首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have used genome-wide genotyping to identify an overlapping homozygosity-by-descent locus on chromosome 9q34.3 (MRT15) in four consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability (NS-ARID) and one in which the patients show additional clinical features. Four of the families are from Pakistan, and one is from Iran. Using a combination of next-generation sequencing and Sanger sequencing, we have identified mutations in the gene MAN1B1, encoding a mannosyl oligosaccharide, alpha 1,2-mannosidase. In one Pakistani family, MR43, a homozygous nonsense mutation (RefSeq number NM_016219.3: c.1418G>A [p.Trp473]), segregated with intellectual disability and additional dysmorphic features. We also identified the missense mutation c. 1189G>A (p.Glu397Lys; RefSeq number NM_016219.3), which segregates with NS-ARID in three families who come from the same village and probably have shared inheritance. In the Iranian family, the missense mutation c.1000C>T (p.Arg334Cys; RefSeq number NM_016219.3) also segregates with NS-ARID. Both missense mutations are at amino acid residues that are conserved across the animal kingdom, and they either reduce kcat by ∼1300-fold or disrupt stable protein expression in mammalian cells. MAN1B1 is one of the few NS-ARID genes with an elevated mutation frequency in patients with NS-ARID from different populations.  相似文献   

3.
4.
5.
6.
7.
Oral‐facial‐digital syndrome (OFDS) is a multisystemic ciliopathic disorder with an autosomal recessive mode of inheritance. OFDS usually manifests with typical craniofacial anomalies and variable occurrence of polydactyly. Germline variants in CPLANE1 cause OFDS VI. In this study, we investigated a 26‐year‐old Chinese female patient who was 23+1 weeks pregnant. She had a history of adverse pregnancy outcomes with multiple foetal malformations. We performed ultrasonography and identified the foetus as having a posterior fossa Blake cyst and postaxial polydactyly. The patient decided to terminate her pregnancy, and further genetic molecular analysis was performed. We identified the aborted foetus as having postaxial polydactyly. Whole‐exome sequencing identified a missense variant (c.3599C>T, p.A1200V) in exon 20 and a c.834+1G>T variant in exon 7 of CPLANE1 (NM_023073.3) in the foetus. Sanger sequencing confirmed that these variants came from the parents of the foetus. In this study, we investigated a family with OFDS VI through genetic testing and bioinformatics analysis, which provided powerful help for prenatal diagnosis. Then, we demonstrated that the cell migration rate and the number of cilia were decreased after interference with CPLANE1 expression in NIH/3T3 cells. After CPLANE1 knockdown, the Hh signalling pathway was inhibited, and the Hh pathway activator SAG reversed the inhibitory effect. This is the first report of a family with OFDS VI in the Chinese population.  相似文献   

8.
9.
10.
ALDH3A1 (aldehyde dehydrogenase 3A1) is abundant in the mouse cornea but undetectable in the lens, and ALDH1A1 is present at lower (catalytic) levels in the cornea and lens. To test the hypothesis that ALDH3A1 and ALDH1A1 protect the anterior segment of the eye against environmentally induced oxidative damage, Aldh1a1(-/-)/Aldh3a1(-/-) double knock-out and Aldh1a1(-/-) and Aldh3a1(-/-) single knock-out mice were evaluated for biochemical changes and cataract formation (lens opacification). The Aldh1a1/Aldh3a1- and Aldh3a1-null mice develop cataracts in the anterior and posterior subcapsular regions as well as punctate opacities in the cortex by 1 month of age. The Aldh1a1-null mice also develop cataracts later in life (6-9 months of age). One- to three-month-old Aldh-null mice exposed to UVB exhibited accelerated anterior lens subcapsular opacification, which was more pronounced in Aldh3a1(-/-) and Aldh3a1(-/-)/Aldh1a1(-/-) mice compared with Aldh1a1(-/-) and wild type animals. Cataract formation was associated with decreased proteasomal activity, increased protein oxidation, increased GSH levels, and increased levels of 4-hydroxy-2-nonenal- and malondialdehyde-protein adducts. In conclusion, these findings support the hypothesis that corneal ALDH3A1 and lens ALDH1A1 protect the eye against cataract formation via nonenzymatic (light filtering) and enzymatic (detoxification) functions.  相似文献   

11.
During vertebrate embryogenesis retinoic acid (RA) synthesis must be spatiotemporally regulated in order to appropriately stimulate various retinoid signaling pathways. Various forms of mammalian aldehyde dehydrogenase (ALDH) have been shown to oxidize the vitamin A precursor retinal to RA in vitro. Here we show that injection of Xenopus embryos with mRNAs for either mouse Aldh1 or mouse Raldh2 stimulates RA synthesis at low and high levels, respectively, while injection of human ALDH3 mRNA is unable to stimulate any detectable level of RA synthesis. This provides evidence that some members of the ALDH gene family can indeed perform RA synthesis in vivo. Whole-mount immunohistochemical analyses of mouse embryos indicate that ALDH1 and RALDH2 proteins are localized in distinct tissues. RALDH2 is detected at E7.5-E10.5 primarily in trunk tissue (paraxial mesoderm, somites, pericardium, midgut, mesonephros) plus transiently from E8.5-E9.5 in the ventral optic vesicle and surrounding frontonasal region. ALDH1 is first detected at E9.0-E10. 5 primarily in cranial tissues (ventral mesencephalon, dorsal retina, thymic primordia, otic vesicles) and in the mesonephros. As previous findings indicate that embryonic RA is more abundant in trunk rather than cranial tissues, our findings suggest that Raldh2 and Aldh1 control distinct retinoid signaling pathways by stimulating high and low RA biosynthetic activities, respectively, in various trunk and cranial tissues.  相似文献   

12.
IntroductionClinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD.MethodsWe identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents.ResultsThree male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6).ConclusionsWe reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.  相似文献   

13.
Aldehyde dehydrogenase 1A1 (ALDH1A1) and ALDH3A1 are corneal crystallins. They protect inner ocular tissues from ultraviolet radiation (UVR)-induced oxidative damage through catalytic and non-catalytic mechanisms. Additionally, ALDH3A1 has been postulated to play a regulatory role in the corneal epithelium based on several studies that report an inverse association between ALDH3A1 expression and corneal cell proliferation. The underlying molecular mechanisms and the physiological significance of such association remain poorly understood. In the current study, we established Tet-On human corneal epithelial cell (hTCEpi) lines, which express tetracycline-inducible wild-type (wt) or catalytically-inactive (mu) ALDH3A1. Utilizing this cellular model system, we confirmed that human ALDH3A1 decreases corneal cell proliferation; importantly, this effect appears to be partially mediated by its enzymatic activity. Mechanistically, wt-ALDH3A1, but not mu-ALDH3A1, promotes sequestering of tumor suppressor p53 in the nucleus. In the mouse cornea, however, augmented cell proliferation is noted only in Aldh1a1-/-/3a1-/- double knockout (DKO) mice, indicating in vivo the anti-proliferation effect of ALDH3A1 can be rescued by the presence of ALDH1A1. Interestingly, the hyper-proliferative epithelium of the DKO corneas display nearly complete loss of p53 expression, implying that p53 may be involved in ALDH3A1/1A1-mediated effect. In hTCEpi cells grown in high calcium concentration, mRNA levels of a panel of corneal differentiation markers were altered by ALDH3A1 expression and modulated by its enzyme activity. In conclusion, we show for the first time that: (i) ALDH3A1 decreases corneal epithelial proliferation through both non-enzymatic and enzymatic properties; (ii) ALDH1A1 contributes to the regulation of corneal cellular proliferation in vivo; and (iii) ALDH3A1 modulates corneal epithelial differentiation. Collectively, our studies indicate a functional role of ALDH3A1 in the maintenance of corneal epithelial homeostasis by simultaneously modulating proliferation and differentiation through both enzymatic and non-enzymatic mechanisms.  相似文献   

14.
15.
Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss.  相似文献   

16.

Objective

We assessed blood pentraxin 3 (PTX3) and macrophage chemotactic factor-1 (MCP-1) levels as indicators of disease activity in rheumatoid arthritis (RA) patients, because data on disease activity score 28 (DAS28)-erythrocyte sedimentation rate (ESR) and DAS28-C-reactive protein (CRP) are still imperfect.

Methods

In 111 patients with RA, we examined longitudinal and cross-sectional correlations of blood PTX3, MCP-1, CRP, and ESR levels with measures of clinical arthritic activity, namely, swollen joint count (SJC), tender joint count (TJC), visual analog scale for general health (GH), DAS28, and adapted DAS28-MCP-1.

Results

Blood MCP-1, but not PTX3, was significantly correlated with SJC, TJC, DAS28, and DAS28-CRP. DAS28-MCP-1 was strongly correlated with DAS28 (r  = 0.984, P<0.001) and DAS28-CRP (r  = 0.971, P<0.001), and modestly correlated with CRP (r  = 0.350, P<0.001), and ESR (r  = 0.386, P<0.001). Similarly, the duration of arthritic symptoms, but not sex, was significantly correlated with variables of arthritic activity. In particular, DAS28-MCP-1 significantly correlated with DAS28 during a 6-month period (r  = 0.944, P<0.001; r  = 0.951, P<0.001; r  = 0.862, P<0.001; and r  = 0.865, P<0.001 for month 0, 1, 3, and 6, respectively).

Conclusion

Blood MCP-1 and adapted DAS28-MCP-1, but not blood PTX3, may be useful in monitoring RA activity.  相似文献   

17.
18.
Dopa-responsive dystonia, a rare disorder typically presenting in early childhood with lower limb dystonia and gait abnormality, responds well to levodopa. However, it is often misdiagnosed with the wide spectrum of phenotypes. By exome sequencing, we make a rapid genetic diagnosis for two atypical dopa-responsive dystonia pedigrees. One pedigree, presented with prominent parkinsonism, was misdiagnosed as Parkinson''s disease until a known mutation in GCH1 (GTP cyclohydrolase 1) gene (NM_000161.2: c.631_632delAT, p.Met211ValfsX38) was found. The other pedigree was detected with a new compound heterozygous mutation in TH (tyrosine hydroxylase) gene [(NM_000360.3: c.911C>T, p.Ala304Val) and (NM_000360.3: c.1358G>A, p.Arg453His)], whose proband, a pregnant woman, required a rapid and less-biased genetic diagnosis. In conclusion, we demonstrated that exome sequencing could provide a precise and rapid genetic testing in the diagnosis of Mendelian diseases, especially for diseases with wide phenotypes.  相似文献   

19.
Multiple cytosolic thyroid-hormone-binding proteins (CTBPs) with varying characteristics, depending on the species and tissue, have been reported. We first purified a 59-kDa CTBP from Xenopus liver (xCTBP), and found that it is responsible for major [125I]T3-binding activity in Xenopus liver cytosol. Amino acid sequencing of internal peptide fragments derived from xCTBP demonstrated high identity to the corresponding sequence of mammalian aldehyde dehydrogenases 1 (ALDH1). To confirm whether or not xCTBP is identical to xALDH1, we isolated cDNAs encoding xALDH1 from an adult Xenopus hepatic cDNA library. The amino acid sequences deduced from the two isolated xALDH1 cDNAs were very similar to those of mammalian ALDH1 enzymes. The recombinant xALDH1 protein exhibited both T3-binding activity and ALDH activity converting retinal to retinoic acid (RA), which were similar to those of xCTBP purified from liver cytosol. The T3-binding activity was inhibited by NAD, while the ALDH activity was inhibited by thyroid hormones. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular concentration of free T3. Communications between thyroid hormone and retinoid pathways are discussed.  相似文献   

20.
In order to assess potential associations between autism spectrum disorder (ASD) phenotype, functional GI disorders and fecal microbiota, we recruited simplex families, which had only a single ASD proband and neurotypical (NT) siblings, through the Simons Simplex Community at the Interactive Autism Network (SSC@IAN). Fecal samples and metadata related to functional GI disorders and diet were collected from ASD probands and NT siblings of ASD probands (age 7–14). Functional gastrointestinal disorders (FGID) were assessed using the parent-completed ROME III questionnaire for pediatric FGIDs, and problem behaviors were assessed using the Child Behavior Check List (CBCL). Targeted quantitative polymerase chain reaction (qPCR) assays were conducted on selected taxa implicated in ASD, including Sutterella spp., Bacteroidetes spp. and Prevotella spp. Illumina sequencing of the V1V2 and the V1V3 regions of the bacterial 16S rRNA genes from fecal DNA was performed to an average depth of 208,000 and 107,000 high-quality reads respectively. Twenty-five of 59 ASD children and 13 of 44 NT siblings met ROME III criteria for at least one FGID. Functional constipation was more prevalent in ASD (17 of 59) compared to NT siblings (6 of 44, P = 0.035). The mean CBCL scores in NT siblings with FGID, ASD children with FGID and ASD without FGID were comparably higher (58–62 vs. 44, P < 0.0001) when compared to NT children without FGID. There was no significant difference in macronutrient intake between ASD and NT siblings. There was no significant difference in ASD severity scores between ASD children with and without FGID. No significant difference in diversity or overall microbial composition was detected between ASD children with NT siblings. Exploratory analysis of the 16S rRNA sequencing data, however, identified several low abundance taxa binned at the genus level that were associated with ASD and/or first order ASD*FGID interactions (FDR <0.1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号