首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
In modern dairy cattle breeding, genomic breeding programs have the potential to increase efficiency and genetic gain. At the same time, the requirements and the availability of genotypes and phenotypes present a challenge. The set-up of a large enough reference population for genomic prediction is problematic for numerically small breeds but also for hard to measure traits. The first part of this study is a review of the current literature on strategies to overcome the lack of reference data. One solution is the use of combined reference populations from different breeds, different countries, or different research populations. Results reveal that the level of relationship between the merged populations is the most important factor. Compiling closely related populations facilitates the accurate estimation of marker effects and thus results in high accuracies of genomic prediction. Consequently, mixed reference populations of the same breed, but from different countries are more promising than combining different breeds, especially if those are more distantly related. The use of female reference information has the potential to enlarge the reference population size. Including females is advisable for small populations and difficult traits, and maybe combined with genotyping females and imputing those that are un-genotyped.The efficient use of imputation for un-genotyped individuals requires a set of genotyped related animals and well-considered selection strategies which animals to choose for genotyping and phenotyping. Small populations have to find ways to derive additional advantages from the cost-intensive establishment of genomic breeding schemes. Possible solutions may be the use of genomic information for inbreeding control, parentage verification, within-herd selection, adjusted mating plans or conservation strategies.The second part of the paper deals with the issue of high-quality phenotypes against the background of new, difficult and hard to measure traits. The use of contracted herds for phenotyping is recommended, as additional traits, when compared to standard traits used in dairy cattle breeding can be measured at set moments in time. This can be undertaken even for the recording of health traits, thus resulting in complete contemporary groups for health traits. Future traits to be recorded and used in genomic breeding programs, at least partly will be traits for which traditional selection based on widespread phenotyping is not possible. Enabling phenotyping of sufficient numbers to enable genomic selection will rely on cooperation between scientists from different disciplines and may require multidisciplinary approaches.  相似文献   

2.
C-L Wang  X-D Ding  J-Y Wang  J-F Liu  W-X Fu  Z Zhang  Z-J Yin  Q Zhang 《Heredity》2013,110(3):213-219
Estimation of genomic breeding values is the key step in genomic selection (GS). Manymethods have been proposed for continuous traits, but methods for threshold traits arestill scarce. Here we introduced threshold model to the framework of GS, and specifically,we extended the three Bayesian methods BayesA, BayesB and BayesCπ on the basis ofthreshold model for estimating genomic breeding values of threshold traits, and theextended methods are correspondingly termed BayesTA, BayesTB and BayesTCπ. Computingprocedures of the three BayesT methods using Markov Chain Monte Carlo algorithm werederived. A simulation study was performed to investigate the benefit of the presentedmethods in accuracy with the genomic estimated breeding values (GEBVs) for thresholdtraits. Factors affecting the performance of the three BayesT methods were addressed. Asexpected, the three BayesT methods generally performed better than the correspondingnormal Bayesian methods, in particular when the number of phenotypic categories was small.In the standard scenario (number of categories=2, incidence=30%,number of quantitative trait loci=50, h2=0.3), theaccuracies were improved by 30.4%, 2.4%, and 5.7% points,respectively. In most scenarios, BayesTB and BayesTCπ generated similar accuracies andboth performed better than BayesTA. In conclusion, our work proved that threshold modelfits well for predicting GEBVs of threshold traits, and BayesTCπ is supposed to be themethod of choice for GS of threshold traits.  相似文献   

3.
    
The aim of this study was to test how genetic gain for a trait not measured on the nucleus animals could be obtained within a genomic selection pig breeding scheme. Stochastic simulation of a pig breeding program including a breeding nucleus, a multiplier to produce and disseminate semen and a production tier where phenotypes were recorded was performed to test (1) the effect of obtaining phenotypic records from offspring of nucleus animals, (2) the effect of genotyping production animals with records for the purpose of including them in a genomic selection reference population or (3) to combine the two approaches. None of the tested strategies affected genetic gain if the trait under investigation had a low economic value of only 10% of the total breeding goal. When the relative economic weight was increased to 30%, a combination of the methods was most effective. Obtaining records from offspring of already genotyped nucleus animals had more impact on genetic gain than to genotype more distant relatives with phenotypes to update the reference population. When records cannot be obtained from offspring of nucleus animals, genotyping of production animals could be considered for traits with high economic importance.  相似文献   

4.
    
Small reference populations limit the accuracy of genomic prediction in numerically small breeds, such like Danish Jersey. The objective of this study was to investigate two approaches to improve genomic prediction by increasing size of reference population in Danish Jersey. The first approach was to include North American Jersey bulls in Danish Jersey reference population. The second was to genotype cows and use them as reference animals. The validation of genomic prediction was carried out on bulls and cows, respectively. In validation on bulls, about 300 Danish bulls (depending on traits) born in 2005 and later were used as validation data, and the reference populations were: (1) about 1050 Danish bulls, (2) about 1050 Danish bulls and about 1150 US bulls. In validation on cows, about 3000 Danish cows from 87 young half-sib families were used as validation data, and the reference populations were: (1) about 1250 Danish bulls, (2) about 1250 Danish bulls and about 1150 US bulls, (3) about 1250 Danish bulls and about 4800 cows, (4) about 1250 Danish bulls, 1150 US bulls and 4800 Danish cows. Genomic best linear unbiased prediction model was used to predict breeding values. De-regressed proofs were used as response variables. In the validation on bulls for eight traits, the joint DK-US bull reference population led to higher reliability of genomic prediction than the DK bull reference population for six traits, but not for fertility and longevity. Averaged over the eight traits, the gain was 3 percentage points. In the validation on cows for six traits (fertility and longevity were not available), the gain from inclusion of US bull in reference population was 6.6 percentage points in average over the six traits, and the gain from inclusion of cows was 8.2 percentage points. However, the gains from cows and US bulls were not accumulative. The total gain of including both US bulls and Danish cows was 10.5 percentage points. The results indicate that sharing reference data and including cows in reference population are efficient approaches to increase reliability of genomic prediction. Therefore, genomic selection is promising for numerically small population.  相似文献   

5.
    
In this study, an industry terminal breeding goal was used in a deterministic simulation, using selection index methodology, to predict genetic gain in a beef population modelled on the UK pedigree Limousin, when using genomic selection (GS) and incorporating phenotype information from novel commercial carcass traits. The effect of genotype–environment interaction was investigated by including the model variations of the genetic correlation between purebred and commercial cross-bred performance (ρX). Three genomic scenarios were considered: (1) genomic breeding values (GBV)+estimated breeding values (EBV) for existing selection traits; (2) GBV for three novel commercial carcass traits+EBV in existing traits; and (3) GBV for novel and existing traits plus EBV for existing traits. Each of the three scenarios was simulated for a range of training population (TP) sizes and with three values of ρX. Scenarios 2 and 3 predicted substantially higher percentage increases over current selection than Scenario 1. A TP of 2000 sires, each with 20 commercial progeny with carcass phenotypes, and assuming a ρX of 0.7, is predicted to increase gain by 40% over current selection in Scenario 3. The percentage increase in gain over current selection increased with decreasing ρX; however, the effect of varying ρX was reduced at high TP sizes for Scenarios 2 and 3. A further non-genomic scenario (4) was considered simulating a conventional population-wide progeny test using EBV only. With 20 commercial cross-bred progenies per sire, similar gain was predicted to Scenario 3 with TP=5000 and ρX=1.0. The range of increases in genetic gain predicted for terminal traits when using GS are of similar magnitude to those observed after the implementation of BLUP technology in the United Kingdom. It is concluded that implementation of GS in a terminal sire breeding goal, using purebred phenotypes alone, will be sub-optimal compared with the inclusion of novel commercial carcass phenotypes in genomic evaluations.  相似文献   

6.
    
Today, almost all reference populations consist of progeny tested bulls. However, older progeny tested bulls do not have reliable estimated breeding values (EBV) for new traits. Thus, to be able to select for these new traits, it is necessary to build a reference population. We used a deterministic prediction model to test the hypothesis that the value of cows in reference populations depends on the availability of phenotypic records. To test the hypothesis, we investigated different strategies of building a reference population for a new functional trait over a 10-year period. The trait was either recorded on a large scale (30 000 cows per year) or on a small scale (2000 cows per year). For large-scale recording, we compared four scenarios where the reference population consisted of 30 sires; 30 sires and 170 test bulls; 30 sires and 2000 cows; or 30 sires, 2000 cows and 170 test bulls in the first year with measurements of the new functional trait. In addition to varying the make-up of the reference population, we also varied the heritability of the trait (h2 = 0.05 v. 0.15). The results showed that a reference population of test bulls, cows and sires results in the highest accuracy of the direct genomic values (DGV) for a new functional trait, regardless of its heritability. For small-scale recording, we compared two scenarios where the reference population consisted of the 2000 cows with phenotypic records or the 30 sires of these cows in the first year with measurements of the new functional trait. The results showed that a reference population of cows results in the highest accuracy of the DGV whether the heritability is 0.05 or 0.15, because variation is lost when phenotypic data on cows are summarized in EBV of their sires. The main conclusions from this study are: (i) the fewer phenotypic records, the larger effect of including cows in the reference population; (ii) for small-scale recording, the accuracy of the DGV will continue to increase for several years, whereas the increases in the accuracy of the DGV quickly decrease with large-scale recording; (iii) it is possible to achieve accuracies of the DGV that enable selection for new functional traits recorded on a large scale within 3 years from commencement of recording; and (iv) a higher heritability benefits a reference population of cows more than a reference population of bulls.  相似文献   

7.
    
In this study, the effects of breed composition and predictor dimensionality on the accuracy of direct genomic values (DGV) in a multiple breed (MB) cattle population were investigated. A total of 3559 bulls of three breeds were genotyped at 54 001 single nucleotide polymorphisms: 2093 Holstein (H), 749 Brown Swiss (B) and 717 Simmental (S). DGV were calculated using a principal component (PC) approach for either single (SB) or MB scenarios. Moreover, DGV were computed using all SNP genotypes simultaneously with SNPBLUP model as comparison. A total of seven data sets were used: three with a SB each, three with different pairs of breeds (HB, HS and BS), and one with all the three breeds together (HBS), respectively. Editing was performed separately for each scenario. Reference populations differed in breed composition, whereas the validation bulls were the same for all scenarios. The number of SNPs retained after data editing ranged from 36 521 to 41 360. PCs were extracted from actual genotypes. The total number of retained PCs ranged from 4029 to 7284 in Brown Swiss and HBS respectively, reducing the number of predictors by about 85% (from 82% to 89%). In all, three traits were considered: milk, fat and protein yield. Correlations between deregressed proofs and DGV were used to assess prediction accuracy in validation animals. In the SB scenarios, average DGV accuracy did not substantially change when either SNPBLUP or PC were used. Improvement of DGV accuracy were observed for some traits in Brown Swiss, only when MB reference populations and PC approach were used instead of SB-SNPBLUP (+10% HBS, +16%HB for milk yield and +3% HBS and +7% HB for protein yield, respectively). With the exclusion of the abovementioned cases, similar accuracies were observed using MB reference population, under the PC or SNPBLUP models. Random variation owing to sampling effect or size and composition of the reference population may explain the difficulty in finding a defined pattern in the results.  相似文献   

8.
    
Daniel Gianola 《Genetics》2013,194(3):573-596
Whole-genome enabled prediction of complex traits has received enormous attention in animal and plant breeding and is making inroads into human and even Drosophila genetics. The term “Bayesian alphabet” denotes a growing number of letters of the alphabet used to denote various Bayesian linear regressions that differ in the priors adopted, while sharing the same sampling model. We explore the role of the prior distribution in whole-genome regression models for dissecting complex traits in what is now a standard situation with genomic data where the number of unknown parameters (p) typically exceeds sample size (n). Members of the alphabet aim to confront this overparameterization in various manners, but it is shown here that the prior is always influential, unless np. This happens because parameters are not likelihood identified, so Bayesian learning is imperfect. Since inferences are not devoid of the influence of the prior, claims about genetic architecture from these methods should be taken with caution. However, all such procedures may deliver reasonable predictions of complex traits, provided that some parameters (“tuning knobs”) are assessed via a properly conducted cross-validation. It is concluded that members of the alphabet have a room in whole-genome prediction of phenotypes, but have somewhat doubtful inferential value, at least when sample size is such that np.  相似文献   

9.
    
This paper reviews strategies and methods to improve accuracies of genomic predictions from the perspective of a numerically small population. Improvements are realized by influencing one or both of the main factors: (1) improve or increase genomic connections to phenotypic records in training data. (2) Models and strategies to focus genomic predictions on markers closer to the causative variants. Combining populations into a joint reference population results in high improvements when combining populations of the same breed and diminishes as the genetic distance between populations increases. For distantly related breeds sophisticated Bayesian variable selection models in combination with denser markers sets or functional subsets of markers is needed. This is expected to be further improved by the efficient use of sequence information. In addition predictions can be improved by the use of phenotypes of genotyped and non-genotyped cows directly. For a small population the optimal approach will combine the above components.  相似文献   

10.
    
Genomic selection has become increasingly important in the breeding of animals and plants. The response variable is an important factor, influencing the accuracy of genomic selection. The de-regressed proof (DRP) based on traditional estimated breeding value (EBV) is commonly used as response variable. In the current study, simulated data from 16th QTL-MAS Workshop and real data from Chinese Holstein cattle were used to compare accuracy and bias of genomic prediction with two methods of calculating DRP. Our results with simulated data showed that the correlation between genomic EBV and true breeding value achieved using the Jairath method (DRP_J) was superior to that achieved using the Garrick method (DRP_G) for simulated trait 1 but the reverse was true for simulated trait 3, and these two methods performed comparably for simulated trait 2. For all three simulated traits, DRP_J yielded larger bias of genomic prediction. However, DRP_J outperformed DRP_G in both accuracy and unbiasedness for four milk production traits in Chinese Holstein. In the estimation of genomic breeding value using genomic BLUP model, two methods for weighting diagonal elements of incidence matrix associated with residual error were also compared. With increasing the proportion of genetic variance unexplained by markers, the accuracy of genomic prediction was decreased and the bias was increased. Weighting by the reliability of DRP produced accuracy comparable to the evaluation where the proportion of genetic variance unexplained by markers was considered, but with smaller bias in general.  相似文献   

11.
    
This study aimed to assess the predictive ability of different machine learning (ML) methods for genomic prediction of reproductive traits in Nellore cattle. The studied traits were age at first calving (AFC), scrotal circumference (SC), early pregnancy (EP) and stayability (STAY). The numbers of genotyped animals and SNP markers available were 2342 and 321 419 (AFC), 4671 and 309 486 (SC), 2681 and 319 619 (STAY) and 3356 and 319 108 (EP). Predictive ability of support vector regression (SVR), Bayesian regularized artificial neural network (BRANN) and random forest (RF) were compared with results obtained using parametric models (genomic best linear unbiased predictor, GBLUP, and Bayesian least absolute shrinkage and selection operator, BLASSO). A 5‐fold cross‐validation strategy was performed and the average prediction accuracy (ACC) and mean squared errors (MSE) were computed. The ACC was defined as the linear correlation between predicted and observed breeding values for categorical traits (EP and STAY) and as the correlation between predicted and observed adjusted phenotypes divided by the square root of the estimated heritability for continuous traits (AFC and SC). The average ACC varied from low to moderate depending on the trait and model under consideration, ranging between 0.56 and 0.63 (AFC), 0.27 and 0.36 (SC), 0.57 and 0.67 (EP), and 0.52 and 0.62 (STAY). SVR provided slightly better accuracies than the parametric models for all traits, increasing the prediction accuracy for AFC to around 6.3 and 4.8% compared with GBLUP and BLASSO respectively. Likewise, there was an increase of 8.3% for SC, 4.5% for EP and 4.8% for STAY, comparing SVR with both GBLUP and BLASSO. In contrast, the RF and BRANN did not present competitive predictive ability compared with the parametric models. The results indicate that SVR is a suitable method for genome‐enabled prediction of reproductive traits in Nellore cattle. Further, the optimal kernel bandwidth parameter in the SVR model was trait‐dependent, thus, a fine‐tuning for this hyper‐parameter in the training phase is crucial.  相似文献   

12.
    
More robust cattle have the potential to increase farm profitability, improve animal welfare, reduce the contribution of ruminant livestock to greenhouse gas emissions and decrease the risk of food shortages in the face of increased variability in the farm environment. Breeding is a powerful tool for changing the robustness of cattle; however, insufficient recording of breeding goal traits and selection of animals at younger ages tend to favour genetic change in productivity traits relative to robustness traits. This paper has extended a previously proposed theory of artificial evolution to demonstrate, using deterministic simulation, how choice of breeding scheme design can be used as a tool to manipulate the direction of genetic progress, whereas the breeding goal remains focussed on the factors motivating individual farm decision makers. Particular focus was placed on the transition from progeny testing or mass selection to genomic selection breeding strategies. Transition to genomic selection from a breeding strategy where candidates are selected before records from progeny being available was shown to be highly likely to favour genetic progress in robustness traits relative to productivity traits. This was shown even with modest numbers of animals available for training and when heritability for robustness traits was only slightly lower than that for productivity traits. When transitioning from progeny testing to a genomic selection strategy without progeny testing, it was shown that there is a significant risk that robustness traits could become less influential in selection relative to productivity traits. Augmentations of training populations using genotyped cows and support for industry-wide improvements in phenotypic recording of robustness traits were put forward as investment opportunities for stakeholders wishing to facilitate the application of science on robust cattle into improved genetic selection schemes.  相似文献   

13.
The efficiency of marker-assisted prediction of phenotypes has been studied intensively for different types of plant breeding populations. However, one remaining question is how to incorporate and counterbalance information from biparental and multiparental populations into model training for genome-wide prediction. To address this question, we evaluated testcross performance of 1652 doubled-haploid maize (Zea mays L.) lines that were genotyped with 56,110 single nucleotide polymorphism markers and phenotyped for five agronomic traits in four to six European environments. The lines are arranged in two diverse half-sib panels representing two major European heterotic germplasm pools. The data set contains 10 related biparental dent families and 11 related biparental flint families generated from crosses of maize lines important for European maize breeding. With this new data set we analyzed genome-based best linear unbiased prediction in different validation schemes and compositions of estimation and test sets. Further, we theoretically and empirically investigated marker linkage phases across multiparental populations. In general, predictive abilities similar to or higher than those within biparental families could be achieved by combining several half-sib families in the estimation set. For the majority of families, 375 half-sib lines in the estimation set were sufficient to reach the same predictive performance of biomass yield as an estimation set of 50 full-sib lines. In contrast, prediction across heterotic pools was not possible for most cases. Our findings are important for experimental design in genome-based prediction as they provide guidelines for the genetic structure and required sample size of data sets used for model training.  相似文献   

14.
    
The adaptive potential of a population depends on the amount of additive genetic variance for quantitative traits of evolutionary importance. This variance is a direct function of the expected frequency of heterozygotes for the loci which affect the trait (QTL). It has been argued, but not demonstrated experimentally, that long‐term response to selection is more dependent on QTL allelic diversity than on QTL heterozygosity. Conservation programmes, aimed at preserving this variation, usually rely on neutral markers rather than on quantitative traits for making decisions on management. Here, we address, both through simulation analyses and experimental studies with Drosophila melanogaster, the question of whether allelic diversity for neutral markers is a better indicator of a high adaptive potential than expected heterozygosity. In both experimental and simulation studies, we established synthetic populations for which either heterozygosity or allelic diversity was maximized using information from QTL (simulations) or unlinked neutral markers (simulations and experiment). The synthetic populations were selected for the quantitative trait to evaluate the evolutionary potential provided by the two optimization methods. Our results show that maximizing the number of alleles of a low number of markers implies higher responses to selection than maximizing their heterozygosity.  相似文献   

15.
    
We studied the effect of including genomic data for cows in the reference population of single-step evaluations. Deregressed individual cow genetic evaluations (DRP) from milk production evaluations of Nordic Red Dairy cattle were used to estimate the single-step breeding values. Validation reliability and bias of the evaluations were calculated with four data sets including different amount of DRP record information from genotyped cows in the reference population. The gain in reliability was from 2% to 4% units for the production traits, depending on the used DRP data and the amount of genomic data. Moreover, inclusion of genotyped bull dams and their genotyped daughters seemed to create some bias in the single-step evaluation. Still, genotyping cows and their inclusion in the reference population is advantageous and should be encouraged.  相似文献   

16.
    
Animal breeding faces one of the most significant changes of the past decades - the implementation of genomic selection. Genomic selection uses dense marker maps to predict the breeding value of animals with reported accuracies that are up to 0.31 higher than those of pedigree indexes, without the need to phenotype the animals themselves, or close relatives thereof. The basic principle is that because of the high marker density, each quantitative trait loci (QTL) is in linkage disequilibrium (LD) with at least one nearby marker. The process involves putting a reference population together of animals with known phenotypes and genotypes to estimate the marker effects. Marker effects have been estimated with several different methods that generally aim at reducing the dimensions of the marker data. Nearly all reported models only included additive effects. Once the marker effects are estimated, breeding values of young selection candidates can be predicted with reported accuracies up to 0.85. Although results from simulation studies suggest that different models may yield more accurate genomic estimated breeding values (GEBVs) for different traits, depending on the underlying QTL distribution of the trait, there is so far only little evidence from studies based on real data to support this. The accuracy of genomic predictions strongly depends on characteristics of the reference populations, such as number of animals, number of markers, and the heritability of the recorded phenotype. Another important factor is the relationship between animals in the reference population and the evaluated animals. The breakup of LD between markers and QTL across generations advocates frequent re-estimation of marker effects to maintain the accuracy of GEBVs at an acceptable level. Therefore, at low frequencies of re-estimating marker effects, it becomes more important that the model that estimates the marker effects capitalizes on LD information that is persistent across generations.  相似文献   

17.
    
The purpose of this study is review and evaluation of computing methods used in genomic selection for animal breeding. Commonly used models include SNP BLUP with extensions (BayesA, etc), genomic BLUP (GBLUP) and single-step GBLUP (ssGBLUP). These models are applied for genomewide association studies (GWAS), genomic prediction and parameter estimation. Solving methods include finite Cholesky decomposition possibly with a sparse implementation, and iterative Gauss–Seidel (GS) or preconditioned conjugate gradient (PCG), the last two methods possibly with iteration on data. Details are provided that can drastically decrease some computations. For SNP BLUP especially with sampling and large number of SNP, the only choice is GS with iteration on data and adjustment of residuals. If only solutions are required, PCG by iteration on data is a clear choice. A genomic relationship matrix (GRM) has limited dimensionality due to small effective population size, resulting in infinite number of generalized inverses of GRM for large genotyped populations. A specific inverse called APY requires only a small fraction of GRM, is sparse and can be computed and stored at a low cost for millions of animals. With APY inverse and PCG iteration, GBLUP and ssGBLUP can be applied to any population. Both tools can be applied to GWAS. When the system of equations is sparse but contains dense blocks, a recently developed package for sparse Cholesky decomposition and sparse inversion called YAMS has greatly improved performance over packages where such blocks were treated as sparse. With YAMS, GREML and possibly single-step GREML can be applied to populations with >50 000 genotyped animals. From a computational perspective, genomic selection is becoming a mature methodology.  相似文献   

18.
Summary Sire and dam populations of meat-type chickens were developed at the Animal Research Centre, Ottawa to provide unselected control populations suitable for modern broiler research, estimate genetic parameters of broiler traits, and initiate selection experiments. The populations were synthesized from 16 commercial broiler parent stocks (nine sire and seven dam stocks) during two generations of crossbreeding and one generation of random mating. The estimated genetic contribution per stock to the respective population ranged from 8.3 to 16.7% for autosomal genes, from 5.5 to 17.8% for genes on Z chromosomes, and from 0 to 25.0% for genes on W chromosomes. Genetic differences among the original stocks had not been fully diffused among individuals within the populations at the time parameters were estimated. Consequently, genetic parameter estimates are probably slightly biased. Estimated heritabilities of broiler traits in these populations were generally high, 0.39 to 0.63. Hence, rapid genetic change of these traits is possible. The genetic correlation between 28 to 49 day feed efficiency and corresponding weight gain was 0.69 and between feed efficiency and abdominal fat percentage was -0.68. Increasing body weight gain, improving feed efficiency and reducing abdominal fatness of broilers by selection appears feasible.Contribution No. 1203, Animal Research Centre  相似文献   

19.
  总被引:5,自引:0,他引:5  
Theoretical predictions suggest that DNA markers can be useful tools for genomic selection in gene introgression programmes. An experiment was carried out to evaluate the efficiency of using multi-locus DNA markers in an introgression programme designed to transfer the naked neck gene from a donor to a recipient chicken line. The donor line was a commercial egg layer chicken stock heterozygous at the naked neck locus (Na/na+), while the recipients were from a Cornish broiler line. These two lines differ markedly in their average body weight, a quantitative trait that can also represent the comprehensive differences between the genomes of the two lines involved. Three groups of naked neck BC1 individuals were selected according to the following criteria: (i) low band-sharing with their donor grandsires evaluated by multi-locus DNA markers, (ii) high body weight at six weeks of age, and (iii) selection at random as a control group. Birds from each of these groups were mated at random to individuals from the heavier Cornish line to produce three groups of BC2 individuals whose body weights were recorded weekly from three to seven weeks of age. Results indicated that BC2 birds obtained from BC1 parents selected for band-sharing levels and those selected for body weight, performed equally well at 4–7 weeks of age; both were 3.1–3.9% heavier than birds from the randomly selected group. The additional genome recovery of the heavier broiler line, obtained by DNA markers, was found to be in agreement with theoretically predicted values.  相似文献   

20.
In genome-based prediction there is considerable uncertainty about the statistical model and method required to maximize prediction accuracy. For traits influenced by a small number of quantitative trait loci (QTL), predictions are expected to benefit from methods performing variable selection [e.g., BayesB or the least absolute shrinkage and selection operator (LASSO)] compared to methods distributing effects across the genome [ridge regression best linear unbiased prediction (RR-BLUP)]. We investigate the assumptions underlying successful variable selection by combining computer simulations with large-scale experimental data sets from rice (Oryza sativa L.), wheat (Triticum aestivum L.), and Arabidopsis thaliana (L.). We demonstrate that variable selection can be successful when the number of phenotyped individuals is much larger than the number of causal mutations contributing to the trait. We show that the sample size required for efficient variable selection increases dramatically with decreasing trait heritabilities and increasing extent of linkage disequilibrium (LD). We contrast and discuss contradictory results from simulation and experimental studies with respect to superiority of variable selection methods over RR-BLUP. Our results demonstrate that due to long-range LD, medium heritabilities, and small sample sizes, superiority of variable selection methods cannot be expected in plant breeding populations even for traits like FRIGIDA gene expression in Arabidopsis and flowering time in rice, assumed to be influenced by a few major QTL. We extend our conclusions to the analysis of whole-genome sequence data and infer upper bounds for the number of causal mutations which can be identified by LASSO. Our results have major impact on the choice of statistical method needed to make credible inferences about genetic architecture and prediction accuracy of complex traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号