首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
    
Today, almost all reference populations consist of progeny tested bulls. However, older progeny tested bulls do not have reliable estimated breeding values (EBV) for new traits. Thus, to be able to select for these new traits, it is necessary to build a reference population. We used a deterministic prediction model to test the hypothesis that the value of cows in reference populations depends on the availability of phenotypic records. To test the hypothesis, we investigated different strategies of building a reference population for a new functional trait over a 10-year period. The trait was either recorded on a large scale (30 000 cows per year) or on a small scale (2000 cows per year). For large-scale recording, we compared four scenarios where the reference population consisted of 30 sires; 30 sires and 170 test bulls; 30 sires and 2000 cows; or 30 sires, 2000 cows and 170 test bulls in the first year with measurements of the new functional trait. In addition to varying the make-up of the reference population, we also varied the heritability of the trait (h2 = 0.05 v. 0.15). The results showed that a reference population of test bulls, cows and sires results in the highest accuracy of the direct genomic values (DGV) for a new functional trait, regardless of its heritability. For small-scale recording, we compared two scenarios where the reference population consisted of the 2000 cows with phenotypic records or the 30 sires of these cows in the first year with measurements of the new functional trait. The results showed that a reference population of cows results in the highest accuracy of the DGV whether the heritability is 0.05 or 0.15, because variation is lost when phenotypic data on cows are summarized in EBV of their sires. The main conclusions from this study are: (i) the fewer phenotypic records, the larger effect of including cows in the reference population; (ii) for small-scale recording, the accuracy of the DGV will continue to increase for several years, whereas the increases in the accuracy of the DGV quickly decrease with large-scale recording; (iii) it is possible to achieve accuracies of the DGV that enable selection for new functional traits recorded on a large scale within 3 years from commencement of recording; and (iv) a higher heritability benefits a reference population of cows more than a reference population of bulls.  相似文献   

2.
    
Feed is a major component of variable costs associated with dairy systems and is therefore an important consideration for breeding objectives. As a result, measures of feed efficiency are becoming popular traits for genetic analyses. Already, several countries account for feed efficiency in their breeding objectives by approximating the amount of energy required for milk production, maintenance, etc. However, variation in actual feed intake is currently not captured in dairy selection objectives, although this could be possible by evaluating traits such as residual feed intake (RFI), defined as the difference between actual and predicted feed (or energy) intake. As feed intake is expensive to accurately measure on large numbers of cows, phenotypes derived from it are obvious candidates for genomic selection provided that: (1) the trait is heritable; (2) the reliability of genomic predictions are acceptable to those using the breeding values; and (3) if breeding values are estimated for heifers, rather than cows then the heifer and cow traits need to be correlated. The accuracy of genomic prediction of dry matter intake (DMI) and RFI has been estimated to be around 0.4 in beef and dairy cattle studies. There are opportunities to increase the accuracy of prediction, for example, pooling data from three research herds (in Australia and Europe) has been shown to increase the accuracy of genomic prediction of DMI from 0.33 within country to 0.35 using a three-country reference population. Before including RFI as a selection objective, genetic correlations with other traits need to be estimated. Weak unfavourable genetic correlations between RFI and fertility have been published. This could be because RFI is mathematically similar to the calculation of energy balance and failure to account for mobilisation of body reserves correctly may result in selection for a trait that is similar to selecting for reduced (or negative) energy balance. So, if RFI is to become a selection objective, then including it in an overall multi-trait selection index where the breeding objective is net profit is sensible, as this would allow genetic correlations with other traits to be properly accounted for. If genetic parameters are accurately estimated then RFI is a logical breeding objective. If there is uncertainty in these, then DMI may be preferable.  相似文献   

3.
    
Availability of high-density single nucleotide polymorphism (SNP) genotyping platforms provided unprecedented opportunities to enhance breeding programmes in livestock, poultry and plant species, and to better understand the genetic basis of complex traits. Using this genomic information, genomic breeding values (GEBVs), which are more accurate than conventional breeding values. The superiority of genomic selection is possible only when high-density SNP panels are used to track genes and QTLs affecting the trait. Unfortunately, even with the continuous decrease in genotyping costs, only a small fraction of the population has been genotyped with these high-density panels. It is often the case that a larger portion of the population is genotyped with low-density and low-cost SNP panels and then imputed to a higher density. Accuracy of SNP genotype imputation tends to be high when minimum requirements are met. Nevertheless, a certain rate of genotype imputation errors is unavoidable. Thus, it is reasonable to assume that the accuracy of GEBVs will be affected by imputation errors; especially, their cumulative effects over time. To evaluate the impact of multi-generational selection on the accuracy of SNP genotypes imputation and the reliability of resulting GEBVs, a simulation was carried out under varying updating of the reference population, distance between the reference and testing sets, and the approach used for the estimation of GEBVs. Using fixed reference populations, imputation accuracy decayed by about 0.5% per generation. In fact, after 25 generations, the accuracy was only 7% lower than the first generation. When the reference population was updated by either 1% or 5% of the top animals in the previous generations, decay of imputation accuracy was substantially reduced. These results indicate that low-density panels are useful, especially when the generational interval between reference and testing population is small. As the generational interval increases, the imputation accuracies decay, although not at an alarming rate. In absence of updating of the reference population, accuracy of GEBVs decays substantially in one or two generations at the rate of 20% to 25% per generation. When the reference population is updated by 1% or 5% every generation, the decay in accuracy was 8% to 11% after seven generations using true and imputed genotypes. These results indicate that imputed genotypes provide a viable alternative, even after several generations, as long the reference and training populations are appropriately updated to reflect the genetic change in the population.  相似文献   

4.
The rapid accumulation of genomic data has led to an explosion of studies searching for signals of past selection left within DNA sequences. Yet the majority of theoretical studies investigating the traces of selection have assumed a simple form of selection, without interactions among selectively fixed sites. Fitness interactions—‘epistasis’—are commonplace, however, and take on a myriad of forms ( Whitlock et al. 1995 ; Segrèet al. 2005 ; Phillips 2008 ). It is thus important to determine how such epistasis would influence selective sweeps. On p. 5018 of this issue, Takahasi (2009) explores the effect of epistasis on genetic variation neighbouring two sites that interact in determining fitness, finding that such epistasis has a dramatic impact on the genetic variability in regions surrounding the interacting sites.  相似文献   

5.
    
Supernumerary teats represent a common abnormality of the bovine udder. A genome‐wide association study was performed based on the proportion of the occurrence of supernumerary teats in the daughters of 1097 Holstein bulls. The heritability of caudal supernumerary teats without mammary gland in this study was 0.604. The largest proportion of the heritability was attributable to BTA 20. The strongest evidence for association was with five SNPs on chromosome 20, referred to as a QTL. The mode of inheritance at this QTL was dominant. These findings reveal that the occurrence of caudal supernumerary teats without mammary gland in Holstein cattle is influenced by a QTL on chromosome 20 and a polygenic part. The data support the high potential of the SNPs in the QTL region as markers for breeding against caudal supernumerary teats.  相似文献   

6.
    
Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (rTI) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of rmg = 0.5. For a low heritability trait (h2 = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles rTI from 0.27 to 0.54. Including the conventional information source ‘own performance’ into the before mentioned index, additional SNP information increases rTI by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs.  相似文献   

7.
    
Stochastic simulation was used for studying the impacts of sexed semen on genetic progress and reproductive performance of dairy cows. Three strategies were compared: WSS (use unsexed semen in cows and heifers), SSH (use sexed semen in heifers and unsexed semen in cows) and SSCH (use sexed semen in both cows and heifers). Conception rate (CR) of unsexed semen was considered to be 35% and 65% in cows and heifers, respectively. CR of sexed semen was considered to be 15 (20% in cows and 50% in heifers), 10, 5 and 0 percentage points lower than unsexed semen. Thus, four subschemes were compared under SSCH (SSCH15, SSCH10, SSCH5, SSCH0) and SSH (SSH15, SSH10, SSH5, SSH0). Moreover, the effect was studied in four distinct paths of selection: active sires (AS), young bulls (YB), bull dams (BD) and milking cows (CW). The average genetic superiority of CW was 12% and 9.5% in SSCH15 and SSH15 strategies relative to a base scheme, respectively. The average genetic superiority of CW was 19% and 10.5% in SSCH0 and SSH0, respectively. Regression analysis showed that genetic superiority of CW increased significantly, that is, 0.5% and 0.1% per every 1% increase in CR in SSCH and SSH, respectively. The result showed that there is a significant difference between genetic superiority of cows in SSCH and SSH schemes. Widespread and limited use of sexed semen in commercial dairy herds resulted in a large genetic advantage in CW. The genetic advantage of gender control was minimal in the selection paths of AS, YB and BD. Open days and services per conception reached to 153 v. 125 days and 5 v. 2.86 under SSCH15 compared with WSS. The age at first calving increased from 774 to 790 days in SSH15 and SSCH15 strategies. Mean of parities decreased to 2.26 v. 2.42 by using sexed semen. The widespread use of sexed semen increased the age average of cows in all parities. Sexed semen increased selection intensity in the CW path, and this contributed to the genetic merit of future cows. On the other hand, sexed semen had a negative effect on the reproductive performance of dairy cows. Generally, although the effect of widespread use of sexed semen (SSCH) on genetic progress is significantly more than limited use of sexed semen (SSH), SSCH decreased reproductive performance of dairy herds dramatically, and this suggests that SSH scenarios might be more appropriate in animal breeding programs. Finally, to make a decision of which schemes are more convenient, it is necessary to compare the economic aspects of schemes.  相似文献   

8.
    
Genetic improvement of complex traits in animal and plant breeding depends on the efficient and accurate estimation of breeding values. Deep learning methods have been shown to be not superior over traditional genomic selection (GS) methods, partially due to the degradation problem (i.e. with the increase of the model depth, the performance of the deeper model deteriorates). Since the deep learning method residual network (ResNet) is designed to solve gradient degradation, we examined its performance and factors related to its prediction accuracy in GS. Here we compared the prediction accuracy of conventional genomic best linear unbiased prediction, Bayesian methods (BayesA, BayesB, BayesC, and Bayesian Lasso), and two deep learning methods, convolutional neural network and ResNet, on three datasets (wheat, simulated and real pig data). ResNet outperformed other methods in both Pearson's correlation coefficient (PCC) and mean squared error (MSE) on the wheat and simulated data. For the pig backfat depth trait, ResNet still had the lowest MSE, whereas Bayesian Lasso had the highest PCC. We further clustered the pig data into four groups and, on one separated group, ResNet had the highest prediction accuracy (both PCC and MSE). Transfer learning was adopted and capable of enhancing the performance of both convolutional neural network and ResNet. Taken together, our findings indicate that ResNet could improve GS prediction accuracy, affected potentially by factors such as the genetic architecture of complex traits, data volume, and heterogeneity.  相似文献   

9.
    
This study investigated the potential application of genomic selection under a multi-breed scheme in the Spanish autochthonous beef cattle populations using a simulation study that replicates the structure of linkage disequilibrium obtained from a sample of 25 triplets of sire/dam/offspring per population and using the BovineHD Beadchip. Purebred and combined reference sets were used for the genomic evaluation and several scenarios of different genetic architecture of the trait were investigated. The single-breed evaluations yielded the highest within-breed accuracies. Across breed accuracies were found low but positive on average confirming the genetic connectedness between the populations. If the same genotyping effort is split in several populations, the accuracies were lower when compared with single-breed evaluation, but showed a small advantage over small-sized purebred reference sets over the accuracies of subsequent generations. Besides, the genetic architecture of the trait did not show any relevant effect on the accuracy with the exception of rare variants, which yielded slightly lower results and higher loss of predictive ability over the generations.  相似文献   

10.
    
We investigated the effect of maternal sire on early pregnancy failure (between D0, day of insemination and D90) in their progeny during the first and second lactations (n=3508) in the Holstein breed. The estimated breeding value (EBV) for cow fertility of 12 bulls (reliability⩾0.95) was used to create the following three groups: low, medium and high EBV (EBV from −0.7 to 1 expressed as genetic standard deviation relative to the mean of the breed). In their daughters (93 to 516 per bull), progesterone measurement was carried out on the day of artificial insemination (AI; D0) to check whether the cows were in the follicular phase and on D18 to 25 to assess non-fertilisation-early embryonic mortality (NF-EEM). Late embryonic mortality (LEM) and early foetal death (FD) were determined by ultrasonography on D45 and D90 and by the return to oestrus after the first AI. Frequencies of NF-EEM, LEM, FD and pregnancy were 33.3%, 11.7%, 1.4% and 48.5% and incidences were 35.1, 19.0, 2.7 and 51.1, respectively. Sire EBV was significantly related to the incidences of pregnancy failure between D0 and D90, fertilisation failure-early embryonic mortality (FF-EEM) and LEM but not to the incidence of FD between D45 and D90 of pregnancy. The relative risk (RR) of FF-EEM was significantly higher (RR=1.2; P<0.05) for the progeny group of low EBV bulls when compared with high EBV bulls. The same effect was observed when comparing LEM of the progeny groups from the low EBV bulls to those from moderate and high EBV bulls (RR, respectively, of 1.3 and 1.4; P<005). The incidence of FF-EEM was significantly higher when cows were inseminated before 80 days postpartum compared with later, and for the extreme values of the difference between milk fat and protein content measured during the first 3 months of lactation. FF-EEM was also significantly related to the year of observation. The incidence of LEM was higher for the highest producing cows and was influenced by interaction between milk yield×lactation rank and milk yield×milk protein content. In conclusion, this study showed large differences in early pregnancy failure between progeny groups and highlights the interest of accurate characterisation of embryonic death in order to identify potential candidate genes for female fertility.  相似文献   

11.
    
In this study, the effects of breed composition and predictor dimensionality on the accuracy of direct genomic values (DGV) in a multiple breed (MB) cattle population were investigated. A total of 3559 bulls of three breeds were genotyped at 54 001 single nucleotide polymorphisms: 2093 Holstein (H), 749 Brown Swiss (B) and 717 Simmental (S). DGV were calculated using a principal component (PC) approach for either single (SB) or MB scenarios. Moreover, DGV were computed using all SNP genotypes simultaneously with SNPBLUP model as comparison. A total of seven data sets were used: three with a SB each, three with different pairs of breeds (HB, HS and BS), and one with all the three breeds together (HBS), respectively. Editing was performed separately for each scenario. Reference populations differed in breed composition, whereas the validation bulls were the same for all scenarios. The number of SNPs retained after data editing ranged from 36 521 to 41 360. PCs were extracted from actual genotypes. The total number of retained PCs ranged from 4029 to 7284 in Brown Swiss and HBS respectively, reducing the number of predictors by about 85% (from 82% to 89%). In all, three traits were considered: milk, fat and protein yield. Correlations between deregressed proofs and DGV were used to assess prediction accuracy in validation animals. In the SB scenarios, average DGV accuracy did not substantially change when either SNPBLUP or PC were used. Improvement of DGV accuracy were observed for some traits in Brown Swiss, only when MB reference populations and PC approach were used instead of SB-SNPBLUP (+10% HBS, +16%HB for milk yield and +3% HBS and +7% HB for protein yield, respectively). With the exclusion of the abovementioned cases, similar accuracies were observed using MB reference population, under the PC or SNPBLUP models. Random variation owing to sampling effect or size and composition of the reference population may explain the difficulty in finding a defined pattern in the results.  相似文献   

12.
    
Extensive genetic progress has been achieved in dairy cattle populations on many traits of economic importance because of efficient breeding programmes. Success of these programmes has relied on progeny testing of the best young males to accurately assess their genetic merit and hence their potential for breeding. Over the last few years, the integration of dense genomic information into statistical tools used to make selection decisions, commonly referred to as genomic selection, has enabled gains in predicting accuracy of breeding values for young animals without own performance. The possibility to select animals at an early stage allows defining new breeding strategies aimed at boosting genetic progress while reducing costs. The first objective of this article was to review methods used to model and optimize breeding schemes integrating genomic selection and to discuss their relative advantages and limitations. The second objective was to summarize the main results and perspectives on the use of genomic selection in practical breeding schemes, on the basis of the example of dairy cattle populations. Two main designs of breeding programmes integrating genomic selection were studied in dairy cattle. Genomic selection can be used either for pre-selecting males to be progeny tested or for selecting males to be used as active sires in the population. The first option produces moderate genetic gains without changing the structure of breeding programmes. The second option leads to large genetic gains, up to double those of conventional schemes because of a major reduction in the mean generation interval, but it requires greater changes in breeding programme structure. The literature suggests that genomic selection becomes more attractive when it is coupled with embryo transfer technologies to further increase selection intensity on the dam-to-sire pathway. The use of genomic information also offers new opportunities to improve preservation of genetic variation. However, recent simulation studies have shown that putting constraints on genomic inbreeding rates for defining optimal contributions of breeding animals could significantly reduce achievable genetic gain. Finally, the article summarizes the potential of genomic selection to include new traits in the breeding goal to meet societal demands regarding animal health and environmental efficiency in animal production.  相似文献   

13.
    
An efficient algorithm for genomic selection of moderately sized populations based on single nucleotide polymorphism chip technology is described. A total of 995 Israeli Holstein bulls with genetic evaluations based on daughter records were genotyped for either the BovineSNP50 BeadChip or the BovineSNP50 v2 BeadChip. Milk, fat, protein, somatic cell score, female fertility, milk production persistency and herd-life were analyzed. The 400 markers with the greatest effects on each trait were first selected based on individual analysis of each marker with the genetic evaluations of the bulls as the dependent variable. The effects of all 400 markers were estimated jointly using a 'cow model,' estimated from the data truncated to exclude lactations with freshening dates after September 2006. Genotype probabilities for each locus were computed for all animals with missing genotypes. In Method I, genetic evaluations were computed by analysis of the truncated data set with the sum of the marker effects subtracted from each record. Genomic estimated breeding values for the young bulls with genotypes, but without daughter records, were then computed as their parent averages combined with the sum of each animal's marker effects. Method II genomic breeding values were computed based on regressions of estimated breeding values of bulls with daughter record on their parent averages, sum of marker effects and birth year. Method II correlations of the current breeding values of young bulls without daughter records in the truncated data set were higher than the correlations of the current breeding values with the parent averages for fat and protein production, persistency and herd-life. Bias of evaluations, estimated as a difference between the mean of current breeding values of the young bulls and their genomic evaluations, was reduced for milk production traits, persistency and herd-life. Bias for milk production traits was slightly negative, as opposed to the positive bias of parent averages. Correlations of Method II with the means of daughter records adjusted for fixed effects were higher than parent averages for fat, protein, fertility, persistency and herd-life. Reducing the number of markers included in the analysis from 400 to 300 did not reduce correlations of genomic breeding values for protein with current breeding values, but did slightly reduce correlations with means of daughter records. Method II has the advantages as compared with the method of VanRaden in that genotypes of cows can be readily incorporated into the Method II analysis, and it is more effective for moderately sized populations.  相似文献   

14.
    
Several studies have shown that computation of genomic estimated breeding values (GEBV) with accuracies significantly greater than parent average (PA) estimated breeding values (EBVs) requires genotyping of at least several thousand progeny-tested bulls. For all published analyses, GEBV computed from the selected samples of markers have lower or equal accuracy than GEBV derived on the basis of all valid single nucleotide polymorphisms (SNPs). In the current study, we report on four new methods for selection of markers. Milk, fat, protein, somatic cell score, fertility, persistency, herd life and the Israeli selection index were analyzed. The 972 Israeli Holstein bulls genotyped with EBV for milk production traits computed from daughter records in 2012 were assigned into a training set of 844 bulls with progeny test EBV in 2008, and a validation set of 128 young bulls. Numbers of bulls in the two sets varied slightly among the nonproduction traits. In EFF12, SNPs were first selected for each trait based on the effects of each marker on the bulls’ 2012 EBV corrected for effective relationships, as determined by the SNP matrix. EFF08 was the same as EFF12, except that the SNPs were selected on the basis of the 2008 EBV. In DIFmax, the SNPs with the greatest differences in allelic frequency between the bulls in the training and validation sets were selected, whereas in DIFmin the SNPs with the smallest differences were selected. For all methods, the numbers of SNPs retained varied over the range of 300 to 6000. For each trait, except fertility, an optimum number of markers between 800 and 5000 was obtained for EFF12, based on the correlation between the GEBV and current EBV of the validation bulls. For all traits, the difference between the correlation of GEBV and current EBV and the correlation of the PA and current EBV was >0.25. EFF08 was inferior to EFF12, and was generally no better than PA EBV. DIFmax always outperformed DIFmin and generally outperformed EFF08 and PA. Furthermore, GEBV based on DIFmax were generally less biased than PA. It is likely that other methods of SNP selection could improve upon these results.  相似文献   

15.
  总被引:1,自引:0,他引:1  
  相似文献   

16.
Some analytical and simulated criteria were used to determine whether a priori genetic differences among groups, which are not accounted for by the relationship matrix, ought to be fitted in models for genetic evaluation, depending on the data structure and the accuracy of the evaluation. These criteria were the mean square error of some extreme contrasts between animals, the true genetic superiority of animals selected across groups, i.e. the selection response, and the magnitude of selection bias (difference between true and predicted selection responses). The different statistical models studied considered either fixed or random genetic groups (based on six different years of birth) versus ignoring the genetic group effects in a sire model. Including fixed genetic groups led to an overestimation of selection response under BLUP selection across groups despite the unbiasedness of the estimation, i.e. despite the correct estimation of differences between genetic groups. This overestimation was extremely important in numerical applications which considered two kinds of within-station progeny test designs for French purebred beef cattle AI sire evaluation across years: the reference sire design and the repeater sire design. When assuming a priori genetic differences due to the existence of a genetic trend of around 20% of genetic standard deviation for a trait with h2 = 0.4, in a repeater sire design, the overestimation of the genetic superiority of bulls selected across groups varied from about 10% for an across-year selection rate p = 1/6 and an accurate selection index (100 progeny records per sire) to 75% for p = 1/2 and a less accurate selection index (20 progeny records per sire). This overestimation decreased when the genetic trend, the heritability of the trait, the accuracy of the evaluation or the connectedness of the design increased. Whatever the data design, a model of genetic evaluation without groups was preferred to a model with genetic groups when the genetic trend was in the range of likely values in cattle breeding programs (0 to 20% of genetic standard deviation). In such a case, including random groups was pointless and including fixed groups led to a large overestimation of selection response, smaller true selection response across groups and larger variance of estimation of the differences between groups. Although the genetic trend was correctly predicted by a model fitting fixed genetic groups, important errors in predicting individual breeding values led to incorrect ranking of animals across groups and, consequently, led to lower selection response.  相似文献   

17.
    
The objective of this study was to identify possible risk factors for poor cow hind limb cleanliness in Danish loose-housed, lactating dairy cows. The study was conducted as a cross-sectional study of 1315 cows in 42 commercial Danish dairy herds with primarily Danish Holstein cows. The effect of four cow-level factors (parity, days in milk, daily lying time and lameness) and eight herd-level factors (herd size, milk production, milking system, floor type, access to pasture grazing, floor scraping frequency, hoof bathing frequency and hoof washing frequency) on the risk of having dirtier hind limbs were analysed using ordinal logistic regression fitting a proportional odds model. Cow hind limb cleanliness was scored using an ordinal score from 1 to 4: 1 being clean and 4 being covered in dirt. The odds ratios (ORs) estimated from the proportional odds model depict the effect of a risk factor on the odds of having a higher rather than a lower cleanliness score. First parity cows had an increased risk of being dirtier compared with third parity or older cows (OR=1.70). Compared with late lactation, early and mid lactation were associated with an increased risk of being dirtier (OR=2.07 and 1.33, respectively). Decreasing the daily time lying by 30 min was associated with an increased risk of being dirtier (OR=1.05). Furthermore, an increased risk of being dirtier was found in herds with no pasture access (OR=3.75).  相似文献   

18.
    
The aim of this work was to investigate the variations of milk fatty acid (FA) composition because of changing paddocks in two different rotational grazing systems. A total of nine Holstein and nine Montbéliarde cows were divided into two equivalent groups according to milk yield, fat and protein contents and calving date, and were allocated to the following two grazing systems: a long duration (LD; 17 days) of paddock utilisation on a heterogeneous pasture and a medium duration (MD) of paddock utilisation (7 to 10 days) on a more intensively managed pasture. The MD cows were supplemented with 4 kg of concentrate/cow per day. Grazing selection was characterised through direct observations and simulated bites, collected at the beginning and at the end of the utilisation of two subsequent MD paddocks, and at the same dates for the LD system. Individual milks were sampled the first 3 days and the last 2 days of grazing on each MD paddock, and simultaneously also for the LD system. Changes in milk FA composition at the beginning of each paddock utilisation were highly affected by the herbage characteristics. Abrupt changes in MD milk FA composition were observed 1 day after the cows were moved to a new paddock. The MD cows grazed by layers from the bottom layers of the previous paddock to the top layers of the subsequent new paddock, resulting in bites with high organic matter digestibility (OMD) value and CP content and a low fibre content at the beginning of each paddock utilisation. These changes could induce significant day-to-day variations of the milk FA composition. The milk fat proportions of 16:0, saturated FA and branched-chain FA decreased, whereas proportions of de novo-synthesised FA, 18:0, c9-18:1 and 18:2n-6 increased at paddock change. During LD plot utilisation, the heterogeneity of the vegetation allowed the cows to select vegetative patches with higher proportion of leaves, CP content, OMD value and the lowest fibre content. These small changes in CP, NDF and ADF contents of LD herbage and in OMD values, from the beginning to the end of the experiment, could minimally modify the ruminal ecosystem, production of precursors of de novo-synthesised FA and ruminal biohydrogenation, and could induce only small day-to-day variations in the milk FA composition.  相似文献   

19.
A whole genome scan was carried out to detect quantitative trait loci (QTL) for fertility traits in Finnish Ayrshire cattle. The mapping population consisted of 12 bulls and 493 sons. Estimated breeding values for days open, fertility treatments, maternal calf mortality and paternal non-return rate were used as phenotypic data. In a granddaughter design, 171 markers were typed on all 29 bovine autosomes. Associations between markers and traits were analysed by multiple marker regression. Multi-trait analyses were carried out with a variance component based approach for the chromosomes and trait combinations, which were observed significant in the regression method. Twenty-two chromosome-wise significant QTL were detected. Several of the detected QTL areas were overlapping with milk production QTL previously identified in the same population. Multi-trait QTL analyses were carried out to test if these effects were due to a pleiotropic QTL affecting fertility and milk yield traits or to linked QTL causing the effects. This distinction could only be made with confidence on BTA1 where a QTL affecting milk yield is linked to a pleiotropic QTL affecting days open and fertility treatments.  相似文献   

20.
    
The objective of this study was to compare the efficiency of transfer of selenium (Se) to plasma and milk from inorganic sodium selenite, either free or microencapsulated, and from selenized yeast in dairy cows. The study consisted of an in situ-nylon bags incubation, and in an in vivo experiment to compare the Se status of cows supplemented with either sodium selenite, microencapsulated sodium selenite, or Se yeast. Thirty dairy cows, divided in five groups, were fed the following diets: the control group (CTR) received a total mixed ration supplemented with sodium selenite in order to have 0.3 mg/kg DM of total Se; 0.3M and 0.5M groups received the same control diet supplemented with lipid microencapsulated sodium selenite to provide 0.3 and 0.5 mg/kg DM of total Se, respectively; 0.3Y and 0.5Y groups received selenized yeast to provide 0.3 and 0.5 mg/kg of total Se, respectively. Cows were fed the supplements for 56 days during which milk, blood, and fecal samples were collected weekly to conduct analysis of Se and glutathione peroxidase (GSH-px) activity. Se concentration in the nylon bags was assessed to 72%, 64%, and 40% of the initial value (time 0) after 4, 8, and 24 h of incubation, respectively. In vivo, cows supplemented with 0.3 mg/kg of microencapsulated Se had higher milk Se concentration compared to CTR. The increment was more pronounced at the highest inclusion rate (0.5 mg/kg, 0.5M group). GSH-px activity was not significantly affected by treatments. The results indicate that lipid microencapsulation has the potential to protect nutrients from complete rumen reduction and that Se from microencapsulated selenite is incorporated in milk more efficiently than the free form. Microencapsulated sodium selenite was shown to be comparable to Se-yeast in terms of availability and incorporation in milk when fed at 0.3 mg/kg DM, whereas the inclusion in the diet at 0.5 mg/kg DM resulted in higher plasma and milk concentrations than selenized yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号