首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of increased muscle temperature via continuous ultrasound prior to a maximal bout of eccentric exercise were investigated on the symptoms of delayed onset muscle soreness (DOMS) of the elbow flexors. Perceived muscle soreness, upper arm circumferences, range of motion (ROM), and isometric and isokinetic strength were measured over 7 days on 14 college-aged men (n = 6) and women (n = 8). Ten minutes of continuous ultrasound (ULT) or sham-ultrasound (CON) were administered. Muscle temperature was measured in the biceps brachii of both arms. Muscle temperature increased by 1.79 degrees +/- 0.49 degrees C (mean +/- SD) in the experimental arm of the ULT group. Muscle soreness was induced by a single bout of 50 maximal eccentric contractions. The ULT group did not differ significantly (p < 0.05) from the CON group with respect to perceived muscle soreness, upper arm circumference, ROM, and isometric and isokinetic strength. In conclusion, increased muscle temperature failed to provide significant prophylactic effects on the symptoms of DOMS.  相似文献   

2.
This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.  相似文献   

3.
The purpose of this investigation was to determine the influence of contraction velocity on the eccentric (ECC) and concentric (CON) torque production of the biceps brachii. After performing warm-up procedures, each male subject (n = 11) completed 3 sets of 5 maximal bilateral CON and ECC isokinetic contractions of the biceps at speeds of 90, 180, and 300 degrees x s(-1) on a Biodex System 3 dynamometer. The men received a 3-minute rest between sets and the order of exercises was randomized. Peak torque (Nm) values were obtained for CON and ECC contractions at each speed. Peak torque scores (ECC vs. CON) were compared using a t-test at each speed. A repeated measures analysis of variance was used to determine differences between speeds. ECC peak torque scores were greater than CON peak torque scores at each given speed: 90 degrees x s(-1), p = 0.0001; 180 degrees x s(-1), p = 0.0001; and 300 degrees x s(-1), p = 0.0001. No differences were found between the ECC peak torque scores (p = 0.62) at any of the speeds. Differences were found among the CON scores (p = 0.004). Post hoc analysis revealed differences between 90 degrees x s(-1) (114.61 +/- 23) and 300 degrees x s(-1) (94.17 +/- 18). These data suggest that ECC contractions of the biceps brachii were somewhat resistant to a force decrement as the result of an increase in velocity, whereas CON muscular actions of the biceps brachii were unable to maintain force as velocity increased.  相似文献   

4.
The purpose of this study was to examine the effects of 2 days of isokinetic training of the forearm flexors and extensors on strength and electromyographic (EMG) amplitude for the agonist and antagonist muscles. Seventeen men (mean +/- SD age = 21.9 +/- 2.8 years) were randomly assigned to 1 of 2 groups: (a) a training group (TRN; n = 8), or (b) a control group (CTL; n = 9). The subjects in the TRN group were tested for maximal isometric and concentric isokinetic (randomly ordered velocities of 60, 180, and 300 degrees x s(-1)) torque of the dominant forearm flexors and extensors before (pretest) and after (posttest) 2 days of isokinetic strength training. Each training session involved 6 sets of 10 maximal concentric isokinetic muscle actions of the forearm flexors and extensors at a velocity of 180 degrees x s(-1). The subjects in the CTL group were also tested for strength but did not perform any training. Surface EMG signals were detected from the biceps brachii and triceps brachii muscles during the strength testing. The results indicated that there were no significant (p > 0.05) pre- to post-test changes in forearm flexion and extension torque or EMG amplitude for the agonist and antagonist muscles. Thus, unlike previous studies of the quadriceps femoris muscles, these findings for the forearm flexors and extensors suggested that 2 days of isokinetic training may not be sufficient to elicit significant increases in strength. These results may have implications for the number of visits that are required for rehabilitation after injury, surgery, or both.  相似文献   

5.
Although research has demonstrated that isokinetic eccentric (ECC) strength is 20-60% greater than isokinetic concentric (CON) strength, few data exist comparing these strength differences in standard dynamic resistance exercises. The purpose of the study was to determine the difference in maximal dynamic ECC and CON strength for 6 different resistance exercises in young men and women. Ten healthy young men (mean +/- SE, 25.30 +/- 1.34 years), and 10 healthy young women (mean +/- SE, 23.40 +/- 1.37 years) who were regular exercisers with resistance training experience participated in the study. Two sessions were performed to determine CON and ECC 1 repetitions maximum for latissimus pull-down (LTP), leg press (LP), bench press (BP), leg extension (LE), seated military press (MP), and leg curl (LC) exercises. Maximal ECC and maximal CON strength were determined on weight stack machines modified to isolate ECC and CON contractions using steel bars and pulleys such that only 1 type of contraction was performed. Within 2 weeks, participants returned and completed a retest trial in a counterbalanced fashioned. Test-retest reliability was excellent (r = 0.99) for all resistance exercise trials. Men demonstrated 20-60% greater ECC than CON strength (LTP = 32%, LP = 44%, BP = 40%, LE = 35%, MP = 49%, LC = 27%). Women's strength exceeded the proposed parameters for greater ECC strength in 4 exercises, p < 0.05 (LP = 66%, BP = 146%, MP = 161%, LC = 82%). The ECC/CON assessment could help coaches capitalize on muscle strength differences in young men and women during training to aid in program design and injury prevention and to enhance strength development.  相似文献   

6.
Muscle force is potentiated by countermovement; this phenomenon is called stretch-shortening cycle (SSC) effect. In this study, we examined the factors strongly related to SSC effect in vivo, focusing on tendon elongation, preactivation, and residual force enhancement. Twelve healthy men participated in this study. Ankle joint angle was passively moved by a dynamometer, with a range of motion from 15° dorsiflexion (DF) to 15° plantarflexion (PF). Muscle contraction was evoked by electrical stimulation, with stimulation timing adjusted to elicit three types of contraction: (1) concentric contraction without preliminary contraction (CON), (2) concentric contraction after preliminary eccentric contraction (ECC), and (3) concentric contraction after preliminary isometric contraction (ISO). Joint torque was recorded at DF5°, PF0°, and PF5°, respectively. SSC effect was calculated as the ratio of joint torque obtained in ECC or ISO with respect to that obtained in CON at the aforementioned three joint angles. SSC effect was prominent in the first half of movement in both ECC (DF5°, 329.3 ± 101.2%; PF0°, 159.2 ± 29.4%; PF5°, 125.5 ± 20.8%) and ISO (DF5°, 276.4 ± 87.0%; PF0°, 134.5 ± 24.5%; PF5°, 106.8 ± 18.0%) conditions. SSC effect was significantly larger in ECC than in ISO at all joint angles (P < 0.001). Even without preliminary eccentric contraction (i.e., ISO condition), SSC effect was clearly large, indicating that a significant part of SSC effect is derived from preactivation. However, the active lengthening-induced force potentiation mechanism (residual force enhancement) also contributes to SSC effect.  相似文献   

7.
Electromyography (EMG) is commonly used to determine the electrical activity of skeletal muscle during contraction. To date, independent verification of the relationship between muscle use and EMG has not been provided. It has recently been shown that relaxation- (e.g., T2) weighted magnetic resonance images (MRI) of skeletal muscle demonstrate exercise-induced contrast enhancement that is graded with exercise intensity. This study was conducted to test the hypothesis that exercise-induced magnetic resonance (MR) contrast shifts would relate to EMG amplitude if both measures reflect muscle use during exercise. Both MRI and EMG data were collected for separate eccentric (ECC) and concentric (CON) exercise of increasing intensity to take advantage of the fact that the rate of increase and amplitude of EMG activity are markedly greater for CON muscle actions. Seven subjects 30 +/- 2 (SE) yr old performed five sets of 10 CON or ECC arm curls with each of four resistances representing 40, 60, 80, and 100% of their 10 repetition maximum for CON curls. There was 1.5 min between sets and 30 min between bouts (5 sets of 10 actions at each relative resistance). Multiple echo, transaxial T2-weighted MR images (1.5 T, TR/TE 2,000/30) were collected from a 7-cm region in the middle of the arm before exercise and immediately after each bout. Surface EMG signals were collected from both heads of the biceps brachii and the long head of the triceps brachii muscles. CON and ECC actions resulted in increased integrated EMG (IEMG) and T2 values that were strongly related (r = 0.99, P < 0.05) with relative resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We investigated whether altered peripheral and/or corticospinal excitatory output and voluntary activation are implicated in hypohydration-induced reductions in muscle isometric and isokinetic (90°.s−1) strength. Nine male athletes completed two trials (hypohydrated, euhydrated) comprising 90 min cycling at 40°C, with body weight losses replaced in euhydrated trial. Peripheral nerve and transcranial magnetic stimulations were applied during voluntary contractions pre- and 40 min post-exercise to quantify voluntary activation and peripheral (M-wave) and corticospinal (motor evoked potential) evoked responses in m. vastus medialis. Both maximum isometric (−15.3±3.1 vs −5.4±3.5%) and isokinetic eccentric (−24.8±4.6 vs −7.3±7.2%) torque decreased to a greater extent in hypohydrated than euhydrated trials (p<0.05). Half relaxation time of the twitch evoked by peripheral nerve stimulation during maximal contractions increased after exercise in the hypohydrated (21.8±9.3%) but stayed constant in the euhydrated (1.6±10.7%; p = 0.017) condition. M-wave amplitude during maximum voluntary contraction increased after exercise in the heat in hypohydrated (10.7±18.0%) but decreased in euhydrated condition (−17.4±16.9%; p = 0.067). Neither peripheral nor cortical voluntary activation were significantly different between conditions. Motor evoked potential amplitude increased similarly in both conditions (hypohydrated: 25.7±28.5%; euhydrated: 52.9±33.5%) and was accompanied by lengthening of the cortical silent period in euhydrated but not hypohydrated condition (p = 0.019). Different neural strategies seem to be adopted to regulate neural drive in the two conditions, with increases in inhibitory input of either intracortical or corticospinal origin during the euhydrated trial. Such changes were absent in the hypohydrated condition, yet voluntary activation was similar to the euhydrated condition, perhaps due to smaller increases in excitatory drive rather than increased inhibition. Despite this maximal isometric and eccentric strength were impaired in the hypohydrated condition. The increase in peripheral muscle excitability evident in the hypohydrated condition was not sufficient to preserve performance in the face of reduced muscle contractility or impaired excitation-contraction coupling.  相似文献   

9.
The purpose of this study was to determine whether 7 weeks of standardized (same number and duration of repetitions, sets and rest strictly identical) electromyostimulation training of the elbow flexor muscles would induce strength gains equivalent to those of voluntary isometric training in isometric, eccentric and concentric contractions. Twenty-five males were randomly assigned to an electromyostimulated group (EMS, n = 9), a voluntary isometric group (VOL, n = 8), or a control group (CON, n = 8). Maximal voluntary isometric, eccentric and concentric strength, electromyographic (EMG) activity of the biceps and triceps brachii muscles, elbow flexor muscle activation (twitch interpolation technique) and contractile properties were assessed before and after the training period. The main findings were that the isometric torque gains of EMS were greater than those of VOL after the training period (P < 0.01) and that the eccentric and concentric torque gains were equivalent. In both groups, we observed that the mechanical twitch (Pt) was increased (P < 0.05) and that torque improvements were not mediated by neural adaptations. Considering the respective intensities of the training programs (i.e., submaximal contractions for EMS versus maximal for VOL), it can be concluded that electromyostimulation training would be more efficient than voluntary isometric training to improve both isometric and dynamic strength.  相似文献   

10.
The purpose of this study was to examine the effects of interelectrode distance (IED) on the absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) versus isokinetic and isometric torque relationships for the biceps brachii muscle. Ten adults [mean+/-SD age=22.0+/-3.4 years] performed submaximal to maximal, isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects performed randomly ordered, submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed over the biceps brachii muscle with IEDs of 20, 40, and 60mm. Absolute and normalized EMG amplitude (muVrms and %max) increased linearly with torque during the isokinetic and isometric muscle actions (r(2) range=0.988-0.998), but there were no significant changes for absolute or normalized EMG MPF (Hz or %max) from 10% to 100% PT and MVC. In some cases, there were significant (p<0.05) differences among the three IED arrangements for absolute EMG amplitude and MPF values, but not for the normalized values. These findings suggested that for the biceps brachii muscle, IEDs between 20 and 60mm resulted in similar patterns for the EMG amplitude or MPF versus dynamic and isometric torque relationships. Furthermore, unlike the absolute EMG amplitude and MPF values, the normalized EMG data were not influenced by changes in IED between 20 and 60mm. Thus, normalized EMG data can be compared among previous studies that have utilized different IED arrangements.  相似文献   

11.
Aim. The purpose of this study was to determine the neuromuscular fatigue profiles during 100 s isometric (ISO), concentric (CON), and eccentric (ECC) activity.

Methods. Twelve subjects (age 25.1±3.7 years, mass 70.1±8.2 kg, mean±SD) performed ISO, CON and ECC maximal voluntary contractions and 100 s endurance trials on an isokinetic dynamometer. Raw EMG data were recorded throughout each trial from the rectus femoris of the right limb. Corresponding data for integrated electromyography (IEMG), percentile frequency shifts (MPFS) and peak torque output were divided into five 5 s epochs and subsequently normalised with the first epoch being the reference point, in order to assess changes over time.

Results. There were no significant differences between ECC, CON and ISO peak torque output (211±63 vs 169±41 vs 177±61 Nm; ECC, CON, ISO) and IEMG activity (280±143 vs 305±146 vs 287±143 mV; ECC, CON, ISO) during maximal contractions. Serial reductions in torque output were greatest in ISO in which torque output during the final epoch was 31±13% of initial values, similar to the final torque values in CON (58±15%), but significantly less than ECC (108.6±38.6%; P<0.001) values. In CON and ECC, IEMG was maintained (95±27% and 93±21%; CON and ECC), whereas IEMG for ISO decreased to 38±13% of initial values. The greatest reduction in MPFS occurred in CON (69±10%) compared to ISO (78±9%; P<0.05) and ECC (93±6%; P<0.001).

Conclusion. These data demonstrate distinct neuromuscular fatigue profiles for the different types of muscle contraction. Whereas eccentric activity was largely fatigue resistant, isometric and concentric contractions displayed different neuromuscular fatigue profiles.  相似文献   


12.
The purpose of this study was to examine the strength, electromyographic (EMG), and mechanomyographic (MMG) responses after workouts designed to elicit fatigue and muscle damage vs. only fatigue. Thirteen men (mean ± SD age = 23.7 ± 2.2 years) performed 6 sets of 10 maximal concentric isokinetic (CONexercise) or eccentric isokinetic (ECCexercise) muscle actions of the dominant forearm flexors on 2 separate days. Before (PRE) and after (POST) these workouts, peak torque (PT), surface EMG, and MMG signals were measured during maximal concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the forearm flexors. The subjects also visited the laboratory for a control (CTL) visit with quiet resting between the PRE and POST measurements, rather than performing the CONexercise or ECCexercise. The results showed that there were significant 26 and 25% decreases in PT after the CONexercise and ECCexercise, respectively, and these decreases were statistically equivalent for the concentric, eccentric, and isometric muscle actions. There were also 19 and 23% reductions in normalized EMG amplitude after the CONexercise and ECCexercise, respectively, but no changes in EMG mean frequency (MNF), MMG amplitude, or MMG MNF. These findings demonstrated a neural component(s) to the strength decrement after CONexercise and ECCexercise. It is possible that after these 2 types of exercise, activation of free nerve endings that are sensitive to muscle damage and pH changes resulted in inhibition of alpha motor neurons, causing decreased muscle activation and torque. These findings suggest that training programs designed to minimize strength loss during competition should consider the fact that at least some of this loss is because of neural factors.  相似文献   

13.
The aim of this study was to investigate the effect of four different inertial loads (0.025, 0.050, 0.075, and 0.100 kg· m²) on concentric (CON) power, eccentric (ECC) power, and ECC overload in the flywheel Romanian deadlift (RDL). Fourteen recreationally trained males (27.9 ± 6.4 years, 90 ± 10.7 kg, 180.7 ± 5.5 cm) volunteered for the study. They had a minimum of two years of resistance training experience, although none had experience in flywheel inertia training (FIT). All participants performed the flywheel RDL on a flywheel device (kBox 3, Exxentric, AB TM, Bromma, Sweden). Each set was performed using different inertial loads, those being 0.025, 0.050, 0.075, and 0.100 kg·m². For CON, ECC power, and ECC overload, there was a significant difference (p < 0.001) between inertial loadings. In conclusion, results highlight that lower inertial load leads to higher peak CON and ECC power values, precisely 0.025 kg· m². Regarding ECC overload, medium to higher loads (0.050, 0.075, and 0.100 kg·m²) will lead to higher values.  相似文献   

14.
The purpose of this investigation was to determine the effect of hyperhydration on the electromyographic (EMG) and mechanomyographic (MMG) responses during isometric and isokinetic muscle actions of the biceps brachii. Eight (22.1 +/- 1.8 years, 79.5 +/- 22.8 kg) subjects were tested for maximal isometric, submaximal isometric, and maximal concentric isokinetic muscle strength in either a control (C) or hyperhydrated (H) state induced by glycerol ingestion while the EMG and MMG signals were recorded. Although fluid retention was significantly greater during the H protocol, the analyses indicated no change in torque, EMG amplitude, EMG mean power frequency (MPF), MMG amplitude, or MMG MPF with hyperhydration. These results indicated that glycerol-induced fluid retention does not affect the torque-producing capabilities of a muscle, the impulses (EMG) going to a muscle, or muscular vibrations (MMG). It has been suggested that EMG and MMG can be used as direct electrical/mechanical monitoring, which could be presented to trainers and athletes; however, before determining the utility of these signals, the MMG and EMG responses should be examined under a variety of conditions such as in the present study.  相似文献   

15.
The purpose of this investigation was to determine the mechanomyography (MMG) and electromyography (EMG) amplitude and mean power frequency (MPF) vs. eccentric isokinetic torque relationships for the biceps brachii muscle. Nine adults (mean +/- SD age = 23.1 +/- 2.9 years) performed submaximal to maximal eccentric isokinetic muscle actions of the dominant forearm flexors. After determination of isokinetic peak torque (PT), the subjects randomly performed submaximal step muscle actions in 10% increments from 10 to 90% PT. Polynomial regression analyses indicated that the MMG amplitude vs. eccentric isokinetic torque relationship was best fit with a quadratic model (R(2) = 0.951), where MMG amplitude increased from 10 to 60% PT and then plateaued from 60 to 100% PT. There were linear increases in MMG MPF (r(2) = 0.751) and EMG amplitude (r(2) = 0.988) with increases in eccentric isokinetic torque, but there was no significant change in EMG MPF from 10 to 100% PT. The results suggested that for the biceps brachii, eccentric isokinetic torque was increased to approximately 60% PT through concurrent modulation of the number of active motor units and their firing rates, whereas additional torque above 60% PT was produced only by increases in firing rates. These findings contribute to current knowledge of motor-control strategies during eccentric isokinetic muscle actions and could be useful in the design of training programs.  相似文献   

16.
The influence of an eccentric training on torque/angular velocity relationships and coactivation level during maximal voluntary isokinetic elbow flexion was examined. Seventeen subjects divided into two groups (Eccentric Group EG, n = 9 Control Group CG, n = 8) performed on an isokinetic dynamometer, before and after training, maximal isokinetic elbow flexions at eight angular velocities (from - 120 degrees s(-1) under eccentric conditions to 240 degrees s(-1) under concentric conditions), and held maximal and submaximal isometric actions. Under all conditions, the myoelectric activities (EMG) of the biceps and the triceps brachii muscles were recorded and quantified as the RMS value. Eccentric training of the EG consisted of 5x6 eccentric muscle actions at 100 and 120% of one maximal repetition (IRM) for 21 sessions and lasted 7 weeks. In the EG after training, torque was significantly increased at all angular velocities tested (ranging from 11.4% at 30 degrees (s-1) to 45.5% at - 120 degrees s(-1)) (p < 0.05). These changes were accompanied by an increase in the RMS activities of the BB muscle under eccentric conditions (from - 120 to - 30 degrees (s-1)) and at the highest concentric angular velocities (180 and 24 degrees s(-1)) (p < 0.05). The RMS activity of the TB muscle was not affected by the angular velocity in either group for all action modes. The influence of eccentric training on the torque gains under eccentric conditions and for the highest velocities was attributed essentially to neural adaptations.  相似文献   

17.
为探讨人体进行最大等速离心运动(ECC)诱发血液肌酸激酶(CK)水平变化、血清肌酸激酶水平与肌肉损伤(EIMD)的关系,本研究筛选出150名"缺乏运动"的健康大学生为受试者,进行血样采集,进行前测包括血清肌酸激酶(CK)、最大等长肌力(MVC)、肘关节活动角度(ROM)、上臂围(CIR)、肌肉感受(VAS)。受试者进行5组×12次最大等速离心运动,运动后恢复期,将全部受试者血清肌酸激酶值进行排序:血清肌酸激酶值最高和最低20%样本,高肌酸激酶水平组(HCK组)和低肌酸激酶水平组(low LCK组),利用SPSS18.0统计学软件,以方差分析和多元回归分析进行统计分析。本研究发现全部受试者、高肌酸激酶水平组、低肌酸激酶水平组在最大等速离心运动后各评估指标均显著高于比前测结果,p<0.05。全部受试者、高肌酸激酶水平组受试者在最大等速离心运动后各指标变化皆明显大于低肌酸激酶水平组受试者,p<0.05。受试者血清肌酸激酶峰值与最大等长肌力、肘关节活动角度、上臂围、肌肉感受最大变化值有相关,p<0.05。本研究认为肌肉损伤程度与肌酸激酶水平具有显著相关,尤其高血清肌酸激酶水平者肌酸激酶水平较大程度反映肌肉损伤程度趋势。本研究表明,肘关节活动角度、上臂围具有预测肌酸激酶峰值的效果。  相似文献   

18.
Despite an age-related loss of voluntary isometric and concentric strength, muscle strength is well maintained during lengthening muscle actions (i.e., eccentric strength) in old age. Additionally, in younger adults during lengthening of an activated skeletal muscle, the force level observed following the stretch is greater than the isometric force at the same muscle length. This feature is termed residual force enhancement (RFE) and is believed to be a combination of active and passive components of the contractile apparatus. The purpose of this study was to provide an initial assessment of RFE in older adults and utilize aging as a muscle model to explore RFE in a system in which isometric force production is compromised, but structural mechanisms of eccentric strength are well-maintained. Therefore, we hypothesised that older adults will experience greater RFE compared with young adults. Following a reference maximal voluntary isometric contraction (MVC) of the dorsiflexors in 10 young (26.1±2.7y) and 10 old (76.0±6.5y) men, an active stretch was performed at 15°/s over a 30° ankle joint excursion ending at the same muscle length as the reference MVCs (40° of plantar flexion). Any additional torque compared with the reference MVC therefore represented RFE. In older men RFE was ∼2.5 times greater compared to young. The passive component of force enhancement contributed ∼37% and ∼20% to total force enhancement, in old and young respectively. The positive association (R 2 = 0.57) between maintained eccentric strength in old age and RFE indicates age-related mechanisms responsible for the maintenance of eccentric strength likely contributed to the observed elevated RFE. Additionally, as indicated by the greater passive force enhancement, these mechanisms may be related to increased muscle series elastic stiffness in old age.  相似文献   

19.
Effects of an exhaustive eccentric exercise (EE) on the motor control of maximal velocity rhythmic elbow extension/flexion movement (RM) were examined in eight male students. The exhaustive EE consisted of 100 maximal eccentric actions of the elbow flexor muscles. Movement range was 40–170° in EE at an angular velocity of 2 rad s?1. A directive scaled RM of 60° with visual feedback was performed in a sitting position, with the right forearm fixed to the lever arm in horizontal plane above protractor. Surface electromyographic activity (EMG) was recorded from the biceps brachii (BB) and triceps brachii (TB) muscles. Maximal isokinetic eccentric and concentric tests and RM test were conducted before, after, 0.5 h, 2 days and 7 days after the exercise. Dynamic force production was deteriorated after EE (P < .001), and did not recover fully within 7 days. The delayed recovery phase was characterized by delayed onset of muscle soreness (DOMS) and elevated serum creatine kinase (CK) activity. The RM test revealed a delayed increase of the fatigued BB muscle EMG activity, but the maximal RM velocity could be preserved. The present results emphasize the capacity of the neuromuscular system to compensate for prolonged eccentric-induced contractile failure by optimizing antagonistic muscles coordination in a demanding rhythmic task. The underlying compensatory mechanisms could be related to increased sensitization of small diameter muscle nerve endings.  相似文献   

20.
High intensity strength training causes changes in steroid hormone concentrations. This could be altered by the muscular contraction type: eccentric or concentric. The aim of this study was to compare the effect of the completion of a short concentric (CON) and concentric/eccentric (CON/ECC) trial on the urinary steroid profile, both with the same total work. 18 males performed the trials on an isokinetic dynamometer (BIODEX III) exercising quadriceps muscles, right and left, on different days. Trial 1(CON): 4×10 Concentric knee extension + relax knee flexion, speed 60°/second; rest 90 seconds between each series and 4 minutes between each leg exercise. Trial 2(CON/ECC): 4×5 concentric knee extension + Eccentric knee flexion under similar conditions. Urine samples were taken before the exercise and one hour after finishing it. Androsterone, Etiocholanolone, DHEA, Androstenedione, Testosterone, Epitestosterone, Dehydrotestosterone, Estrone, B-Estradiol, Tetrahydrocortisone, Tetrahydrocortisol, Cortisone and Cortisol (free, glucoconjugated and sulfoconjugated) urinary values were determined using gas chromatography/mass spectrometry techniques. No significant differences were noted in Total Work and Average Peak Torque, although Maximum Peak Torque in the CON/ECC trial was higher than in the CON trial. These results demonstrate no changes in the steroid profile before and after trials, or when comparing CON to CON/ECC trials. The data suggest that eccentric contractions do not cause hormonal changes different to the ones produced by concentric contractions, when they are performed in strength short trials with the same total workload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号