首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome-wide association studies for difficult-to-measure traits are generally limited by the sample size with accurate phenotypic data. The objective of this study was to utilise data on primiparous Holstein–Friesian cows from experimental farms in Ireland, the United Kingdom, the Netherlands and Sweden to identify genomic regions associated with the feed utilisation complex: fat and protein corrected milk yield (FPCM), dry matter intake (DMI), body condition score (BCS) and live-weight (LW). Phenotypic data and 37 590 single nucleotide polymorphisms (SNPs) were available on up to 1629 animals. Genetic parameters of the traits were estimated using a linear animal model with pedigree information, and univariate genome-wide association analyses were undertaken using Bayesian stochastic search variable selection performed using Gibbs sampling. The variation in the phenotypes explained by the SNPs on each chromosome was related to the size of the chromosome and was relatively consistent for each trait with the possible exceptions of BTA4 for BCS, BTA7, BTA13, BTA14, BTA18 for LW and BTA27 for DMI. For LW, BCS, DMI and FPCM, 266, 178, 206 and 254 SNPs had a Bayes factor >3, respectively. Olfactory genes and genes involved in the sensory smell process were overrepresented in a 500 kbp window around the significant SNPs. Potential candidate genes were involved with functions linked to insulin, epidermal growth factor and tryptophan.  相似文献   

2.

Background

Genomic selection (GS) may improve selection response over conventional pedigree-based selection if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many distinct gene loci were determined for growth and wood traits in white spruce, within and between environments and breeding groups (BG), each with an effective size of Ne ≈ 20. Marker subsets were also tested.

Results

Model fits and/or cross-validation (CV) prediction accuracies for ridge regression (RR) and the least absolute shrinkage and selection operator models approached those of pedigree-based models. With strong relatedness between CV sets, prediction accuracies for RR within environment and BG were high for wood (r = 0.71–0.79) and moderately high for growth (r = 0.52–0.69) traits, in line with trends in heritabilities. For both classes of traits, these accuracies achieved between 83% and 92% of those obtained with phenotypes and pedigree information. Prediction into untested environments remained moderately high for wood (r ≥ 0.61) but dropped significantly for growth (r ≥ 0.24) traits, emphasizing the need to phenotype in all test environments and model genotype-by-environment interactions for growth traits. Removing relatedness between CV sets sharply decreased prediction accuracies for all traits and subpopulations, falling near zero between BGs with no known shared ancestry. For marker subsets, similar patterns were observed but with lower prediction accuracies.

Conclusions

Given the need for high relatedness between CV sets to obtain good prediction accuracies, we recommend to build GS models for prediction within the same breeding population only. Breeding groups could be merged to build genomic prediction models as long as the total effective population size does not exceed 50 individuals in order to obtain high prediction accuracy such as that obtained in the present study. A number of markers limited to a few hundred would not negatively impact prediction accuracies, but these could decrease more rapidly over generations. The most promising short-term approach for genomic selection would likely be the selection of superior individuals within large full-sib families vegetatively propagated to implement multiclonal forestry.  相似文献   

3.
Economically important reproduction traits in sheep, such as number of lambs weaned and litter size, are expressed only in females and later in life after most selection decisions are made, which makes them ideal candidates for genomic selection. Accurate genomic predictions would lead to greater genetic gain for these traits by enabling accurate selection of young rams with high genetic merit. The aim of this study was to design and evaluate the accuracy of a genomic prediction method for female reproduction in sheep using daughter trait deviations (DTD) for sires and ewe phenotypes (when individual ewes were genotyped) for three reproduction traits: number of lambs born (NLB), litter size (LSIZE) and number of lambs weaned. Genomic best linear unbiased prediction (GBLUP), BayesR and pedigree BLUP analyses of the three reproduction traits measured on 5340 sheep (4503 ewes and 837 sires) with real and imputed genotypes for 510 174 SNPs were performed. The prediction of breeding values using both sire and ewe trait records was validated in Merino sheep. Prediction accuracy was evaluated by across sire family and random cross‐validations. Accuracies of genomic estimated breeding values (GEBVs) were assessed as the mean Pearson correlation adjusted by the accuracy of the input phenotypes. The addition of sire DTD into the prediction analysis resulted in higher accuracies compared with using only ewe records in genomic predictions or pedigree BLUP. Using GBLUP, the average accuracy based on the combined records (ewes and sire DTD) was 0.43 across traits, but the accuracies varied by trait and type of cross‐validations. The accuracies of GEBVs from random cross‐validations (range 0.17–0.61) were higher than were those from sire family cross‐validations (range 0.00–0.51). The GEBV accuracies of 0.41–0.54 for NLB and LSIZE based on the combined records were amongst the highest in the study. Although BayesR was not significantly different from GBLUP in prediction accuracy, it identified several candidate genes which are known to be associated with NLB and LSIZE. The approach provides a way to make use of all data available in genomic prediction for traits that have limited recording.  相似文献   

4.

Background

Genomic selection is a recently developed technology that is beginning to revolutionize animal breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding accuracies of prediction.

Methods

Deregressed estimated breeding values were used as observations in a weighted analysis to derive direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships between animals, with the aim of increasing within-group and decreasing between-group relationships. All five combinations of four groups were used for model training, with cross-validation performed in the group not used in training. Bivariate animal models were used for each trait to estimate the genetic correlation between deregressed estimated breeding values and direct genomic values.

Results

Accuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of 0.44. Predictions were more accurate when animals within the validation group were more closely related to animals in the training set. When training and validation sets were formed by random allocation, the accuracies of direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship between animals in training and validation. The accuracies of direct genomic values obtained from training on older animals and validating in younger animals were intermediate to the accuracies obtained from K-means clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding values and direct genomic values ranged from 0.15 to 0.80 for the traits studied.

Conclusions

These results suggest that genomic estimates of genetic merit can be produced in beef cattle at a young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely produce for the industry the direct genomic values with the highest accuracy.  相似文献   

5.
Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (rTI) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of rmg = 0.5. For a low heritability trait (h2 = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles rTI from 0.27 to 0.54. Including the conventional information source ‘own performance’ into the before mentioned index, additional SNP information increases rTI by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs.  相似文献   

6.
Advances in DNA sequencing technology have made possible the genotyping of thousands of single-nucleotide polymorphism (SNP) markers, and new methods of statistical analysis are emerging to apply these advances in plant breeding programs. We report the utility of markers for prediction of breeding values in a forest tree species using empirical genotype data (3,406 polymorphic SNP loci). A total of 526 Pinus taeda L. clones tested widely in field trials were phenotyped at age 5?years. Only 149 clones from 13 full-sib crosses were genotyped. Markers were fit simultaneously to predict marker additive and dominance effects. Subsets of the 149 genotyped clones were used to train a model using all markers. Cross-validation strategies were followed for the remaining subset of genotyped individuals. The accuracy of genomic estimated breeding values ranged from 0.61 to 0.83 for wood lignin and cellulose content, and from 0.30 to 0.68 for height and volume traits. The accuracies of predictions based on markers were comparable with the accuracies based on pedigree. Because of the small number of SNP markers used and the relatively small population size, we suggest that observed accuracies in this study trace familial linkage rather than historical linkage disequilibrium with trait loci. Prediction accuracies of models that use only a subset of markers were generally comparable with the accuracies of the models using all markers, regardless of whether markers are associated with the phenotype. The results suggest that using SNP loci for selection instead of phenotype is efficient under different relative lengths of the breeding cycle, which would allow cost-effective applications in tree breeding programs. Prospects for applications of genomic selection to P. taeda breeding are discussed.  相似文献   

7.
Animal breeding faces one of the most significant changes of the past decades - the implementation of genomic selection. Genomic selection uses dense marker maps to predict the breeding value of animals with reported accuracies that are up to 0.31 higher than those of pedigree indexes, without the need to phenotype the animals themselves, or close relatives thereof. The basic principle is that because of the high marker density, each quantitative trait loci (QTL) is in linkage disequilibrium (LD) with at least one nearby marker. The process involves putting a reference population together of animals with known phenotypes and genotypes to estimate the marker effects. Marker effects have been estimated with several different methods that generally aim at reducing the dimensions of the marker data. Nearly all reported models only included additive effects. Once the marker effects are estimated, breeding values of young selection candidates can be predicted with reported accuracies up to 0.85. Although results from simulation studies suggest that different models may yield more accurate genomic estimated breeding values (GEBVs) for different traits, depending on the underlying QTL distribution of the trait, there is so far only little evidence from studies based on real data to support this. The accuracy of genomic predictions strongly depends on characteristics of the reference populations, such as number of animals, number of markers, and the heritability of the recorded phenotype. Another important factor is the relationship between animals in the reference population and the evaluated animals. The breakup of LD between markers and QTL across generations advocates frequent re-estimation of marker effects to maintain the accuracy of GEBVs at an acceptable level. Therefore, at low frequencies of re-estimating marker effects, it becomes more important that the model that estimates the marker effects capitalizes on LD information that is persistent across generations.  相似文献   

8.
The use of molecular genetic information in the evaluation of livestock has become more common. This study looks at the efficacy of using such information to improve the genetic evaluation of a rare breed of dual-purpose cattle. Data were available in the form of pedigree information on the Gloucester cattle breed in the United Kingdom and recorded milk and beef performance on a small number of animals. In addition, molecular genetic information in the form of multi-marker, multiple regression results converted to a 1 to 10 score (Igenity scores) and 123 single nucleotide polymorphism (SNP) genotypes for 199 non-recorded animals were available. Appropriate mixed-animal models were explored for the recorded traits and these were used to calculate estimated breeding values (EBV), and their accuracies, for 6527 animals in the breed’s pedigree file. Various ways to improve the accuracy of these EBV were explored. This involved using multivariate BLUP analyses, genomic estimated breeding values (GEBV) and combining Igenity scores with recorded traits in a series of bivariate genetic analyses. Using the milk recording traits as an example, the accuracy of a number of traits could be improved using multivariate analyses by up to 14%, depending on the combination of traits used. The level of increase in accuracy largely corresponded to the absolute difference between the genetic and residual correlations between two traits, but this was not always symmetrical. The use of GEBV did not increase the accuracy of milk trait EBV owing to the low proportion of variance explained by the 101 SNPs used. Using Igenity scores in bivariate analyses with the recorded data was more successful in increasing EBV accuracy. The largest increases were found in genotyped animals with no recorded performance (e.g. a 58% increase in fat weight in milk); however, the size of the increase depended on the level of the genetic correlation between the recorded trait and the Igenity score for that trait. Lower levels of improvements in accuracy were seen in animals that were recoded but not genotyped, and ancestors which were neither genotyped nor recorded. This study demonstrated that it was possible to improve the accuracy of EBV estimation by including Igenity score information in genetic analyses but it also concluded that increasing the level of performance recording in the breed would be beneficial.  相似文献   

9.
Genomic selection or genomic prediction (GP) has increasingly become an important molecular breeding technology for crop improvement. GP aims to utilise genome-wide marker data to predict genomic breeding value for traits of economic importance. Though GP studies have been widely conducted in various crop species such as wheat and maize, its application in cotton, an essential renewable textile fibre crop, is still significantly underdeveloped. We aim to develop a new GP-based breeding system that can improve the efficiency of our cotton breeding program. This article presents a GP study on cotton fibre quality and yield traits using 1385 breeding lines from the Commonwealth Scientific and Industrial Research Organisation (CSIRO, Australia) cotton breeding program which were genotyped using a high-density SNP chip that generated 12,296 informative SNPs. The aim of this study was twofold: (1) to identify the models and data sources (i.e. genomic and pedigree) that produce the highest prediction accuracies; and (2) to assess the effectiveness of GP as a selection tool in the CSIRO cotton breeding program. The prediction analyses were conducted under various scenarios using different Bayesian predictive models. Results highlighted that the model combining genomic and pedigree information resulted in the best cross validated prediction accuracies: 0.76 for fibre length, 0.65 for fibre strength, and 0.64 for lint yield. Overall, this work represents the largest scale genomic selection studies based on cotton breeding trial data. Prediction accuracies reported in our study indicate the potential of GP as a breeding tool for cotton. The study highlighted the importance of incorporating pedigree and environmental factors in GP models to optimise the prediction performance.Subject terms: Plant breeding, Genome  相似文献   

10.

Background

The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values.

Methods

Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated.

Results

The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy.

Conclusions

An animal''s relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.  相似文献   

11.
This study evaluated different female-selective genotyping strategies to increase the predictive accuracy of genomic breeding values (GBVs) in populations that have a limited number of sires with a large number of progeny. A simulated dairy population was utilized to address the aims of the study. The following selection strategies were used: random selection, two-tailed selection by yield deviations, two-tailed selection by breeding value, top yield deviation selection and top breeding value selection. For comparison, two other strategies, genotyping of sires and pedigree indexes from traditional genetic evaluation, were included in the analysis. Two scenarios were simulated, low heritability (h2 = 0.10) and medium heritability (h2 = 0.30). GBVs were estimated using the Bayesian Lasso. The accuracy of predicted GBVs using the two-tailed strategies was better than the accuracy obtained using other strategies (0.50 and 0.63 for the two-tailed selection by yield deviations strategy and 0.48 and 0.63 for the two-tailed selection by breeding values strategy in low- and medium-heritability scenarios, respectively, using 1000 genotyped cows). When 996 genotyped bulls were used as the training population, the sire’ strategy led to accuracies of 0.48 and 0.55 for low- and medium-heritability traits, respectively. The Random strategies required larger training populations to outperform the accuracies of the pedigree index; however, selecting females from the top of the yield deviations or breeding values of the population did not improve accuracy relative to that of the pedigree index. Bias was found for all genotyping strategies considered, although the Top strategies produced the most biased predictions. Strategies that involve genotyping cows can be implemented in breeding programs that have a limited number of sires with a reliable progeny test. The results of this study showed that females that exhibited upper and lower extreme values within the distribution of yield deviations may be included as training population to increase reliability in small reference populations. The strategies that selected only the females that had high estimated breeding values or yield deviations produced suboptimal results.  相似文献   

12.
Feed efficiency traits (FETs) are important economic indicators in poultry production. Because feed intake (FI) is a time-dependent variable, longitudinal models can provide insights into the genetic basis of FET variation over time. It is expected that the application of longitudinal models as part of genome-wide association (GWA) and genomic selection (i.e. genome-wide selection (GS)) studies will lead to an increase in accuracy of selection. Thus, the objectives of this study were to evaluate the accuracy of estimated breeding values (EBVs) based on pedigree as well as high-density single nucleotide polymorphism (SNP) genotypes, and to conduct a GWA study on longitudinal FI and residual feed intake (RFI) in a total of 312 chickens with phenotype and genotype in the F2 population. The GWA and GS studies reported in this paper were conducted using β-spline random regression models for FI and RFI traits in a chicken F2 population, with FI and BW recorded for each bird weekly between 2 and 10 weeks of age. A single SNP regression approach was used on spline coefficients for weekly FI and RFI traits, with results showing that two significant SNPs for FI occur in the synuclein (SNCAIP) gene. Results also show that these regions are significantly associated with the spline coefficients (q2) for 5- and 6-week-old birds, while GWA study results showed no SNP association with RFI in F2 chickens. Estimated breeding value predictions obtained using a pedigree-based best linear unbiased prediction (ABLUP) model were then compared with predictions based on genomic best linear unbiased prediction (GBLUP). The accuracy was measured as correlation between genomic EBV and EBV with the phenotypic value corrected for fixed effects divided by the square root of heritability. The regression of observed on predicted values was used to estimate bias of methods. Results show that prediction accuracies using GBLUP and ABLUP for the FI measured from 2nd to 10th week were between 0.06 and 0.46 and 0.03 and 0.37, respectively. These results demonstrate that genomic methods are able to increase the accuracy of predicted breeding values at later ages on the basis of both traits, and indicate that use of a longitudinal model can improve selection accuracy for the trajectory of traits in F2 chickens when compared with conventional methods.  相似文献   

13.

Background

With the advent of genomic selection, alternative relationship matrices are used in animal breeding, which vary in their coverage of distant relationships due to old common ancestors. Relationships based on pedigree (A) and linkage analysis (GLA) cover only recent relationships because of the limited depth of the known pedigree. Relationships based on identity-by-state (G) include relationships up to the age of the SNP (single nucleotide polymorphism) mutations. We hypothesised that the latter relationships were too old, since QTL (quantitative trait locus) mutations for traits under selection were probably more recent than the SNPs on a chip, which are typically selected for high minor allele frequency. In addition, A and GLA relationships are too recent to cover genetic differences accurately. Thus, we devised a relationship matrix that considered intermediate-aged relationships and compared all these relationship matrices for their accuracy of genomic prediction in a pig breeding situation.

Methods

Haplotypes were constructed and used to build a haplotype-based relationship matrix (GH), which considers more intermediate-aged relationships, since haplotypes recombine more quickly than SNPs mutate. Dense genotypes (38 453 SNPs) on 3250 elite breeding pigs were combined with phenotypes for growth rate (2668 records), lean meat percentage (2618), weight at three weeks of age (7387) and number of teats (5851) to estimate breeding values for all animals in the pedigree (8187 animals) using the aforementioned relationship matrices. Phenotypes on the youngest 424 to 486 animals were masked and predicted in order to assess the accuracy of the alternative genomic predictions.

Results

Correlations between the relationships and regressions of older on younger relationships revealed that the age of the relationships increased in the order A, GLA, GH and G. Use of genomic relationship matrices yielded significantly higher prediction accuracies than A. GH and G, differed not significantly, but were significantly more accurate than GLA.

Conclusions

Our hypothesis that intermediate-aged relationships yield more accurate genomic predictions than G was confirmed for two of four traits, but these results were not statistically significant. Use of estimated genotype probabilities for ungenotyped animals proved to be an efficient method to include the phenotypes of ungenotyped animals.  相似文献   

14.
Records on groups of individuals could be valuable for predicting breeding values when a trait is difficult or costly to measure on single individuals, such as feed intake and egg production. Adding genomic information has shown improvement in the accuracy of genetic evaluation of quantitative traits with individual records. Here, we investigated the value of genomic information for traits with group records. Besides, we investigated the improvement in accuracy of genetic evaluation for group-recorded traits when including information on a correlated trait with individual records. The study was based on a simulated pig population, including three scenarios of group structure and size. The results showed that both the genomic information and a correlated trait increased the accuracy of estimated breeding values (EBVs) for traits with group records. The accuracies of EBV obtained from group records with a size 24 were much lower than those with a size 12. Random assignment of animals to pens led to lower accuracy due to the weaker relationship between individuals within each group. It suggests that group records are valuable for genetic evaluation of a trait that is difficult to record on individuals, and the accuracy of genetic evaluation can be considerably increased using genomic information. Moreover, the genetic evaluation for a trait with group records can be greatly improved using a bivariate model, including correlated traits that are recorded individually. For efficient use of group records in genetic evaluation, relatively small group size and close relationships between individuals within one group are recommended.Subject terms: Genetic markers, Animal breeding  相似文献   

15.
Switchgrass (Panicum virgatum L.) is a perennial grass undergoing development as a biofuel feedstock. One of the most important factors hindering breeding efforts in this species is the need for accurate measurement of biomass yield on a per-hectare basis. Genomic selection on simple-to-measure traits that approximate biomass yield has the potential to significantly speed up the breeding cycle. Recent advances in switchgrass genomic and phenotypic resources are now making it possible to evaluate the potential of genomic selection of such traits. We leveraged these resources to study the ability of three widely-used genomic selection models to predict phenotypic values of morphological and biomass quality traits in an association panel consisting of predominantly northern adapted upland germplasm. High prediction accuracies were obtained for most of the traits, with standability having the highest ten-fold cross validation prediction accuracy (0.52). Moreover, the morphological traits generally had higher prediction accuracies than the biomass quality traits. Nevertheless, our results suggest that the quality of current genomic and phenotypic resources available for switchgrass is sufficiently high for genomic selection to significantly impact breeding efforts for biomass yield.  相似文献   

16.
The aim of the present study was to compare the predictive ability of SNP-BLUP model using different pseudo-phenotypes such as phenotype adjusted for fixed effects, estimated breeding value, and genomic estimated breeding value, using simulated and real data for beef FA profile of Nelore cattle finished in feedlot. A pedigree with phenotypes and genotypes of 10,000 animals were simulated, considering 50% of multiple sires in the pedigree. Regarding to phenotypes, two traits were simulated, one with high heritability (0.58), another with low heritability (0.13). Ten replicates were performed for each trait and results were averaged among replicates. A historical population was created from generation zero to 2020, with a constant size of 2000 animals (from generation zero to 1000) to produce different levels of linkage disequilibrium (LD). Therefore, there was a gradual reduction in the number of animals (from 2000 to 600), producing a “bottleneck effect” and consequently, genetic drift and LD starting in the generation 1001 to 2020. A total of 335,000 markers (with MAF greater or equal to 0.02) and 1000 QTL were randomly selected from the last generation of the historical population to generate genotypic data for the test population. The phenotypes were computed as the sum of the QTL effects and an error term sampled from a normal distribution with zero mean and variance equal to 0.88. For simulated data, 4000 animals of the generations 7, 8, and 9 (with genotype and phenotype) were used as training population, and 1000 animals of the last generation (10) were used as validation population. A total of 937 Nelore bulls with phenotype for fatty acid profiles (Sum of saturated, monounsaturated, omega 3, omega 6, ratio of polyunsaturated and saturated and polyunsaturated fatty acid profile) were genotyped using the Illumina BovineHD BeadChip (Illumina, San Diego, CA) with 777,962 SNP. To compare the accuracy and bias of direct genomic value (DGV) for different pseudo-phenotypes, the correlation between true breeding value (TBV) or DGV with pseudo-phenotypes and linear regression coefficient of the pseudo-phenotypes on TBV for simulated data or DGV for real data, respectively. For simulated data, the correlations between DGV and TBV for high heritability traits were higher than obtained with low heritability traits. For simulated and real data, the prediction ability was higher for GEBV than for Yc and EBV. For simulated data, the regression coefficient estimates (b(Yc,DGV)), were on average lower than 1 for high and low heritability traits, being inflated. The results were more biased for Yc and EBV than for GEBV. For real data, the GEBV displayed less biased results compared to Yc and EBV for SFA, MUFA, n-3, n-6, and PUFA/SFA. Despite the less biased results for PUFA using the EBV as pseudo-phenotype, the b(Yi,DGV estimates obtained for the different pseudo-phenotypes (Yc, EBV and GEBV) were very close. Genomic information can assist in improving beef fatty acid profile in Zebu cattle, since the use of genomic information yielded genomic values for fatty acid profile with accuracies ranging from low to moderate. Considering both simulated and real data, the ssGBLUP model is an appropriate alternative to obtain more reliable and less biased GEBVs as pseudo-phenotype in situations of missing pedigree, due to high proportion of multiple sires, being more adequate than EBV and Yc to predict direct genomic value for beef fatty acid profile.  相似文献   

17.

Background

Milkability, primarily evaluated by measurements of milking speed and time, has an economic impact in milk production of dairy cattle. Recently the Italian Brown Swiss Breeders Association has included milking speed in genetic evaluations. The main objective of this study was to investigate the possibility of implementing genomic selection for milk flow traits in the Italian Brown Swiss population and thereby evaluate the potential of genomic selection for novel traits in medium-sized populations. Predicted breeding values and reliabilities based on genomic information were compared with those obtained from traditional breeding values.

Methods

Milk flow measures for total milking time, ascending time, time of plateau, descending time, average milk flow and maximum milk flow were collected on 37 213 Italian Brown Swiss cows. Breeding values for genotyped sires (n = 1351) were obtained from standard BLUP and genome-enhanced breeding value techniques utilizing two-stage and single-step methods. Reliabilities from a validation dataset were estimated and used to compare accuracies obtained from parental averages with genome-enhanced predictions.

Results

Genome-enhanced breeding values evaluated using two-stage methods had similar reliabilities with values ranging from 0.34 to 0.49 for the different traits. Across two-stage methods, the average increase in reliability from parental average was approximately 0.17 for all traits, with the exception of descending time, for which reliability increased to 0.11. Combining genomic and pedigree information in a single-step produced the largest increases in reliability over parent averages: 0.20, 0.24, 0.21, 0.14, 0.20 and 0.21 for total milking time, ascending time, time of plateau, descending time, average milk flow and maximum milk flow, respectively.

Conclusions

Using genomic models increased the accuracy of prediction compared to traditional BLUP methods. Our results show that, among the methods used to predict genome-enhanced breeding values, the single-step method was the most successful at increasing the reliability for most traits. The single-step method takes advantage of all the data available, including phenotypes from non-genotyped animals, and can easily be incorporated into current breeding evaluations.  相似文献   

18.
In livestock populations, missing genotypes on a large proportion of the animals is a major problem when implementing gene-assisted breeding value estimation for genes with known effect. The objective of this study was to compare different methods to deal with missing genotypes on accuracy of gene-assisted breeding value estimation for identified bi-allelic genes using Monte Carlo simulation. A nested full-sib half-sib structure was simulated with a mixed inheritance model with one bi-allelic quantitative trait loci (QTL) and a polygenic effect due to infinite number of polygenes. The effect of the QTL was included in gene-assisted BLUP either by random regression on predicted gene content, i.e. the number of positive alleles, or including haplotype effects in the model with an inverse IBD matrix to account for identity-by-descent relationships between haplotypes using linkage analysis information (IBD-LA). The inverse IBD matrix was constructed using segregation indicator probabilities obtained from multiple marker iterative peeling. Gene contents for unknown genotypes were predicted using either multiple marker iterative peeling or mixed model methodology. For both methods, gene-assisted breeding value estimation increased accuracies of total estimated breeding value (EBV) with 0% to 22% for genotyped animals in comparison to conventional breeding value estimation. For animals that were not genotyped, the increase in accuracy was much lower (0% to 5%), but still substantial when the heritability was 0.1 and when the QTL explained at least 15% of the genetic variance. Regression on predicted gene content yielded higher accuracies than IBD-LA. Allele substitution effects were, however, overestimated, especially when only sires and males in the last generation were genotyped. For juveniles without phenotypic records and traits measured only on females, the superiority of regression on gene content over IBD-LA was larger than when all animals had phenotypes. Missing gene contents were predicted with higher accuracy using multiple-marker iterative peeling than with using mixed model methodology, but the difference in accuracy of total EBV was negligible and mixed model methodology was computationally much faster than multiple iterative peeling. For large livestock populations it can be concluded that gene-assisted breeding value estimation can be practically best performed by regression on gene contents, using mixed model methodology to predict missing marker genotypes, combining phenotypic information of genotyped and ungenotyped animals in one evaluation. This technique would be, in principle, also feasible for genomic selection. It is expected that genomic selection for ungenotyped animals using predicted single nucleotide polymorphism gene contents might be beneficial especially for low heritable traits.  相似文献   

19.
Improving feed efficiency in dairy cattle could result in more profitable and environmentally sustainable dairy production through lowering feed costs and emissions from dairy farming. In addition, beef production based on dairy herds generates fewer greenhouse gas emissions per unit of meat output than beef production from suckler cow systems. Different scenarios were used to assess the profitability of adding traits, excluded from the current selection index for Finnish Ayrshire, to the breeding goal for combined dairy and beef production systems. The additional breeding goal traits were growth traits (average daily gain of animals in the fattening and rearing periods), carcass traits (fat covering, fleshiness and dressing percentage), mature live weight (LW) of cows and residual feed intake (RFI) traits. A breeding scheme was modeled for Finnish Ayrshire under the current market situation in Finland using the deterministic simulation software ZPLAN+. With the economic values derived for the current production system, the inclusion of growth and carcass traits, while preventing LW increase generated the highest improvement in the discounted profit of the breeding program (3.7%), followed by the scenario where all additional traits were included simultaneously (5.1%). The use of a selection index that included growth and carcass traits excluding LW, increased the profit (0.8%), but reduced the benefits resulted from breeding for beef traits together with LW. A moderate decrease in the profit of the breeding program was obtained when adding only LW to the breeding goal (−3.1%), whereas, adding only RFI traits to the breeding goal resulted in a minor increase in the profit (1.4%). Including beef traits with LW in the breeding goal showed to be the most potential option to improve the profitability of the combined dairy and beef production systems and would also enable a higher rate of self-sufficiency in beef. When considering feed efficiency related traits, the inclusion of LW traits in the breeding goal that includes growth and carcass traits could be more profitable than the inclusion of RFI, because the marginal costs of measuring LW can be expected to be lower than for RFI and it is readily available for selection. In addition, before RFI can be implemented as a breeding objective, the genetic correlations between RFI and other breeding goal traits estimated for the studied population as well as information on the most suitable indicator traits for RFI are needed to assess more carefully the consequences of selecting for RFI.  相似文献   

20.

Background

The prediction accuracy of several linear genomic prediction models, which have previously been used for within-line genomic prediction, was evaluated for multi-line genomic prediction.

Methods

Compared to a conventional BLUP (best linear unbiased prediction) model using pedigree data, we evaluated the following genomic prediction models: genome-enabled BLUP (GBLUP), ridge regression BLUP (RRBLUP), principal component analysis followed by ridge regression (RRPCA), BayesC and Bayesian stochastic search variable selection. Prediction accuracy was measured as the correlation between predicted breeding values and observed phenotypes divided by the square root of the heritability. The data used concerned laying hens with phenotypes for number of eggs in the first production period and known genotypes. The hens were from two closely-related brown layer lines (B1 and B2), and a third distantly-related white layer line (W1). Lines had 1004 to 1023 training animals and 238 to 240 validation animals. Training datasets consisted of animals of either single lines, or a combination of two or all three lines, and had 30 508 to 45 974 segregating single nucleotide polymorphisms.

Results

Genomic prediction models yielded 0.13 to 0.16 higher accuracies than pedigree-based BLUP. When excluding the line itself from the training dataset, genomic predictions were generally inaccurate. Use of multiple lines marginally improved prediction accuracy for B2 but did not affect or slightly decreased prediction accuracy for B1 and W1. Differences between models were generally small except for RRPCA which gave considerably higher accuracies for B2. Correlations between genomic predictions from different methods were higher than 0.96 for W1 and higher than 0.88 for B1 and B2. The greater differences between methods for B1 and B2 were probably due to the lower accuracy of predictions for B1 (~0.45) and B2 (~0.40) compared to W1 (~0.76).

Conclusions

Multi-line genomic prediction did not affect or slightly improved prediction accuracy for closely-related lines. For distantly-related lines, multi-line genomic prediction yielded similar or slightly lower accuracies than single-line genomic prediction. Bayesian variable selection and GBLUP generally gave similar accuracies. Overall, RRPCA yielded the greatest accuracies for two lines, suggesting that using PCA helps to alleviate the “n ≪ p” problem in genomic prediction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0057-5) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号