首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular basis of fibrin clot elasticity   总被引:3,自引:0,他引:3  
Blood clots must be stiff to stop hemorrhage yet elastic to buffer blood's shear forces. Upsetting this balance results in clot rupture and life-threatening thromboembolism. Fibrin, the main component of a blood clot, is formed from molecules of fibrinogen activated by thrombin. Although it is well known that fibrin possesses considerable elasticity, the molecular basis of this elasticity is unknown. Here, we use atomic force microscopy (AFM) and steered molecular dynamics (SMD) to probe the mechanical properties of single fibrinogen molecules and fibrin protofibrils, showing that the mechanical unfolding of their coiled-coil alpha helices is characterized by a distinctive intermediate force plateau in the systems' force-extension curve. We relate this plateau force to a stepwise unfolding of fibrinogen's coiled alpha helices and of its central domain. AFM data show that varying pH and calcium ion concentrations alters the mechanical resilience of fibrinogen. This study provides direct evidence for the coiled alpha helices of fibrinogen to bring about fibrin elasticity.  相似文献   

2.
The effect of tissue plasminogen activator (TPA) or urokinase on the specific binding of human Glu-plasminogen to fibrin I formed in plasma by clotting with Reptilase was studied using 125I-plasminogen and 131I-fibrinogen. In the absence of TPA, small amounts of plasminogen were bound to fibrin I. TPA induced binding of plasminogen to plasma fibrin I that was dependent upon the concentrations of TPA and plasminogen as well as upon the time of incubation. Plasminogen binding occurred in association with fibrin clot lysis and the formation in the clot supernatant of alpha 2-plasmin inhibitor-plasmin complexes. Urokinase also induced binding of plasminogen to plasma fibrin I that was concentration- and time-dependent. The molecular form of plasminogen bound to the fibrin I plasma clot was identified as Glu-plasminogen by dodecyl sulfate-polyacrylamide gel electrophoresis and by fast performance liquid chromatography. Further studies demonstrated that fibrin I formed from fibrinogen that had been progressively degraded by plasmin-bound Glu-plasminogen. The mole ratio of plasminogen bound increased with the time of plasmin digestion. Glu-plasminogen did not bind to fibrin I formed from fibrinogen progressively digested by human leukocyte elastase, thereby demonstrating the specificity of plasmin. These studies demonstrate that plasminogen activators regulate the binding of Glu-plasminogen to fibrin I by catalyzing plasmin-mediated modifications in the fibrin substrate.  相似文献   

3.
We describe a method to hold living cells in place that ordinarily do not adhere to glass coverslips. The method, developed for insect spermatocytes but with application to other cell types, consists of embedding cells in a fibrin clot that forms after the enzyme thrombin cleaves the blood protein fibrinogen. The method permits continuous observation of living cells as they are treated with and recover from drug or other treatments: when held in the clot the living cells remain in place and keep their shapes when perfused with drugs that ordinarily cause drastic shape changes, and they remain in place and keep their shapes through lysis/fixation procedures. We describe how to place live cells in a fibrin clot and how subsequently to perfuse them.  相似文献   

4.
In a previous report we showed that plasmin-dependent lysis of a fibrin polymer, produced from purified components, was totally blocked if annexin II heterotetramer (AIIt) was present during fibrin polymer formation. Here, we show that AIIt inhibits fibrin clot lysis by stimulation of plasmin autodegradation, which results in a loss of plasmin activity. Furthermore, the C-terminal lysine residues of its p11 subunit play an essential role in the inhibition of fibrin clot lysis by AIIt. We also found that AIIt binds to fibrin with a K(d) of 436 nm and a stoichiometry of about 0.28 mol of AIIt/mol of fibrin monomer. The binding of AIIt to fibrin was not dependent on the C-terminal lysines of the p11 subunit. Furthermore, in the presence of plasminogen, the binding of AIIt to fibrin was increased to about 1.3 mol of AIIt/mol of fibrin monomer, suggesting that AIIt and plasminogen do not compete for identical sites on fibrin. Immunohistochemical identification of p36 and p11 subunits of AIIt in a pathological clot provides important evidence for its role as a physiological fibrinolytic regulator. These results suggest that AIIt may play a key role in the regulation of plasmin activity on the fibrin clot surface.  相似文献   

5.
THE human plasma protein, fibrinogen, is a disulphide bonded1 dimer2, each unit containing an Aα, Bβ and 8 chain*, interconnected by disulphide bridges3. Thrombin (E.C.3.4.4.-13) releases fibrinopeptides A and B from the Aα and Bβ chains respectively4 to form fibrin monomer (α2β2γ2) ? which polymerizes to form fibrin polymer or clotted fibrin. This polymer, following factor XIII (plasma transglutaminase, fibrin stabilizing factor) mediated crosslinking among the α chains and among the γ chains5, is one of the major and initiating constituents of a thrombus. Fibrinolytic activators, for example, streptokinase (SK) and urokinase (UK), are of thrombolytic value as they convert the thrombus plasminogen to plasmin (E.C.3.4.4.14) which by fibrinolytic action dissolves the thrombus. Whereas the interaction of fibrinogen and plasmin has been well studied6–9, little is known concerning the mechanism of plasmin mediated fibrin clot lysis. I report here on the mechanism of non-cross-linked fibrin clot solubilization in near physiological conditions.  相似文献   

6.
Current clinically approved thrombolytic agents have significant drawbacks including reocclusion and bleeding complications. To address these problems, a staphylokinase-based thrombolytic agent equipped with antithrombotic activity from hirudin was engineered. Because the N termini for both staphylokinase and hirudin are required for their activities, a Y-shaped molecule is generated using engineered coiled-coil sequences as the heterodimerization domain. This agent, designated HE-SAKK, was produced and assembled from Bacillus subtilis via secretion using an optimized co-cultivation approach. After a simple in vitro treatment to reshuffle the disulfide bonds of hirudin, both staphylokinase and hirudin in HE-SAKK showed biological activities comparable with their parent molecules. This agent was capable of targeting thrombin-rich fibrin clots and inhibiting clot-bound thrombin activity. The time required for lysing 50% of fibrin clot in the absence or presence of fibrinogen was shortened 21 and 30%, respectively, with HE-SAKK in comparison with staphylokinase. In plasma clot studies, the HE-SAKK concentration required to achieve a comparable 50% clot lysis time was at least 12 times less than that of staphylokinase. Therefore, HE-SAKK is a promising thrombolytic agent with the capability to target thrombin-rich fibrin clots and to minimize clot reformation during fibrinolysis.  相似文献   

7.
THERE are two principal theories of the mechanism of thrombus dissolution by the fibrinolytic system. Alkjaersig et al.1 suggested that as fibrin polymerizes, plasminogen is adsorbed preferentially to the fibrin and is available in large quantities within a thrombus which is comparatively free of antiplasmin. When an activator enters the circulation it diffuses into the clot converting the plasminogen to plasmin in situ and so promotes lysis. Ambrus and Markus2, however, proposed that when plasmin forms in the circulation naturally or during infusion of an activator it is normally bound to the excess antiplasmin present in blood. They suggested that this plasmin/antiplasmin complex is reversible and dissociates in the presence of fibrin, its preferred substrate, so allowing the plasmin to bring about fibrin dissolution by “external lysis”. Neither of these theories, however, is supported by an observed phenomena.  相似文献   

8.
Photoaffinity labeling of human plasmin using 4-azidobenzoylglycyl-L-lysine inhibits clot lysis activity, while the activity toward the active-site titrant, p-nitrophenyl-p'-guanidinobenzoate, or alpha-casein are maintained. Photoaffinity labeling of native Glu-plasminogen with the same reagent causes incorporation of approximately 1.5 mol label per mol plasminogen. This labeled plasminogen can be activated to plasmin by either urokinase or streptokinase. The resulting plasmin has full clot lysis activity and can be subsequently photoaffinity labeled with a loss of clot lysis activity. The rate of activation of labeled plasminogen by urokinase is increased relative to that of native plasminogen. epsilon-Aminocaproic acid blocks incorporation of photoaffinity label into both plasminogen and plasmin, indicating that the labeling is specific to the lysine-binding sites. The labels are located in the kringle 1+2+3 fragment in either photoaffinity-labeled plasminogen or plasmin. These results indicate that the specific lysine-binding site blocked in plasmin acts in concert with the active-site in binding and using fibrin as a substrate. This clot lysis regulating site is not available for labeling in plasminogen, but is exposed or changed upon activation to plasmin. The different lysine-binding sites labeled in plasminogen may regulate the conformation of the molecule as evidence by an enhanced rate of activation to plasmin.  相似文献   

9.
The relative fibrin-binding, fibrinolytic and fibrinogenolytic properties of single-chain pro-urokinase, an inactive proenzyme form of human urokinase purified from cultured human kidney cells, and urokinase were compared. The affinity of single-chain pro-urokinase for fibrin was much higher than that of urokinase. In Vitro thrombolytic studies showed that single-chain pro-urokinase is approximately three times more potent in fibrinolysis than urokinase and that it does not degrade fibrinogen in the plasma at a concentration, at which complete plasma clot lysis takes place; whereas, urokinase extensively degrades the fibrinogen in the plasma. These specific, potent thrombolytic properties of single-chain pro-urokinase seem to be due to its high affinity for fibrin and to its conversion from the inactive single-chain form to the active two-chain form on the thrombus by the catalytic amount of plasmin generated during coagulation. This single-chain pro-urokinase obtained from human kidney cells by tissue culture should prove advantageous than urokinase in thrombolytic therapy.  相似文献   

10.
《Biophysical journal》2022,121(17):3271-3285
Thrombosis, resulting in occlusive blood clots, blocks blood flow to downstream organs and causes life-threatening conditions such as heart attacks and strokes. The administration of tissue plasminogen activator (t-PA), which drives the enzymatic degradation (fibrinolysis) of these blood clots, is a treatment for thrombotic conditions, but the use of these therapeutics is often limited due to the time-dependent nature of treatment and their limited success. We have shown that clot contraction, which is altered in prothrombotic conditions, influences the efficacy of fibrinolysis. Clot contraction results in the volume shrinkage of blood clots, with the redistribution and densification of fibrin and platelets on the exterior of the clot and red blood cells in the interior. Understanding how these key structural changes influence fibrinolysis can lead to improved diagnostics and patient care. We used a combination of mathematical modeling and experimental methodologies to characterize the process of exogenous delivery of t-PA (external fibrinolysis). A three-dimensional (3D) stochastic, multiscale model of external fibrinolysis was used to determine how the structural changes that occur during the process of clot contraction influence the mechanism(s) of fibrinolysis. Experiments were performed based on modeling predictions using pooled human plasma and the external delivery of t-PA to initiate lysis. Analysis of fibrinolysis simulations and experiments indicate that fibrin densification makes the most significant contribution to the rate of fibrinolysis compared with the distribution of components and degree of compaction (p < 0.0001). This result suggests the possibility of a certain fibrin density threshold above which t-PA effective diffusion is limited. From a clinical perspective, this information can be used to improve on current therapeutics by optimizing timing and delivery of lysis agents.  相似文献   

11.
Blood clot formation is crucial to maintain normal physiological conditions but at the same time involved in many diseases. The mechanical properties of the blood clot are important for its functioning but complicated due to the many processes involved. The main structural component of the blood clot is fibrin, a fibrous network that forms within the blood clot, thereby increasing its mechanical rigidity. A constitutive model for the maturing fibrin network is developed that captures the evolving mechanical properties. The model describes the fibrin network as a network of fibers that become thicker in time. Model parameters are related to the structural properties of the network, being the fiber length, bending stiffness, and mass-length ratio. Results are compared with rheometry experiments in which the network maturation is followed in time for various loading frequencies and fibrinogen concentrations. Three parameters are used to capture the mechanical behavior including the mass-length ratio. This parameter agrees with values determined using turbidimetry experiments and is subsequently used to derive the number of protofibrils and fiber radius. The strength of the model is that it describes the mechanical properties of the maturing fibrin network based on it structural quantities. At the same time the model is relatively simple, which makes it suitable for advanced numerical simulations of blood clot formation during flow in blood vessels.  相似文献   

12.
Blood clot formation is crucial to maintain normal physiological conditions but at the same time involved in many diseases. The mechanical properties of the blood clot are important for its functioning but complicated due to the many processes involved. The main structural component of the blood clot is fibrin, a fibrous network that forms within the blood clot, thereby increasing its mechanical rigidity. A constitutive model for the maturing fibrin network is developed that captures the evolving mechanical properties. The model describes the fibrin network as a network of fibers that become thicker in time. Model parameters are related to the structural properties of the network, being the fiber length, bending stiffness, and mass-length ratio. Results are compared with rheometry experiments in which the network maturation is followed in time for various loading frequencies and fibrinogen concentrations. Three parameters are used to capture the mechanical behavior including the mass-length ratio. This parameter agrees with values determined using turbidimetry experiments and is subsequently used to derive the number of protofibrils and fiber radius. The strength of the model is that it describes the mechanical properties of the maturing fibrin network based on it structural quantities. At the same time the model is relatively simple, which makes it suitable for advanced numerical simulations of blood clot formation during flow in blood vessels.  相似文献   

13.
Elevated levels of circulating fibrinogen are associated with an increased risk of atherothrombotic diseases although a causative correlation between high levels of fibrinogen and cardiovascular complications has not been established. We hypothesized that a potential mechanism for an increased prothrombotic state is the post-translational modification of fibrinogen by tyrosine nitration. Mass spectrometry identified tyrosine residues 292 and 422 at the carboxyl terminus of the beta-chain as the principal sites of fibrinogen nitration in vivo. Immunoelectron microscopy confirmed the incorporation of nitrated fibrinogen molecules in fibrin fibers. The nitration of fibrinogen in vivo resulted in four distinct functional consequences: increased initial velocity of fibrin clot formation, altered fibrin clot architecture, increased fibrin clot stiffness, and reduced rate of clot lysis. The rate of fibrin clot formation and clot architecture was restored upon depletion of the tyrosine-nitrated fibrinogen molecules. An enhanced response to the knob "B" mimetic peptides Gly-His-Arg-Pro(am) and Ala-His-Arg-Pro(am) suggests that incorporation of nitrated fibrinogen molecules accelerates fibrin lateral aggregation. The data provide a novel biochemical risk factor that could explain epidemiological associations of oxidative stress and inflammation with thrombotic complications.  相似文献   

14.
Bleeding, the most serious complication of thrombolytic therapy with tissue-type plasminogen activator (t-PA), is thought to result from lysis of fibrin in hemostatic plugs and from the systemic lytic state caused by unopposed plasmin. One mechanism by which systemic plasmin can impair hemostasis is by partially degrading fibrinogen to fragment X, a product that retains clottability but forms clots with reduced tensile strength that stimulate plasminogen activation by t-PA more than fibrin clots. The purpose of this study was to elucidate potential mechanisms by which fragment X accelerates t-PA-mediated fibrinolysis. In the presence of t-PA, clots containing fragment X were degraded faster than fibrin clots and exhibited higher rates of plasminogen activation. Although treatment with carboxypeptidase B, an enzyme that reduces plasminogen binding to fibrin, prolonged the lysis times of fragment X and fibrin clots, clots containing fragment X still were degraded more rapidly. Furthermore, plasmin or trypsin also degraded clots containing fragment X more rapidly than fibrin clots, suggesting that this effect is largely independent of plasminogen activation. Fragment X-derived degradation products were not preferentially released by plasmin from clots composed of equal concentrations of fibrinogen and fragment X, indicating that fragment X does not constitute a preferential site for proteolysis. These data suggest that structural changes resulting from incorporation of fragment X into clots promote their lysis. Thus, attenuation of thrombolytic therapy-induced fragment X formation may reduce the risk of bleeding.  相似文献   

15.
Upon activation, fibrinogen is converted to insoluble fibrin, which assembles into long strings called protofibrils. These aggregate laterally to form a fibrin matrix that stabilizes a blood clot. Lateral aggregation of protofibrils is mediated by the αC domain, a partially structured fragment located in a disordered region of fibrinogen. Polymerization of αC domains links multiple fibrin molecules with each other enabling the formation of thick fibrin fibers and a fibrin matrix that is stable but can also be digested by enzymes. However, oxidizing agents produced during the inflammatory response have been shown to cause thinner fibrin fibers resulting in denser clots, which are harder to proteolyze and pose the risk of deep vein thrombosis and lung embolism. Oxidation of Met476 located within the αC domain is thought to hinder its ability to polymerize disrupting the lateral aggregation of protofibrils and leading to the observed thinner fibers. How αC domains assemble into polymers is still unclear and yet this knowledge would shed light on the mechanism through which oxidation weakens the lateral aggregation of protofibrils. This study used temperature replica exchange molecular dynamics simulations to investigate the αC-domain dimer and how this is affected by oxidation of Met476. Analysis of the trajectories revealed that multiple stable binding modes were sampled between two αC domains while oxidation decreased the likelihood of dimer formation. Furthermore, the side chain of Met476 was observed to act as a docking spot for the binding and this function was impaired by its conversion to methionine sulfoxide.  相似文献   

16.
Factor VII Activating Protease (FSAP) is a plasma protease affecting both coagulation and fibrinolysis. Although a role in hemostasis is still unclear, the identification of additional physiologic substrates will help to elucidate its role in this context. FSAP has been reported to cleave fibrinogen, but the functional consequences of this are not known. We have therefore undertaken this study to determine the implications of this cleavage for fibrin-clot formation and its lysis. Treatment of human fibrinogen with FSAP released an N-terminal peptide from the Bβ chain (Bβ1-53) and subsequently the fibrinopeptide B; within the Aα chain a partial truncation of the αC-region by multiple cleavages was seen. The truncated fibrinogen showed a delayed thrombin-catalyzed polymerization and formed fibrin clots of reduced turbidity, indicative of thinner fibrin fibers. Confocal laser scanning and scanning electron microscopy of these clots revealed a less coarse fibrin network with thinner fibers and a smaller pore size. A lower pore size was also seen in permeability studies. Unexpectedly, FSAP-treated fibrinogen or plasma exhibited a significantly faster tPA-driven lysis, which correlated exclusively with cleavage of fibrinogen and not with activation of plasminogen activators. Similar observations were also made in plasma after activation of endogenous zymogen FSAP, but not in plasma of carrier of the rare Marburg I single nucleotide polymorphism. In conclusion, altering fibrin clot properties by fibrinogenolysis is a novel function of FSAP in the vasculature, which facilitates clot lysis and may in vivo contribute to reduced fibrin deposition during thrombosis.  相似文献   

17.
Mechanisms of plasminogen activation by mammalian plasminogen activators   总被引:4,自引:0,他引:4  
H R Lijnen  D Collen 《Enzyme》1988,40(2-3):90-96
Plasminogen activators convert the proenzyme plasminogen to the active serine protease plasmin by hydrolysis of the Arg560-Val561 peptide bond. Physiological plasminogen activation is however regulated by several additional molecular interactions resulting in fibrin-specific clot lysis. Tissue-type plasminogen activator (t-PA) binds to fibrin and thereby acquires a high affinity for plasminogen, resulting in efficient plasmin generation at the fibrin surface. Single-chain urokinase-type plasminogen activator (scu-PA) activates plasminogen directly but with a catalytic efficiency which is about 20 times lower than that of urokinase. In plasma, however, it is inactive in the absence of fibrin. Chimeric plasminogen activators consisting of the NH2-terminal region of t-PA (containing the fibrin-binding domains) and the COOH-terminal region of scu-PA (containing the active site), combine the mechanisms of fibrin specificity of both plasminogen activators. Combination of t-PA and scu-PA infusion in animal models of thrombosis and in patients with coronary artery thrombosis results in a synergic effect on thrombolysis, allowing a reduction of the therapeutic dose and elimination of side effects on the hemostatic system.  相似文献   

18.
Studies suggest that patients with deep vein thrombosis and diabetes often have hypercoagulable blood plasma, leading to a higher risk of thromboembolism formation through the rupture of blood clots, which may lead to stroke and death. Despite many advances in the field of blood clot formation and thrombosis, the influence of mechanical properties of fibrin in the formation of thromboembolisms in platelet-poor plasma is poorly understood. In this paper, we combine the concepts of reactive molecular dynamics and coarse-grained molecular modeling to predict the complex network formation of fibrin clots and the branching of fibrin monomers. The 340-kDa fibrinogen molecule was converted into a coarse-grained molecule with nine beads, and using our customized reactive potentials, we simulated the formation and polymerization process of a fibrin clot. The results show that higher concentrations of thrombin result in higher branch-point formation in the fibrin clot structure. Our results also highlight many interesting properties, such as the formation of thicker or thinner fibers depending on the thrombin concentration. To the best of our knowledge, this is the first successful molecular polymerization study of fibrin clots to focus on thrombin concentration.  相似文献   

19.
We previously showed that coagulation factor Xa (FXa) enhances activation of the fibrinolysis zymogen plasminogen to plasmin by tissue plasminogen activator (tPA). Implying that proteolytic modulation occurs in situ, intact FXa (FXaα) must be sequentially cleaved by plasmin or autoproteolysis, producing FXaβ and Xa33/13, which acquire necessary plasminogen binding sites. The implicit function of Xa33/13 in plasmin generation has not been demonstrated, nor has FXaα/β or Xa33/13 been studied in clot lysis experiments. We now report that purified Xa33/13 increases tPA-dependent plasmin generation by at least 10-fold. Western blots confirmed that in situ conversion of FXaα/β to Xa33/13 correlated to enhanced plasmin generation. Chemical modification of the FXaα active site resulted in the proteolytic generation of a product distinct from Xa33/13 and inhibited the enhancement of plasminogen activation. Identical modification of Xa33/13 had no effect on tPA cofactor function. Due to its overwhelming concentration in the clot, fibrin is the accepted tPA cofactor. Nevertheless, at the functional level of tPA that circulates in plasma, FXaα/β or Xa33/13 greatly reduced purified fibrin lysis times by as much as 7-fold. This effect was attenuated at high levels of tPA, suggesting a role when intrinsic plasmin generation is relatively low. FXaα/β or Xa33/13 did not alter the apparent size of fibrin degradation products, but accelerated the initial cleavage of fibrin to fragment X, which is known to optimize the tPA cofactor activity of fibrin. Thus, coagulation FXaα undergoes proteolytic modulation to enhance fibrinolysis, possibly by priming the tPA cofactor function of fibrin.  相似文献   

20.
Transformation of fibrinogen into fibrin with consequent formation of the fibrin clot trimeric structure is one of the final steps in the blood coagulation system. The plasminogen activation by the tissue plasminogen activator (t-PA) is one of the fibrinolysis system key reactions. The effect of different factors on transformation of plasminogen into plasmin is capable to change essentially the equilibrium between coagulation and fibrinolytic sections of haemostasis system. We have studied the plasminogen activation by tissue plasminogen activator on fibrin clots surface formed on the interface between two phases and in presence of one phase. The t-PA plasminogen activation rate on fibrin clots both with film and without it the latter has been analyzed. These data allow to assume that the changes of fibrin clot structure depend on its formations, as well as are capable to influence essentially on plasminogen activation process by means of its tissue activating agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号