共查询到20条相似文献,搜索用时 0 毫秒
1.
DHA(22:6n-3)、EPA(20:5n-3)和ARA(20:4n-6)三种长链多不饱和脂肪酸在生物体内活性最强,它们在促进大脑发育和功能维持以及在预防和治疗心血管疾病、炎症、癌症等多种疾病方面有着重要作用。然而,尽管哺乳动物体内有完整的长链多不饱和脂肪酸合成酶系,但哺乳动物合成这些长链多不饱和脂肪酸的效率很低而主要依赖于食物获取。本研究应用转基因方法,将哺乳动物来源的Δ6和Δ5脂肪酸去饱和酶以及Δ6和Δ5脂肪酸延长酶这4种酶的编码基因构建成为一个多基因表达载体,然后转染哺乳动物细胞HEK293T,实现了4个目的基因的超表达,再通过气质联用(GC-MS)分析证实了DHA、EPA和ARA等长链多不饱和脂肪酸的合成效率及水平显著增加,DHA的水平更是提高了2.5倍。由此可见,哺乳动物具有某种抑制长链多不饱和脂肪酸高水平合成的机制,但通过Δ6和Δ5脂肪酸去饱和酶以及Δ6和Δ5脂肪酸延长酶的超表达,能够打破哺乳动物这种抑制机制,从而显著提高DHA、EPA、ARA等的合成水平。同时,本研究的思路也为在转基因动物中生产长链多不饱和脂肪酸提供了重要的启示。 相似文献
2.
《Animal : an international journal of animal bioscience》2020,14(11):2414-2422
The meat quality of chicken is an important factor affecting the consumer’s health. It was hypothesized that n-3 polyunsaturated fatty acid (n-3 PUFA) could be effectively deposited in chicken, by incorporating antioxidation of soybean isoflavone (SI), which led to improved quality of chicken meat for good health of human beings. Effects of partial or complete dietary substitution of lard (LA) with linseed oil (LO), with or without SI on growth performance, biochemical indicators, meat quality, fatty acid profiles, lipid-related health indicators and gene expression of breast muscle were examined in chickens. A total of 900 males were fed a corn–soybean meal diet supplemented with 4% LA, 2% LA + 2% LO and 4% LO and the latter two including 30 mg SI/kg (2% LA + 2% LO + SI and 4% LO + SI) from 29 to 66 days of age; each of the five dietary treatments included six replicates of 30 birds. Compared with the 4% LA diet, dietary 4% LO significantly increased the feed efficiency and had no negative effect on objective indices related to meat quality; LO significantly decreased plasma triglycerides and total cholesterol (TCH); abdominal fat percentage was significantly decreased in birds fed the 4% LO and 4% LO + SI diets. Chickens with LO diets resulted in higher contents of α-linolenic acid (C18:3n-3), EPA (C20:5n-3) and total n-3 PUFA, together with a lower content of palmitic acid (C16:0), lignoceric acid (C24:0), saturated fatty acids and n-6:n-3 ratio in breast muscle compared to 4% LA diet (P < 0.05); they also significantly decreased atherogenic index, thrombogenic index and increased the hypocholesterolemic to hypercholesterolemic ratio. Adding SI to the LO diets enhanced the contents of EPA and DHA (C22:6n-3), plasma total superoxide dismutase, reduced glutathione (GSH)/oxidized glutathione and muscle GSH content, while decreased plasma total triglyceride and TCH and malondialdehyde content in plasma and breast muscle compared to its absence (P < 0.05). Expression in breast muscle of fatty acid desaturase 1 (FADS1), FADS2, elongase 2 (ELOVL2) and ELOVL5 genes were significantly higher with the LO diets including SI than with the 4% LA diet. Significant interactions existed between LO level and inclusion of SI on EPA and TCH contents. These findings indicate that diet supplemented with LO combined with SI is an effective alternative when optimizing the nutritional value of chicken meat for human consumers. 相似文献
3.
Two previously reported non‐synonymous coding single nucleotide polymorphisms (SNPs) of bovine stearoyl‐CoA desaturase (delta‐9‐desaturase) (SCD) (c.878C>T) and fatty acid synthase (FASN) (g:17924A>G) were assessed for their associations with 72 individual and 12 groups of fatty acids in brisket adipose tissue of 223 Canadian commercial cross‐bred beef steers. It was found that the ‘CC’ genotype of the SCD SNP was significantly associated with lower concentrations of saturated fatty acids (SFA) including 10:0, 14:0 and 20:0, higher concentrations of monounsaturated fatty acids including 9c‐14:1, 12c‐16:1 and 13c‐18:1, higher concentrations of polyunsaturated fatty acids (PUFA) including 9c,15c‐18:2, 10c,12c‐18:2, 11c,13t‐18:2 and 12c,14t‐18:2, but lower concentrations of other PUFA of 9c,13t/8t,12c and 20:2n‐6 (P < 0.05). The ‘AA’ genotype of the FASN SNP was significantly associated with higher concentrations of SFAs of 10:0, 12:0, 13:0, 14:0 and 15:0, lower concentrations of unsaturated fatty acids of 9c‐18:1 and 20:3n‐6, and higher concentrations of unsaturated fatty acids of 9c‐14:1 and 12c‐16:1 (P < 0.05). Significant epistatic effects between the SCD and FASN SNP genotypes were also found for several fatty acids including 10:0, 23:0, 6t/7t/8t‐18:1, 12t‐18:1, 13t/14t‐18:1, 16t‐18:1, total trans18:1 and 9c,13t/8t,12c‐18:2 (P < 0.05). These results further suggest that SCD and FASN are strong candidate genes influencing fatty acid composition in beef cattle. 相似文献
4.
Stearoyl-CoA desaturase 1 genotype and stage of lactation influences milk fatty acid composition of Canadian Holstein cows 总被引:1,自引:0,他引:1
Single nucleotide polymorphisms in the coding region of the bovine stearoyl-CoA desaturase 1 gene have been predicted to result in p.293A (alanine at amino acid 293) and p.293V (valine at amino acid 293) alleles at the stearoyl-CoA desaturase1 locus. The objectives of this study were to evaluate the extent to which genotypes at the stearoyl-CoA desaturase 1 locus and stage of lactation influence milk fatty acid composition in Canadian Holstein cows. Cows with the p.293AA genotype had higher C10 index, C12 index and C14 index and higher concentrations of C10:1 (10 carbon fatty acid with one double bond), C12:1 (12 carbon fatty acid with one double bond) and myristoleic acid (C14:1) compared with the p.293AV or p.293VV cows. Cows had higher C18 index and total index, and lower C10 index, C12 index, C14 index and CLA index during early lactation compared with the subsequent lactation stages. Early lactation was also characterized by higher concentrations of oleic acid (C18:1 cis -9), vaccenic acid (C18:1 trans -11), linoleic acid (C18:2), monounsaturated fatty acids and total polyunsaturated fatty acids, and lower concentrations of capric acid (C10:0), C10:1, lauric acid (C12:0), C12:1, myristic acid (C14:0), myristoleic acid (C14:1), palmitic acid (C16:0) and total saturated fatty acids compared with the subsequent lactation stages. Neither the stearoyl-CoA desaturase 1 genotype nor the stage of lactation had an influence on conjugated linoleic acid concentrations in milk. 相似文献
5.
R. J. de Antueno R. C. Cantrill Y. -S. Huang S. K. Raha M. Elliot D. F. Horrobin 《Molecular and cellular biochemistry》1992,116(2):153-161
The present study examines the time dependent effects of n-6 and n-3 polyunsaturated fatty acids on liver microsomal lipid metabolism in FVB mice fed a diet supplemented with a mixture of free fatty acids (mainly 18:3n-6 and 20:5n-3) at 25 mg/g diet. Significant changes in the fatty acid composition of total liver and microsomal lipids were observed after 7 days on the diets. Thereafter, some animals remained on the same diet while others were fed a diet supplemented with hydrogenated coconut oil (HCO). With the exception of 20:5n-3 which showed a slower recovery, establishment of the HCO pattern was rapid indicating that the diet-induced changes could be easily reversed. The unsaturation index, the cholesterol/phospholipid ratio and the microviscosity of the microsomal membranes were not affected by these dietary manipulations. Unsaturated fatty acid supplementation reduced the activity of 9 desaturase by 50%. Feeding the HCO diet to mice previously fed the EPA/GLA diet led to a progressive increase in 9 desaturase activity, reaching 80% of the day zero values after 14 days. The monoene content of hepatic total lipids reflected, in most cases, the changes in enzyme activity. This study shows that a low dose of a n-3 and n-6 free fatty acid mixture increases the quantities of members of the n-3 family, without loss of n-6 fatty acids in microsomal membranes and modifies the activity of 9 desaturase without altering the microsome physicochemical parameters. 相似文献
6.
《Animal : an international journal of animal bioscience》2015,9(11):1749-1755
The aim of this study was to evaluate the effects of geese’s maternal diet supplemented with flaxseed on the fatty acid profiles of egg yolks and the antioxidant status of their offspring. A total of 288 female Huoyan geese (42 weeks old) were randomly allotted to four experimental groups in this 56-day experiment and fed on diets containing flaxseed at 0% (control), 5%, 10% and 15%, respectively. There were nine replicate pens per treatment, with eight geese per replicate pen. The concentration of α-linolenic acid (linear, P<0.01), EPA (20:5n-3; linear, P<0.01), DHA (22:6n-3; quadratic, P=0.03) and n-3 polyunsaturated fatty acid (PUFA) (linear, P<0.01) levels in the yolk lipids increased with increasing dietary flaxseed levels. Yolk palmitic acid (16:0, linear, P=0.05), saturated fatty acid (linear, P=0.04) level and total n-6/n-3 ratio (P<0.01) decreased in a linear fashion as dietary flaxseed levels increased. Increasing dietary flaxseed levels linearly decreased (P=0.01) the total cholesterol in egg yolks. After hatching, three 1-day-old gosling were selected randomly from each replicate to determine blood characteristics and liver antioxidant status. Aspartate aminotransferase activity (linear, P=0.03), total triglycerides (linear, P=0.02) and total cholesterol (linear, P=0.05) contents in blood linearly decreased as the levels of flaxseed increased. A linear dose response to maternal dietary flaxseed was detected for the activities of the goslings’ liver enzymes catalase (linear, P=0.01), superoxide dismutase (linear, P<0.01) and glutathione peroxidase (linear, P<0.01). The malondialdehyde (quadratic, P=0.03) and alkaline phosphatase content in the livers of goslings decreased as flaxseed supplementation levels increased. In conclusion, the dietary addition of flaxseed up to 15%, in the maternal diet resulted in increased n-3 PUFA levels in egg yolks and improved the antioxidant status of offspring in a dose-dependent manner. 相似文献
7.
8.
二十二碳六烯酸(DHA,22:6n-3)是一种长度为22个碳原子且含有6个双键的ω-3系多不饱和脂肪酸,在人体中具有重要生物学功能。人体及其他哺乳动物体内只能合成少量的DHA,更多的需求必须从食物中获取。然而,DHA的天然资源(主要是深海鱼类等海洋产品)日趋枯竭,开发新型资源以满足不断扩大的市场需求势在必行。本研究利用转基因技术,在哺乳动物细胞中使Δ6和Δ5脂肪酸去饱和酶以及Δ6和Δ5脂肪酸延长酶超表达,同时表达来源于秀丽隐杆线虫Caenorhabditis elegans的Δ15去饱和酶和小眼虫Euglena gracilis的Δ4去饱和酶,结果表明,这6种酶的表达或超表达能将ω-6系的亚油酸(LA,18:2n-6)有效地转化为DHA(22:6n-3),后者的含量从对照组的16.74%提高到实验组的25.3%。本研究的策略及技术路线为将来利用遗传改造的哺乳动物生产珍稀的DHA(22:6n-3)等长链多不饱和脂肪酸产品提供了重要的启示。 相似文献
9.
《Animal : an international journal of animal bioscience》2019,13(2):444-452
Diet supplementation with oilseeds is known to improve the fatty acid profile of meat, but few studies have been carried out to determine the time required for the incorporation of a significant quantity of n-3 polyunsaturated fatty acids (PUFA) into meat from steers. Therefore, the present study aimed to assess the effects of linseed supplementation and feeding duration on the fatty acid profile, cholesterol and bioactive compounds of bovine meat. In total, 54 Friesian steers were randomly allocated during the finishing period into six experimental treatments following a 2×3 factorial design. The six treatments consisted of two diets, the control diet (CO) with no supplemental fat and the linseed diet (LS) containing 10% whole linseed, fed 40, 75 or 120 days before slaughter. At the end of each finishing period, steers from the CO and LS groups were slaughtered. After 8 days of ageing chemical analysis, the fatty acid profile, cholesterol content and bioactive compounds were determined from the longissimus thoracis muscle. Including linseed in the diet increased the content of monounsaturated fatty acids, CLA and n-3 PUFA, and reduced the proportion of saturated fatty acids and n-6 PUFA. The percentage of myristic fatty acid increased with the duration of feeding, regardless of diet and a decrease in PUFA and n-6 PUFA was observed in the CO and LS diets, respectively. Furthermore, meat from steers fed linseed showed an increased percentage of n-3 PUFA, linolenic acid, and EPA from 40 to 75 days of feeding, whereas vaccenic acid, CLA 9c,11t, and total CLA increased from 40 and 75 days but declined at 120 days. Beef from the linseed group had a higher content of bioactive substances such as creatine, carnosine and anserine than beef from the control group. The duration of feeding significantly affected the creatine concentrations, with an increase in the LS group from 40 to 75 days of feeding. Feeding linseed did not modify the cholesterol content, on average and the lowest cholesterol content was found in meat after 75 days of linseed administration. This study demonstrates that a short-term diet manipulation is sufficient to improve the nutritional properties of meat, including n-3 PUFA and bioactive compounds. 相似文献
10.
Fei Gao Dale Kiesewetter Lisa Chang Kaizong Ma Stanley I. Rapoport Miki Igarashi 《Journal of lipid research》2009,50(12):2463-2470
Dietary docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3) are considered important for maintaining normal heart and brain function, but little EPA is found in brain, and EPA cannot be elongated to DHA in rat heart due to the absence of elongase-2. Ingested EPA may have to be converted in the liver to DHA for it to be fully effective in brain and heart, but the rate of conversion is not agreed on. This rate was determined in male adult rats fed a standard n-3 PUFA, containing diet by infusing unesterified albumin-bound [U-13C]EPA intravenously for 2 h and measuring esterified [13C]labeled PUFAs in arterial plasma lipoproteins, as well as the specific activity of unesterified plasma EPA. Whole-body (presumably hepatic) synthesis secretion rates from circulating unesterified EPA, calculated from peak first derivatives of plasma esterified concentration × volume curves, equaled 2.61 μmol/day for docosapentaenoic acid (22:5n-3) and 5.46 μmol/day for DHA. The DHA synthesis rate was 24-fold greater than the reported brain DHA consumption rate in rats. Thus, dietary EPA could help to maintain brain and heart DHA homeostasis because it is converted at a relatively high rate in the liver to circulating DHA. 相似文献
11.
Herdmann A Nuernberg K Martin J Nuernberg G Doran O 《Animal : an international journal of animal bioscience》2010,4(5):755-762
This study investigated the effects of dietary linolenic acid (C18:3n-3) v. linoleic acid (C18:2n-6) on fatty acid composition and protein expression of key lipogenic enzymes, acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase (SCD) and delta 6 desaturase (Δ6d) in longissimus muscle and subcutaneous adipose tissue of bulls. Supplementation of the diet with C18:3n-3 was accompanied by an increased level of n-3 fatty acids in muscle which resulted in decrease of n-6/n-3 ratio. The diet enriched with n-3 polyunsaturated fatty acids (PUFAs) significantly inhibited SCD protein expression in muscle and subcutaneous adipose tissue, and reduced the Δ6d expression in muscle. There was no significant effect of the diet on ACC protein expression. Inhibition of the Δ6d expression was associated with a decrease in n-6 PUFA level in muscles, whereas repression of SCD protein was related to a lower oleic acid (C18:1 cis-9) content in the adipose tissue. Expression of ACC, SCD and Δ6d proteins was found to be relatively higher in subcutaneous adipose tissue when compared with longissimus muscle. It is suggested that dietary manipulation of fatty acid composition in ruminants is mediated, at least partially, through the regulation of lipogenic enzymes expression and that regulation of the bovine lipogenic enzymes expression is tissue specific. 相似文献
12.
Benatmane F Kouba M Youyou A Mourot J 《Animal : an international journal of animal bioscience》2011,5(12):1993-2000
The aim of the study was to examine the effect of a linseed diet on meat quality and on lipogenesis in rabbits. Twelve rabbits were fed a control or a linseed diet. There was no diet effect on growth, food consumption, carcass characteristics and meat ultimate pH and colour. Feeding the linseed diet increased the n-3 polyunsaturated fatty acids (PUFA) levels in perirenal and interscapular fats, in the Longissimus dorsi muscle and in the liver. The linseed diet produced lower linoleic acid/α-linolenic acid ratios in adipose tissues and in the Longissimus dorsi muscle, but not in the liver. Diet did not affect lipogenic enzyme activities in the Longissimus dorsi muscle, whereas the linseed diet decreased the lipogenic potential in perirenal and interscapular fats, and in the liver. Feeding rabbits with a high n-3 PUFA diet led to a decrease in the oxidative stability of perirenal fat and the Longissimus dorsi muscle, and to an inhibition of stearoyl-CoA-desaturase activity in liver and in adipose tissues, but not in muscle. 相似文献
13.
14.
Fan YY Kim W Callaway E Smith R Jia Q Zhou L McMurray DN Chapkin RS 《Prostaglandins, leukotrienes, and essential fatty acids》2008,79(6):209-214
In order to evaluate the effects of fatty acids on immune cell membrane structure and function, it is often necessary to maintain cells in culture. However, cell culture conditions typically reverse alterations in polyunsaturated fatty acid (PUFA) composition achieved by dietary lipid manipulation. Therefore, we hypothesized that T-cells from transgenic mice expressing the Caenorhabditis elegans n-3 desaturase (fat-1) gene would be resistant to the culture-induced loss of n-3 PUFA and, therefore, obviate the need to incorporate fatty acids or homologous serum into the medium. CD4+ T-cells were isolated from (i) control wild type (WT) mice fed a safflower oil-n-6 PUFA enriched diet (SAF) devoid of n-3 PUFA, (ii) fat-1 transgenic mice (enriched with endogenous n-3 PUFA) fed a SAF diet, or (iii) WT mice fed a fish oil (FO) based diet enriched in n-3 PUFA. T-cell phospholipids isolated from WT mice fed FO diet (enriched in n-3 PUFA) and fat-1 transgenic mice fed a SAF diet (enriched in n-6 PUFA) were both enriched in n-3 PUFA. As expected, the mol% levels of both n-3 and n-6 PUFA were decreased in cultures of CD4+ T-cells from FO-fed WT mice after 3 d in culture. In contrast, the expression of n-3 desaturase prevented the culture-induced decrease of n-3 PUFA in CD4+ T-cells from the transgenic mice. Carboxyfluorescein succinidyl ester (CFSE) -labeled CD4+ T-cells from fat-1/SAF vs. WT/SAF mice stimulated with anti-CD3 and anti-CD28 for 3 d, exhibited a reduced (P<0.05) number of cell divisions. We conclude that fat-1-containing CD4+ T-cells express a physiologically relevant, n-3 PUFA enriched, membrane fatty acid composition which is resistant to conventional cell culture-induced depletion. 相似文献
15.
The effects of dietary zinc deficiency (ZD) on the composition and metabolism of the fatty acyl chains of phospholipids in
rat liver were investigated with a fat-free diet. The levels of (n−9) fatty acids such as 18∶1 and 20∶3(n−9) in liver phospholipids (PL) were significantly lower in ZD-rats (19.4% and 5.4%, respectively) than in PF-rats (25.2 and
8.3%). On the other hand, the level of (n−6) acids such as 18∶2 and 20∶4 were higher in ZD-rats (3.3 and 19.1%, respectively) than in PF-rats (2.1 and 14.9%).
In order to study the metabolism of fatty acids in vivo,14C-18∶0 or14C-18∶2 was intravenously injected, and then the conversion to the respective metabolite was examined. After the injection
of14C-18∶0, the radioactivity was found in 18∶0 (49.3% of the total), 18∶1 (33.2%), and 20∶3 (n−9) (9.1%) in liver PL in PF-rats at 24h. In ZD-rats, the radioactivity was dramatically lower in 18∶1 (23.5%) and 20∶ (n−9) (3.6%), suggesting that the conversion of 18∶0 to 18∶1 and 20∶3 (n−9) was strongly inhibited in ZD-rats. When14C-18∶2 was injected, the radioactivity was mainly found in 18∶2, 20∶3(n−6), and 20∶4. The radioactivity in 20∶4 in ZD-rats was slightly higher than that in control rats.
These results indicate that zinc deficiency affects the fatty acid metabolism in liver, in particular, it causes a reduction
in δ9 desaturase activity, when rats are fed a fat-free diet. 相似文献
16.
Depression may be associated with impaired membrane PUFA composition, especially decreased n-3 PUFA. This assumption has not been tested at the level of brain tissue. Moreover, most studies were confounded by dietary variability. We examined the FA composition of selected brain areas in an animal model of depression, the Flinders Sensitive Line (FSL) rat, and compared the findings with those in controls fed identical diets. In all brain regions studied, the concentration of arachidonic acid (AA) was significantly higher in the FSL rats: in the hypothalamus by 21%, in the nucleus accumbens by 24%, in the prefrontal cortex by 31%, and in the striatum by 23%. No significant differences were observed for n-3 PUFA or for the saturated and monounsaturated FAs. Our results confirm the existence of altered brain PUFA composition in an animal model of depression. The finding of increased AA, an n-6 PUFA, rather than decreased n-3 PUFA, emphasizes the importance of both PUFA families in the pathophysiological processes underlying depression. The FSL rat is a useful tool for further elucidation of the FA disturbances in depression. 相似文献
17.
Lipid and fatty acid composition of female gilthead seabream during their reproductive cycle: effects of a diet lacking n-3 HUFA 总被引:3,自引:0,他引:3
E. Almansa M. V. Martían J. R. Cejas P. Badí S. Jerez A. Lorenzo 《Journal of fish biology》2001,59(2):267-286
In female sea bream Sparus aurata fed a control diet (C), ovarian levels of neutral lipids (NL) and polar lipids (PL) remained constant between November and March, while a decrease in NL content was observed in liver and muscle. In the same period, liver PL content increased, while no changes were observed in muscle. Between March and June ovarian NL and PL showed a strong decrease, while NL remained constant in liver and muscle. When fish were fed a diet lacking in n-3 highly unsaturated fatty acids, n-3 HUFA (D), the pattern observed was similar to that found in the fish fed diet C, with the exception of liver NL, which increased between March and June. In general, the changes in fatty acid content, in both groups of fish, were highly influenced by the diet given to the broodstock, although these effects were greater on ovarian NL and PL than on liver and muscle lipids. Despite the fact that gilthead seabream females continue feeding during the spawning season, they probably make use of their liver and muscle reserves during the gonadal maturation process. Furthermore, the fatty acid composition of the broodstock diet was reflected in the body composition, especially in the ovaries. 相似文献
18.
Effects of sterculic acid on stearoyl-CoA desaturase in differentiating 3T3-L1 adipocytes 总被引:1,自引:0,他引:1
Gomez FE Bauman DE Ntambi JM Fox BG 《Biochemical and biophysical research communications》2003,300(2):316-326
The effects of sterculic acid on cell size, adiposity, and fatty acid composition of differentiating 3T3-L1 adipocytes are correlated with stearoyl-CoA desaturase (SCD) expression (mRNA and protein levels) and enzyme activity. Fluorescence-activated cell scanning (FACS) analysis showed that adipocytes differentiated with methylisobutylxanthine, dexamethasone, and insulin (MDI) plus 100 microM sterculic acid comprised a population of predominantly large cells with reduced adiposity compared to MDI-treated cells. Although both groups had similar amounts of total fat, their fatty acid profiles were strikingly different: MDI-treated cells had high levels of the unsaturated palmitoleic (Delta(9)-16:1) and oleic (Delta(9)-18:1) acids, whereas the cells cultured with MDI plus sterculic acid accumulated palmitic (16:0) and stearic (18:0) acids together with a marked reduction in Delta(9)-16:1. Although the cells treated with MDI plus sterculic acid had similar levels of scd1 and scd2 mRNAs and antibody-detectable SCD protein as the MDI-treated cells, the SCD enzyme activity was inhibited more than 90%. The accumulation of 16:0 and 18:0, together with normal levels of fatty acid synthase (FAS) and aP2 mRNAs, shows that de novo synthesis and elongation of fatty acids, as well as cell differentiation, were not affected by sterculic acid. Because of the increase in cell size in the sterculic acid-treated cells, the insulin-stimulated 2-deoxyglucose (2-DOG) uptake was determined. Compared to MDI-treated cells, the 2-DOG uptake in the cells treated with sterculic acid was not affected. These results indicate that sterculic acid directly inhibits SCD activity, possibly by a turnover-dependent reaction, without affecting the processes required for adipocyte differentiation, scd gene expression or SCD protein translation. 相似文献
19.
《Animal : an international journal of animal bioscience》2019,13(1):25-32
Recent studies suggest that the use of vegetable oils at expense of fish oil in aquaculture feeds might have potential negative effects on fish redox homeostasis and adiposity. Resveratrol (RESV) is a lipid-soluble phytoalexin present in fruits and vegetables with proven in vivo antioxidant function in animals. The present study aims to assess the potential use of RESV in Atlantic salmon feeds. To this end, post-smolt salmons with an initial BW of 148±3 g were fed four experimental diets for 15 weeks. A diet low in fish oil served as a control and was supplemented with 0, 0.5, 1.5 and 2.5 g/kg of RESV, respectively. The effect of the experimental diets on animal performance, tissue fatty acid composition, and the expression of genes encoding proteins involved in antioxidant signalling, lipid peroxidation, and metabolism were studied. Resveratrol significantly reduced feed intake and final BW of the salmon. Feeding RESV did not affect the sum of saturated and monounsaturated fatty acids or total lipids in the fillet. While the content of total polyunsaturated fatty acids was not affected, the percentages of some fatty acids in the liver and fillet were changed by RESV. Furthermore, in liver, the relative expression of glutathione peroxidase 4b, nuclear factor-like 2, and arachidonate 5-lipoxygenase remained unchanged across treatment groups. In conclusion, the negative impact of dietary RESV on FI and hence reduction of the BW discourages its inclusion in low fish oil diets for Atlantic salmon. 相似文献
20.
Shah Ahmed Belal Da Rae Kang Allur Subramaniyan Sivakumar Ho Sung Choe Kwan Seob Shim 《Animal biotechnology》2013,24(4):323-331
AbstractThis study was conducted to determine the effects of long chain fatty acids (LCFAs) on triacylglycerol (TAG) content, as well as on genes associated with lipid synthesis and fatty acid composition in bovine satellite cells. Both saturated (palmitic and stearic) and unsaturated (oleic and linoleic) fatty acids stimulated the TAG accumulation at a concentration of 100?µM and oleate increased it significantly more than stearate and palmitate. The results revealed that the lipid droplet formation was markedly stimulated by linoleate and oleate at 100?µM. Compared to control, the expressions of adipose triglyceride lipase, carnitine acyltransferase 1 and the fatty acid translocase 36 were upregulated by LCFAs. All the fatty acids also significantly increased diacylglycerol acyltransferase 2 than the untreated control (p?<?0.05). The monounsaturated fatty acids significantly increased (p?<?0.05) in response to oleate and linoleate compared to the control as did the polyunsaturated fatty acids (p?<?0.05), in addition to stearate, linoleate and oleate. In contrast, saturated fatty acids were significantly decreased in the oleate and linoleate-treated groups. The study results contribute to our enhanced understanding of LCFAs’ regulatory roles on the bovine cell lipid metabolism. 相似文献