-using controls, were recorded and compared during an implicit and explicit emotional expression recognition and empathy task. Comparisons in P3 component mean amplitudes were made between cannabis users and controls. Results showed a significant decrease in the P3 amplitude in cannabis users compared to controls. Specifically, cannabis users showed reduced P3 amplitudes for implicit compared to explicit processing over centro-parietal sites which reversed, and was enhanced, at fronto-central sites. Cannabis users also showed a decreased P3 to happy faces, with an increase to angry faces, compared to controls. These effects appear to increase with those participants that self-reported the highest levels of cannabis consumption. Those cannabis users with the greatest consumption rates showed the largest P3 deficits for explicit processing and negative emotions. These data suggest that there is a complex relationship between cannabis consumption and emotion processing that appears to be modulated by attention.  相似文献   

14.
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160–200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360–400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.  相似文献   

15.
The phenomenon of social exclusion can be investigated by using a virtual ball-tossing game called Cyberball. In neuroimaging studies, structures have been identified which are activated during social exclusion. But to date the underlying mechanisms are not fully disclosed. In previous electrophysiological studies it was shown that the P3 complex is sensitive to exclusion manipulations in the Cyberball paradigm and that there is a correlation between P3 amplitude and self-reported social pain. Since this posterior event-related potential (ERP) was widely investigated using the oddball paradigm, we directly compared the ERP effects elicited by the target (Cyberball: “ball possession”) and non-target (Cyberball: “ball possession of a co-player) events in both paradigms. Analyses mainly focused on the effect of altered stimulus probabilities of the target and non-target events between two consecutive blocks of the tasks. In the first block, the probability of the target and non-target event was 33% (Cyberball: inclusion), in the second block target probability was reduced to 17%, and accordingly, non-target probability was increased to 66% (Cyberball: exclusion). Our results indicate that ERP amplitude differences between inclusion and exclusion are comparable to ERP amplitude effects in a visual oddball task. We therefore suggest that ERP effects–especially in the P3 range–in the Oddball and Cyberball paradigm rely on similar mechanisms, namely the probability of target and non-target events. Since the simulation of social exclusion (Cyberball) did not trigger a unique ERP response, the idea of an exclusion-specific neural alarm system is not supported. The limitations of an ERP-based approach will be discussed.  相似文献   

16.
Social exclusion is a complex social phenomenon with powerful negative consequences. Given the impact of social exclusion on mental and emotional health, an understanding of how perceptions of social exclusion develop over the course of a social interaction is important for advancing treatments aimed at lessening the harmful costs of being excluded. To date, most scientific examinations of social exclusion have looked at exclusion after a social interaction has been completed. While this has been very helpful in developing an understanding of what happens to a person following exclusion, it has not helped to clarify the moment-to-moment dynamics of the process of social exclusion. Accordingly, the current protocol was developed to obtain an improved understanding of social exclusion by examining the patterns of event-related brain activation that are present during social interactions. This protocol allows greater precision and sensitivity in detailing the social processes that lead people to feel as though they have been excluded from a social interaction. Importantly, the current protocol can be adapted to include research projects that vary the nature of exclusionary social interactions by altering how frequently participants are included, how long the periods of exclusion will last in each interaction, and when exclusion will take place during the social interactions. Further, the current protocol can be used to examine variables and constructs beyond those related to social exclusion. This capability to address a variety of applications across psychology by obtaining both neural and behavioral data during ongoing social interactions suggests the present protocol could be at the core of a developing area of scientific inquiry related to social interactions.  相似文献   

17.
In this study, Functional magnetic resonance imaging (fMRI) was conducted to investigate the mechanisms by which the brain activity in a complex social comparison context. One true subject and two pseudo-subjects were asked to complete a simple number estimate task at the same time which including upward and downward comparisons. Two categories of social comparison rewards (fair and unfair rewards distributions) were mainly presented by comparing the true subject with other two pseudo-subjects. Particularly, there were five conditions of unfair distribution when all the three subjects were correct but received different rewards. Behavioral data indicated that the ability to self-regulate was important in satisfaction judgment when the subject perceived an unfair reward distribution. fMRI data indicated that the interaction between the ventral striatum and the prefrontal cortex was important in self-regulation under specific conditions in complex social comparison, especially under condition of reward processing when there were two different reward values and the subject failed to exhibit upward comparison.  相似文献   

18.
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.  相似文献   

19.
This article considers categorical perception (CP) as a crucial process involved in all sort of communication throughout the biological hierarchy, i.e. in all of biosemiosis. Until now, there has been consideration of CP exclusively within the functional cycle of perception–cognition–action and it has not been considered the possibility to extend this kind of phenomena to the mere physiological level. To generalise the notion of CP in this sense, I have proposed to distinguish between categorical perception (CP) and categorical sensing (CS) in order to extend the CP framework to all communication processes in living systems, including intracellular, intercellular, metabolic, physiological, cognitive and ecological levels. The main idea is to provide an account that considers the heterarchical embeddedness of many instances of CP and CS. This will take me to relate the hierarchical nature of categorical sensing and perception with the equally hierarchical issues of the “binding problem”, “triadic causality”, the “emergent interpretant” and the increasing semiotic freedom observed in biological and cognitive systems.
Luis Emilio BruniEmail:
  相似文献   

20.

Background

While much is known about the role of prefrontal cortex (PFC) in working memory (WM) deficits of schizophrenia, the nature of the relationship between cognitive components of WM and brain activation patterns remains unclear. We aimed to elucidate the neural correlates of the maintenance component of verbal WM by examining correct and error trials with event-related fMRI.

Methodology/Findings

Twelve schizophrenia patients (SZ) and thirteen healthy control participants (CO) performed a phonological delayed-matching-to-sample-task in which a memory set of three nonsense words was presented, followed by a 6-seconds delay after which a probe nonsense word appeared. Participants decided whether the probe matched one of the targets, and rated the confidence of their decision. Blood-oxygen-level-dependent (BOLD) activity during WM maintenance was analyzed in relation to performance (correct/error) and confidence ratings. Frontal and parietal regions exhibited increased activation on correct trials for both groups. Correct and error trials were further segregated into true memory, false memory, guess, and true error trials. True memory trials were associated with increased bilateral activation of frontal and parietal regions in both groups but only CO showed deactivation in PFC. There was very little maintenance-related cortical activity during guess trials. False memory was associated with increased left frontal and parietal activation in both groups.

Conclusion

These findings suggest that a wider network of frontal and parietal regions support WM maintenance in correct trials compared with error trials in both groups. Furthermore, a more extensive and dynamic pattern of recruitment of the frontal and parietal networks for true memory was observed in healthy controls compared with schizophrenia patients. These results underscore the value of parsing the sources of memory errors in fMRI studies because of the non-linear nature of the brain-behavior relationship, and suggest that group comparisons need to be interpreted in more specific behavioral contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号