首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the plasma membrane, syntaxin 1 and syntaxin 4 clusters define sites at which secretory granules and caveolae fuse, respectively. It is widely believed that lipid phases are mandatory for cluster formation, as cluster integrity depends on cholesterol. Here we report that the native lipid environment is not sufficient for correct syntaxin 1 clustering and that additional cytoplasmic protein-protein interactions, primarily involving the SNARE motif, are required. Apparently no specific cofactors are needed because i), clusters form equally well in nonneuronal cells, and ii), as revealed by nanoscale subdiffraction resolution provided by STED microscopy, the number of clusters directly depends on the syntaxin 1 concentration. For syntaxin 4 clustering the N-terminal domain and the linker region are also dispensable. Moreover, clustering is specific because in both cluster types syntaxins mutually exclude one another at endogenous levels. We suggest that the SNARE motifs of syntaxin 1 and 4 mediate specific syntaxin clustering by homooligomerization, thereby spatially separating sites for different biological activities. Thus, syntaxin clustering represents a mechanism of membrane patterning that is based on protein-protein interactions.  相似文献   

2.
Syntaxins 3 and 4 localize to the apical and basolateral plasma membrane, respectively, of epithelial cells where they mediate vesicle fusion. Here, we report that before establishment of cell polarity, syntaxins 3 and 4 are confined to mutually exclusive, submicron-sized clusters. Syntaxin clusters are remarkably uniform in size, independent of expression levels, and are distinct from caveolae and clathrin-coated pits. SNAP-23 partially colocalizes with both syntaxin 3 and 4 clusters. Deletion of the apical targeting signal of syntaxin 3 does not prevent sorting into clusters away from syntaxin 4. Syntaxin 3 and 4 cluster formation depends on different mechanisms because the integrity of syntaxin 3 clusters depends on intact microtubules, whereas syntaxin 4 clusters depend on intact actin filaments. Cholesterol depletion causes dispersion of syntaxin 3 but not syntaxin 4 clusters. In migrating cells, syntaxin clusters polarize to the leading edge, suggesting a role in polarized exocytosis. These results suggest that exocytosis occurs at small fusion sites exhibiting high local concentrations of SNARE proteins that may be required for efficient membrane fusion. The establishment of separate clusters for each syntaxin suggests that the plasma membrane is inherently polarized on an ultrastructural level even before the establishment of true cell polarity.  相似文献   

3.
Syntaxins and Sec1/munc18 proteins are central to intracellular membrane fusion. All syntaxins comprise a variable N-terminal region, a conserved SNARE motif that is critical for SNARE complex formation, and a transmembrane region. The N-terminal region of neuronal syntaxin 1A contains a three-helix domain that folds back onto the SNARE motif forming a 'closed' conformation; this conformation is required for munc18-1 binding. We have examined the generality of the structural properties of syntaxins by NMR analysis of Vam3p, a yeast syntaxin essential for vacuolar fusion. Surprisingly, Vam3p also has an N-terminal three-helical domain despite lacking apparent sequence homology with syntaxin 1A in this region. However, Vam3p does not form a closed conformation and its N-terminal domain is not required for binding to the Sec1/munc18 protein Vps33p, suggesting that critical distinctions exist in the mechanisms used by syntaxins to govern different types of membrane fusion.  相似文献   

4.
Syntaxins, integral membrane proteins that are part of the ubiquitous membrane fusion machinery, are thought to act as target membrane receptors during the process of vesicle docking and fusion. Several isoforms of the syntaxin family have been previously identified in mammalian cells, some of which are localized to the plasma membrane. We investigated the subcellular localization of these putative plasma membrane syntaxins in polarized epithelial cells, which are characterized by the presence of distinct apical and basolateral plasma membrane domains. Syntaxins 2, 3, and 4 were found to be endogenously present in Madin-Darby canine kidney cells. The localization of syntaxins 1A, 1B, 2, 3, and 4 in stably transfected Madin-Darby canine kidney cell lines was studied with confocal immunofluorescence microscopy. Each syntaxin isoform was found to have a unique pattern of localization. Syntaxins 1A and 1B were present only in intracellular structures, with little or no apparent plasma membrane staining. In contrast, syntaxin 2 was found on both the apical and basolateral surface, whereas the plasma membrane localization of syntaxins 3 and 4 were restricted to the apical or basolateral domains, respectively. Syntaxins are therefore the first known components of the plasma membrane fusion machinery that are differentially localized in polarized cells, suggesting that they may play a central role in targeting specificity.  相似文献   

5.
Syntaxin-1 is a key component of the synaptic vesicle docking/fusion machinery that binds with VAMP/synaptobrevin and SNAP-25 to form the SNARE complex. Modulation of syntaxin binding properties by protein kinases could be critical to control of neurotransmitter release. Using yeast two-hybrid selection with syntaxin-1A as bait, we have isolated a cDNA encoding the C-terminal domain of death-associated protein (DAP) kinase, a calcium/calmodulin-dependent serine/threonine protein kinase. Expression of DAP kinase in adult rat brain is restricted to particular neuronal subpopulations, including the hippocampus and cerebral cortex. Biochemical studies demonstrate that DAP kinase binds to and phosphorylates syntaxin-1 at serine 188. This phosphorylation event occurs both in vitro and in vivo in a Ca2+-dependent manner. Syntaxin-1A phosphorylation by DAP kinase or its S188D mutant, which mimics a state of complete phosphorylation, significantly decreases syntaxin binding to Munc18-1, a syntaxin-binding protein that regulates SNARE complex formation and is required for synaptic vesicle docking. Our results suggest that syntaxin is a DAP kinase substrate and provide a novel signal transduction pathway by which syntaxin function could be regulated in response to intracellular [Ca2+] and synaptic activity.  相似文献   

6.
Munc18b is a mammalian Sec1-related protein that is abundant in epithelial cells and regulates vesicle transport to the apical plasma membrane. We constructed a homology model of Munc18b in complex with syntaxin 3 based on the crystal structure of the neuronal Sec1.syntaxin 1A complex. In this model we identified all residues in the interface between the two proteins that contribute directly to the interaction and mutagenized residues in Munc18b to alter its binding to syntaxins 1A, 2, and 3. The syntaxin-binding properties of the mutants were tested using an in vitro assay and by a co-immunoprecipitation approach employing Munc18b expressed in CHO-K1 cells. Three Munc18b variants, W28S, S42K, and E59K, were generated that are defective in binding to all three syntaxins. A fourth mutant protein, S48D, shows abolishment of syntaxin 3 interaction but binds syntaxin 2 at normal and syntaxin 1A at mildly reduced efficiency. Over-expression of Munc18b S48D inhibited transport of influenza hemagglutinin to the apical surface of Madin-Darby canine kidney II cells, which express syntaxin 2 abundantly, but not of Caco-2 cells, in which syntaxin 3 is the major apical target SNARE (soluble NSF (N-ethylmaleimide sensitive factor) attachment protein receptors). This suggests that, although syntaxin 3 is the main target SNARE operating in exocytic transport to the apical plasma membrane in certain epithelial cell types, syntaxin 2 may play an important role in this trafficking route in others.  相似文献   

7.
Sec1/munc18-like proteins (SM proteins) and SNARE complexes are probably universally required for membrane fusion. However, the molecular mechanism by which they interact has only been defined for synaptic vesicle fusion where munc18 binds to syntaxin in a closed conformation that is incompatible with SNARE complex assembly. We now show that Sly1, an SM protein involved in Golgi and ER fusion, binds to a short, evolutionarily conserved N-terminal peptide of Sed5p and Ufe1p in yeast and of syntaxins 5 and 18 in vertebrates. In these syntaxins, the Sly1 binding peptide is upstream of a separate, autonomously folded N-terminal domain. These data suggest a potentially general mechanism by which SM proteins could interact with peptides in target proteins independent of core complex assembly and suggest that munc18 binding to syntaxin is an exception.  相似文献   

8.
The SNARE proteins, syntaxin, SNAP-25, and VAMP, form part of the core machinery for membrane fusion during regulated exocytosis. Additional proteins are required to account for the speed, spatial restriction, and tight control of exocytosis and a key role is played by members of the Sec1/Munc18 family of proteins that have been implicated either in vesicle docking or fusion itself through their interactions with the corresponding syntaxin. Using amperometry to assay the kinetics of single vesicle fusion/release events in adrenal chromaffin cells, the effect of expression of syntaxin 1A mutants was examined. Overexpression of wild-type syntaxin or its cytoplasmic domain had no effect on the kinetics of release during single exocytotic events although the cytoplasmic domain reduced the frequency of exocytosis. In contrast, expression of either an open syntaxin 1A or the I233A mutant resulted in increased quantal size and a slowing of the kinetics of release. The wild-type and mutant syntaxins were overexpressed to a similar extent and the only common defect shown by the syntaxin 1A mutants was reduced binding to Munc18-1. These results are consistent with a role for Munc18-1 in controlling the late stages of exocytosis by binding to and limiting the availability of syntaxin in its open conformation. Modification of the Munc18-1/syntaxin 1A interaction would therefore be a key mechanism for the regulation of quantal size.  相似文献   

9.
Membrane fusion in the secretory pathway is mediated by SNAREs (located on the vesicle membrane [v-SNARE] and the target membrane [t-SNARE]). In all cases examined, t-SNARE function is provided as a three-helix bundle complex containing three approximately 70-amino acid SNARE motifs. One SNARE motif is provided by a syntaxin family member (the t-SNARE heavy chain), and the other two helices are contributed by additional t-SNARE light chains. The syntaxin family is the most conformationally dynamic group of SNAREs and appears to be the major focus of SNARE regulation. An NH2-terminal region of plasma membrane syntaxins has been assigned as a negative regulatory element in vitro. This region is absolutely required for syntaxin function in vivo. We now show that the required function of the NH2-terminal regulatory domain (NRD) of the yeast plasma membrane syntaxin, Sso1p, can be circumvented when t-SNARE complex formation is made intramolecular. Our results suggest that the NRD is required for efficient t-SNARE complex formation and does not recruit necessary scaffolding factors.  相似文献   

10.
SNAP-29 is a promiscuous syntaxin-binding SNARE.   总被引:1,自引:0,他引:1  
SNARE proteins are key regulators of membrane fusion and are proposed to dictate the specificity with which particular vesicles fuse with particular target organelles. On intracellular organelles that serve as targets for transport vesicles, organelle-specific syntaxins form heterodimers with either SNAP-23 or its recently described homolog SNAP-29. We have performed a variety of in vitro and in vivo binding assays in an attempt to determine whether SNAP-23 and SNAP-29 differ in their ability to form binary SNARE complexes with different intracellular syntaxins. While SNAP-23 preferentially binds to plasma membrane-localized syntaxins, SNAP-29 binds to both plasma membrane and intracellular syntaxins equally well. Furthermore, binding to SNAP-29 augments the ability of syntaxin to bind to vesicle-associated SNAREs and the presence of vesicle SNAREs dramatically increases SNAP-29 binding to syntaxin. These data suggest that SNAP-23 preferentially regulates plasma membrane-vesicle fusion events while SNAP-29 plays a role in the maintenance of various intracellular protein trafficking pathways.  相似文献   

11.
BACKGROUND: During cytokinesis, the plasma membrane of the parent cell is resolved into the two plasma membranes of the daughter cells. Membrane fusion events mediated by the machinery that participates in intracellular vesicle trafficking might contribute to this process. Two classes of molecules that are required for membrane fusion are the t-SNAREs and the v-SNAREs. The t-SNAREs (syntaxins) comprise a multi-gene family that has been suggested to mediate, at least in part, selective membrane fusion events in the cell. RESULTS: We have analyzed the genome of Caenorhabditis elegans and identified eight syntaxin genes. RNA-mediated interference (RNAi) was used to produce embryos deficient in individual syntaxins and these embryos were phenotypically characterized. Embryos deficient in one syntaxin, Syn-4, became multinucleate because of defects in karyomere fusion and cytokinesis. Syn-4 localized both to ingressing cleavage furrows and to punctate structures surrounding nuclei as they reformed during interphase. CONCLUSIONS: Our analyses indicate that both cytokinesis and reformation of the nuclear envelope are dependent on SNARE-mediated membrane fusion.  相似文献   

12.
Insulin stimulates the fusion of intracellular vesicles containing the glucose transporter Glut4 with the plasma membrane in adipocytes and muscle cells. Glut4 vesicle fusion is thought to be catalyzed by the interaction of the vesicle soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptor VAMP2 with the target soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptors SNAP-23 and syntaxin 4. Here, we use combined membrane fractionation, detergent solubility, and sucrose gradient flotation to demonstrate that the large majority (>70%) of SNAP-23 and a significant proportion of syntaxin 4 ( approximately 35%) are associated with plasma membrane lipid rafts in 3T3-L1 adipocytes. Furthermore, VAMP2 is shown to be concentrated in lipid rafts isolated from intracellular membranes. Insulin stimulation had no effect on the plasma membrane raft association of SNAP-23 or syntaxin 4 but promoted VAMP2 insertion into plasma membrane rafts. Immunofluorescence analysis revealed that SNAP-23 was clustered at the plasma membrane and almost completely segregated from the transferrin receptor. SNAP-23 distribution seemed to be distinct from caveolin-1, and clusters of SNAP-23 were dispersed after cholesterol extraction with methyl-beta-cyclodextrin, suggesting that the majority of SNAP-23 is associated with non-caveolar, cholesterol-rich lipid rafts. The results described implicate lipid rafts as important platforms for Glut4 vesicle fusion and suggest the hypothesis that such rafts may represent a spatial integration point of insulin signaling and membrane traffic.  相似文献   

13.
Syntaxins interact with other SNAREs (soluble NSF-attachment protein receptors) to form structurally related complexes that mediate membrane fusion in diverse intracellular trafficking pathways. The original SNARE hypothesis postulated that each type of transport vesicle has its own distinct vesicle-SNARE that pairs up with a unique target-SNARE, or syntaxin, on the target membrane. However, recent evidence suggests that small G-proteins of the Rab family and their effectors mediate the initial contact between donor and acceptor membranes, providing complementary specificity to SNARE pairing at a later step towards membrane fusion. To assess the role of syntaxin specificity in membrane recognition requires a biological assay in which one syntaxin is replaced by other family members that do not normally function in that trafficking pathway. Here, we examine whether membrane fusion in Arabidopsis thaliana cytokinesis, which involves a plant-specific syntaxin, the cell-cycle-regulated KNOLLE (KN) protein, can be mediated by other syntaxins if expressed under the control of KN cis-regulatory sequences. Only a non-essential syntaxin was targeted to the plane of cell division and sufficiently related to KN to perform its function, thus revealing syntaxin specificity of cytokinesis.  相似文献   

14.
Syntaxins are thought to be membrane receptors that bind proteins of the synaptobrevin/vesicle-associated membrane protein (VAMP) family found on transport vesicles. Recently, we detected synaptobrevin II and cellubrevin on immunopurified vesicles containing the glucose transporter 4 (GLUT4) in insulin-responsive cells. In an effort to identify the plasma membrane receptors for these vesicles, we now examine the expression of syntaxins in the 3T3-L1 adipocyte cell line. Neither syntaxin 1A nor 1B was found, in keeping with the neuronal restriction of these isoforms. In contrast, syntaxins 2 and 4 were readily detectable. By subcellular fractionation and estimation of protein yields, 67% of syntaxin 4 was localized to the plasma membrane, 24% to the low-density microsomes, and 9% to the high-density microsomes. Interestingly, acute insulin treatment decreased the content of syntaxin 4 in low-density microsomes and caused a corresponding gain in the plasma membrane fraction, reminiscent of the recruitment of GLUT4 glucose transporters. In contrast, there was no change in the distribution of syntaxin 2, which was mostly associated in the plasma membrane. A fraction of the intracellular syntaxin 4 was recovered with immunopurified GLUT4-containing vesicles. Moreover, anti-syntaxin 4 antibodies introduced in permeabilized 3T3-L1 adipocytes significantly reduced the insulin-dependent stimulation of glucose transport, in contrast to the introduction of irrelevant immunoglobulin G, which was without consequence. We propose that either the plasma membrane and/or the vesicular syntaxin 4 are involved in docking and/or fusion of GLUT4 vesicles at the cell surface of 3T3-L1 adipocytes.  相似文献   

15.
During exocytosis, SNARE proteins of secretory vesicles interact with the corresponding SNARE proteins in the plasmalemma to initiate the fusion reaction. However, it is unknown whether SNAREs are uniformly distributed in the membrane or whether specialized fusion sites exist. Here we report that in the plasmalemma, syntaxins are concentrated in 200 nm large, cholesterol-dependent clusters at which secretory vesicles preferentially dock and fuse. The syntaxin clusters are distinct from cholesterol-dependent membrane rafts since they are Triton X-100-soluble and do not co-patch with raft markers. Synaptosomal-associated protein (SNAP)-25 is also clustered in spots, which partially overlap with syntaxin. Cholesterol depletion causes dispersion of these clusters, which is associated with a strong reduction in the rate of secretion, whereas the characteristics of individual exocytic events are unchanged. This suggests that high local concentrations of SNAREs are required for efficient fusion.  相似文献   

16.
Syntaxin-1A is a t-SNARE that is involved in vesicle docking and vesicle fusion; it is important in presynaptic exocytosis in neurons because it interacts with many regulatory proteins. Previously, we found the following: 1) that autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), an important modulator of neural plasticity, interacts with syntaxin-1A to regulate exocytosis, and 2) that a syntaxin missense mutation (R151G) attenuated this interaction. To determine more precisely the physiological importance of this interaction between CaMKII and syntaxin, we generated mice with a knock-in (KI) syntaxin-1A (R151G) mutation. Complexin is a molecular clamp involved in exocytosis, and in the KI mice, recruitment of complexin to the SNARE complex was reduced because of an abnormal CaMKII/syntaxin interaction. Nevertheless, SNARE complex formation was not inhibited, and consequently, basal neurotransmission was normal. However, the KI mice did exhibit more enhanced presynaptic plasticity than wild-type littermates; this enhanced plasticity could be associated with synaptic response than did wild-type littermates; this pronounced response included several behavioral abnormalities. Notably, the R151G phenotypes were generally similar to previously reported CaMKII mutant phenotypes. Additionally, synaptic recycling in these KI mice was delayed, and the density of synaptic vesicles was reduced. Taken together, our results indicated that this single point mutation in syntaxin-1A causes abnormal regulation of neuronal plasticity and vesicle recycling and that the affected syntaxin-1A/CaMKII interaction is essential for normal brain and synaptic functions in vivo.  相似文献   

17.
To generate and maintain epithelial cell polarity, specific sorting of proteins into vesicles destined for the apical and basolateral domain is required. Syntaxin 3 and 4 are apical and basolateral SNARE proteins important for the specificity of vesicle fusion at the apical and basolateral plasma membrane domains, respectively, but how these proteins are specifically targeted to these domains themselves is unclear. Munc18/SM proteins are potential regulators of this process. Like syntaxins, they are crucial for exocytosis and vesicle fusion. However, how munc18c and syntaxin 4 regulate the function of each other is unclear. Here, we investigated the requirement of syntaxin 4 in the delivery of basolateral membrane and secretory proteins, the basolateral targeting of syntaxin 4, and the role of munc18c in this targeting. Depletion of syntaxin 4 resulted in significant reduction of basolateral targeting, suggesting no compensation by other syntaxin forms. Mutational analysis identified amino acids Leu-25 and to a lesser extent Val-26 as essential for correct localization of syntaxin 4. Recently, it was shown that the N-terminal peptide of syntaxin 4 is involved in binding to munc18c. A mutation in this region that affects munc18c binding shows that munc18c binding is required for stabilization of syntaxin 4 at the plasma membrane but not for its correct targeting. We conclude that the N terminus serves two functions in membrane targeting. First, it harbors the sorting motif, which targets syntaxin 4 basolaterally in a munc18c-independent manner and second, it allows for munc18c binding, which stabilizes the protein in a munc18c-dependent manner.  相似文献   

18.
Syntaxin-1是特异性地分布在神经细胞突触前质膜上的蛋白。它早期被作为分子量为35 kD的synaptotagmin-1结合蛋白,但很快就被认识到是细胞质膜融合的关键蛋白。Syntaxin-1通过与SNAP25和Synaptobrevin/VAMP蛋白聚合,进而形成被认为是神经突触囊泡融合必要因子的SNARE核心复合体。作为一个多结构域的蛋白,syntaxin-1与多个突触蛋白相互作用,其作用远超出了仅作为SNARE核心复合体中一个蛋白质成员的作用。本文着重介绍了有关syntaxin-1与其它SNARE组份蛋白、munc18蛋白和钙离子通道的相互作用及其功能的最新研究进展。全面揭示syntaxin-1作为SNARE核心复合体成员的功能以及超越这一功能的作用,还有待于对其结构以及与其它突触蛋白相互作用特性的进一步深刻理解。  相似文献   

19.
Sec1p/Munc18 proteins and SNAP receptors (SNAREs) are key components of the intracellular membrane fusion machinery. Compartment-specific v-SNAREs on a transport vesicle pair with their cognate t-SNAREs on the target membrane and drive lipid bilayer fusion. In a reconstituted assay that dissects the sequential assembly of t-SNARE (syntaxin 1·SNAP-25) and v-/t-SNARE (VAMP2·syntaxin 1·SNAP-25) complexes, and finally measures lipid bilayer merger, we resolved the inhibitory and stimulatory functions of the Sec1p/Munc18 protein Munc18-1 at the molecular level. Inhibition of membrane fusion by Munc18-1 requires a closed conformation of syntaxin 1. Remarkably, the concurrent preincubation of Munc18-1-inhibited syntaxin 1 liposomes with both VAMP2 liposomes and SNAP-25 at low temperature releases the inhibition and effectively stimulates membrane fusion. VAMP8 liposomes can neither release the inhibition nor exert the stimulatory effect, demonstrating the need for a specific Munc18-1/VAMP2 interaction. In addition, Munc18-1 binds to the N-terminal peptide of syntaxin 1, which is obligatory for a robust stimulation of membrane fusion. In contrast, this interaction is neither required for the inhibitory function of Munc18-1 nor for the release of this block. These results indicate that Munc18-1 and the neuronal SNAREs already have the inherent capability to function as a basic stage-specific off/on switch to control membrane fusion.  相似文献   

20.
We have investigated the controversial involvement of components of the SNARE (soluble N-ethyl maleimide–sensitive factor [NSF] attachment protein [SNAP] receptor) machinery in membrane traffic to the apical plasma membrane of polarized epithelial (MDCK) cells. Overexpression of syntaxin 3, but not of syntaxins 2 or 4, caused an inhibition of TGN to apical transport and apical recycling, and leads to an accumulation of small vesicles underneath the apical plasma membrane. All other tested transport steps were unaffected by syntaxin 3 overexpression. Botulinum neurotoxin E, which cleaves SNAP-23, and antibodies against α-SNAP inhibit both TGN to apical and basolateral transport in a reconstituted in vitro system. In contrast, we find no evidence for an involvement of N-ethyl maleimide–sensitive factor in TGN to apical transport, whereas basolateral transport is NSF-dependent. We conclude that syntaxin 3, SNAP-23, and α-SNAP are involved in apical membrane fusion. These results demonstrate that vesicle fusion with the apical plasma membrane does not use a mechanism that is entirely unrelated to other cellular membrane fusion events, but uses isoforms of components of the SNARE machinery, which suggests that they play a role in providing specificity to polarized membrane traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号