首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Human induced pluripotent stem (hiPS) cells are considered a potential source for the generation of insulin-producing pancreatic β-ceUs because of their differentiation capacity. In this study, we have developed a five-step xeno-free culture system to efficiently dif- ferentiate hiPS cells into insulin-producing cells in vitro. We found that a high NOGGIN concentration is crucial for specifically inducing the differentiation first into pancreatic and duodenal homeobox-1 (PDX1)-positive pancreatic progenitors and then into neurogenin 3 (NGN3)-expressing pancreatic endocrine progenitors, while suppressing the differentiation into hepatic or intestinal cells. We also found that a combination of 3-isobutyl-l-methylxanthine (IBMX), exendin-4, and nicotinamide was important for the differentiation into insulin single-positive cells that expressed various pancreatic β-cell markers. Most notably, the differentiated cells contained en- dogenous C-peptide pools that were released in response to various insulin secretagogues and high levels of glucose. Therefore, our results demonstrate the feasibility of generating hiPS-derived pancreatic β-ceUs under xeno-free conditions and highlight their poten- tial to treat patients with type I diabetes.  相似文献   

5.
6.
7.
8.
Summary The ultrastructural changes in pancreatic cells were studied following glucose-induced insulin secretion in vitro, at two different extracellular pH (7.4 and 7.8). The pancreata perfused at pH 7.4 exhibited a biphasic insulin response to glucose challenge together with signs of increased emiocytotic activity and numerous microtubules in the cells. Conversely, the pancreata perfused at pH 7.8 showed a significant decrease in insulin secretion, and their cells revealed scarce emiocytotic images and a marked increase of intracellular granulolysis. These results represent the ultrastructural correlate of the reduced insulin secretion produced by metabolic alkalosis in the perfused rat pancreas.The authors wish to thank Mrs. Elma P. de Gagliardino and Mrs. Susana Rivas for excellent technical assistance.This research was partially supported by funds from CONICET and CIC, Pcia de Bs.As. C.L. Gómez Dumm, O.R. Rebolledo and J.J. Gagliardino are members of Carrera del Investigador del CONICET (Argentina)  相似文献   

9.
BackgroundPrevious studies suggested that fibrillar human IAPP (hIAPP) is more likely to deposit in β-cells, resulting in β-cell injury. However, the changes in the conformation of hIAPP in lipid environment and the mechanism involved in β-cell damage are unclear.MethodsSynthetic hIAPP was incubated with five types of free fatty acids and phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), which constitute the cell membrane. Thioflavin-T fluorescence assay was conducted to analyze the degree of hIAPP fibrosis, and circular dichroism spectroscopy was performed to detect the β-fold formation of hIAPP. Furthermore, INS-1 cells were infected with human IAPP delivered by a GV230-EGFP plasmid. The effects of endogenous hIAPP overexpression induced by sodium palmitate on the survival, endoplasmic reticulum (ER) stress, and apoptosis of INS-1 cells were evaluated.ResultsThe five types of free fatty acids can accelerate the fibrosis of hIAPP. Sodium palmitate also maintained the stability of fibrillar hIAPP. POPS, not POPC, accelerated hIAPP fibrosis. Treatment of INS-1 cells with sodium palmitate increased the expression of hIAPP, activated ER stress and ER stress-dependent apoptosis signaling pathways, and increased the apoptotic rate.ConclusionFree fatty acids and anionic phospholipid can promote β-fold formation and fibrosis in hIAPP. High lipid induced the overexpression of hIAPP and aggravated ER stress and apoptosis in INS-1 cells, which caused β-cell death in high lipid environment.General significanceOur study reveals free fatty acids and hIAPP synergistically implicated in endoplasmic reticulum stress and apoptosis of islet β-cells.  相似文献   

10.
11.
The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP+ cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.  相似文献   

12.
13.
Hair follicle formation depends on reciprocal epidermal-dermal interactions and occurs during skin development, but not in adult life. This suggests that the properties of dermal fibroblasts change during postnatal development. To examine this, we used a PdgfraEGFP mouse line to isolate GFP-positive fibroblasts from neonatal skin, adult telogen and anagen skin and adult skin in which ectopic hair follicles had been induced by transgenic epidermal activation of β-catenin (EF skin). We also isolated epidermal cells from each mouse. The gene expression profile of EF epidermis was most similar to that of anagen epidermis, consistent with activation of β-catenin signalling. By contrast, adult dermis with ectopic hair follicles more closely resembled neonatal dermis than adult telogen or anagen dermis. In particular, genes associated with mitosis were upregulated and extracellular matrix-associated genes were downregulated in neonatal and EF fibroblasts. We confirmed that sustained epidermal β-catenin activation stimulated fibroblasts to proliferate to reach the high cell density of neonatal skin. In addition, the extracellular matrix was comprehensively remodelled, with mature collagen being replaced by collagen subtypes normally present only in developing skin. The changes in proliferation and extracellular matrix composition originated from a specific subpopulation of fibroblasts located beneath the sebaceous gland. Our results show that adult dermis is an unexpectedly plastic tissue that can be reprogrammed to acquire the molecular, cellular and structural characteristics of neonatal dermis in response to cues from the overlying epidermis.  相似文献   

14.
At a glucose concentration of 3mm or less, iodoacetamide had no effect on the release of insulin from microdissected pancreatic islets of ob/ob-mice. At higher glucose concentrations, iodoacetamide exerted both an initial stimulatory and a subsequent inhibitory action. When islets were perifused with 1mm-iodoacetamide and 17mm-glucose the inhibitory action predominated after about 15min of transient stimulation. With decreasing concentrations of iodoacetamide the stimulatory phase was gradually prolonged, and with 0.003-0.1mm-iodoacetamide stimulation only was observed for 75min. Prolonged stimulation was also noted after a short pulse of iodoacetamide. Similar responses to 0.1mm-iodoacetamide were observed with islets from normal mice. With islets from ob/ob-mice the effect of 0.1mm-iodoacetamide was reproduced with 0.1mm-iodoacetate, whereas 0.1mm-acetamide had no apparent effect. Iodoacetamide increased the V(max.) of glucose-stimulated insulin release without altering the apparent K(m) for glucose. Leucine, glibenclamide or theophylline could not replace glucose in this synergistic action with iodoacetamide. Iodoacetamide rather inhibited the insulin-releasing action of theophylline. Iodoacetamide-induced potentiation of the glucose-stimulated insulin release was rapidly and reversibly inhibited by mannoheptulose, adrenaline, or calcium deficiency. The potentiating effect on insulin release was not paralleled by effects on glucose oxidation or on islet fructose 1,6-diphosphate. However, the inhibitory action of iodoacetamide might be explained by inhibition of glycolysis as evidenced by an inhibition of glucose oxidation and a rise of fructose 1,6-diphosphate. The results support our previous hypothesis that thiol reagents can stimulate insulin release by acting on relatively superficial thiol groups in the beta-cell plasma membrane. Glycolysis seems to be necessary in order for iodoacetamide to stimulate in this way.  相似文献   

15.
Gene conversion is referred to as one of two types of mechanisms known to act on gene families, mainly to maintain their sequence homogeneity or, in certain cases, to produce sequence diversity. The concept of gene conversion was established 20 years ago by researchers working with fungi. A few years later, gene conversion was also observed in the human genome, i.e. the γ-globin locus. The aim of this article is to emphasize the role of genetic recombination, particularly of gene conversion, in the evolution of the human β-like globin genes and further to summarize its contribution to the convergent evolution of the fetal globin genes. Finally, this article attempts to re-examine the origin and spread of specific mutations of the β-globin cluster, such as the sickle cell or β-thalassemia mutations, on the basis of repeated gene conversion events. Received: 13 February 1997 / Accepted: 15 May 1998  相似文献   

16.
Defensins have a broad range of antimicrobial activity against bacteria, fungi, and viruses. The expression of human β-defensin-2 (hBD-2) is prevalently observed in epithelial cells and is induced by bacterial infection. Here, we have shown that the expression of the hBD-2 gene and release of hBD-2 protein into the medium is up-regulated in response to CpG-DNA in human B cell line RPMI 8226. The induction of hBD-2 was dependent on CG sequence and phosphorothioate backbone-modification. This was also confirmed in primary human lymphocytes. To shed light on the molecular mechanism involved in hBD-2 induction by CpG-DNA, we examined the contribution of the NF-κB signaling pathway in RPMI 8226 cells. Suppression of MyD88 function and inhibition of NF-κB nuclear localization blocked hBD-2 induction. The NF-κB pathway inhibitors also abolished hBD-2 induction. These results may contribute to a better understanding on the therapeutic effects of CpG-DNA against infectious diseases.  相似文献   

17.
18.
19.
Zou G  Liu T  Zhang L  Liu Y  Li M  Du X  Xu F  Guo L  Liu Z 《DNA and cell biology》2011,30(9):739-748
Pancreatic and duodenal homeobox factor 1 (PDX-1) maintains β-cell function and differentiation via direct regulation of multiple islet cell genes. However, the molecular mechanisms involved in this process remain unknown. Here, we show that PDX-1 plays an important role in the induction of CD44+/CD105+ human amniotic fluid cells (HuAFCs) into functional pancreatic β-cell-like cells in vitro. CD44+/CD105+ HuAFCs were transfected with either siRNA targeting PDX-1 (siRNA-PDX-1) or mock plasmid (siRNA-MOCK). Following induction, siRNA-MOCK-transfected cells differentiated into β-cell-like cells that expressed multiple islet cell markers and produced insulin and C-peptide in a glucose-regulated manner. However, siRNA-PDX-1-transfected cells did not fully differentiate into β-cell-like cells. Further, we observed epigenetic changes at the PDX-1 gene locus in induced CD44(+)/CD105(+) HuAFCs. Therefore, CD44+/CD105+ HuAFCs could be a source of human pancreatic β-cell-like cells with potential uses in cell replacement therapy for diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号