首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Invasive meningococcal disease causes over 3500 cases each year in Europe, with particularly high incidence among young children. Among serogroup B meningococci, which cause most of the cases, high diversity in the outer membrane proteins (OMPs) is observed in endemic situations; however, comprehensive molecular epidemiological data are available for the diversity and distribution of the OMPs PorA and FetA and these can be used to rationally design a vaccine with high coverage of the case isolates. The aim of this study was to determine whether outer membrane vesicles (OMVs) derived from an isolate with constitutive FetA expression (MenPF-1 vaccine) could be used to induce antibodies against both the PorA and FetA antigens. The immunogenicity of various dose levels and number of doses was evaluated in mice and rabbits, and IgG antibody responses tested against OMVs and recombinant PorA and FetA proteins. A panel of four isogenic mutants was generated and used to evaluate the relative ability of the vaccine to induce serum bactericidal activity (SBA) against FetA and PorA. Sera from mice were tested in SBA against the four target strains. Results demonstrated that the MenPF-1 OMVs were immunogenic against PorA and FetA in both animal models. Furthermore, the murine antibodies induced were bactericidal against isogenic mutant strains, suggesting that antibodies to both PorA and FetA were functional. The data presented indicate that the MenPF-1 vaccine is a suitable formulation for presenting PorA and FetA OMPs in order to induce bactericidal antibodies, and that proceeding to a Phase I clinical trial with this vaccine candidate is justified.  相似文献   

2.
Neisseria meningitidis is a major cause of septicaemia and meningitis worldwide. Most disease in Europe, the Americas and Australasia is caused by meningococci expressing serogroup B capsules, but no vaccine against this polysaccharide exists. Potential candidates for ‘serogroup B substitute’ vaccines are outer membrane protein antigens including the typing antigens PorA and FetA. The web-accessible PubMLST database (www.pubmlst.org) was used to investigate the temporal and geographical patterns of associations among PorA and FetA protein variants and lineages defined by combinations of housekeeping genes, known as clonal complexes. The sample contained 3460 isolates with genotypic information from 57 countries over a 74 year period. Although shifting associations among antigen variants and clonal complexes were evident, a subset of strain types associated with several serogroups persisted for decades and proliferated globally. Genetic stability among outer membrane proteins of serogroup A meningococci has been described previously, but here long-lived genetic associations were also observed among meningococci belonging to serogroups B and C. The patterns of variation were consistent with behaviour predicted by models that invoke inter-strain competition mediated by immune selection. There was also substantial geographic and temporal heterogeneity in antigenic repertoires, providing both opportunities and challenges for the design of broad coverage protein-based meningococcal vaccines.  相似文献   

3.
The structure of the porin complexes of Neisseria meningitidis was assessed in the vaccine strain H44/76 and its homologous mutants lacking the main porins (PorA and PorB) and other outer membrane (OM) components (RmpM and FetA). The analysis using 1‐D blue native (BN) electrophoresis, 2‐D BN/SDS‐PAGE and 2‐D diagonal electrophoresis, followed by LC/MS‐MS (for 1‐D gels) or MALDI‐TOF (for 2‐D gels) revealed at least six porin complexes in the wild‐type strain with molecular masses (MW) ranging from 145 to 195 kDa and variable composition: The two higher MW complexes are formed by PorA, PorB and RmpM, the following three are formed by PorA and PorB, and the lower MW one is formed by only PorB. Complexes in the mutants lacking either PorA, PorB or RmpM, but not those in the mutant lacking FetA, were alterered respect to those in the wild‐type strain. The most evident alteration was seen in the mutant lacking PorB, in which PorA formed only a high MW complex (≈?800 kDa). Our results suggest that PorA and PorB could form a ‘basic’ template for the transportation systems in the OM of the meningococci. Other proteins (such as RmpM) could be transiently associated to the porin complexes, depending on the specific tranport needs at different stages of the meningococcal life cycle, resulting in a dynamic net of pores of variable composition.  相似文献   

4.
The effectiveness of a vaccine is determined not only by the immunogenicity of its components, but especially by how widely it covers the disease-causing strains circulating in a given region. Because vaccine coverage varies over time, this study aimed to detect possible changes that could affect vaccine protection during a specific period in a southern European region. The 4CMenB vaccine is licensed for use in Europe, Canada, and Australia and is mainly directed against Neisseria meningitidis serogroup B. This vaccine contains four main immunogenic components: three recombinant proteins, FHbp, Nhba and NadA, and an outer membrane vesicle [PorA P1.4]. The allelic distribution of FHbp, Nhba, NadA, and PorA antigens in 82 invasive isolates (B and non-B serogroups) isolated from January 2008 to December 2013 were analyzed. 4CMenB was likely protective against 61.8% and 50% of serogroup B and non-B meningococci, respectively, in the entire period, but between 2012 and 2013, the predicted protection fell below 45% (42.1% for serogroup B isolates).The observed decreasing trend in the predicted protection during the 6 years of the study (Χ 2 for trend  = 4.68, p = 0.03) coincided with a progressive decrease of several clonal complexes (e.g., cc11, cc32 and cc41/44), which had one or more antigens against which the vaccine would offer protection.  相似文献   

5.
The class 1 protein (PorA) is a major component of the outer membrane of Neisseria meningitidis and functions as a cationic porin. The protein is particularly effective in generating a bactericidal immune response following infection and is therefore under investigation as a potential antigen for inclusion in new meningococcal vaccines. Studies on the vaccine potential of PorA would be facilitated by the production of pure protein, free from other components of the meningococcal outer membrane. In the current study, PorA was expressed from the heterologous host Escherichia coli as a C-terminal fusion to an inducible protein-splicing element (intein) with an N-terminal chitin-binding domain (CBD) (IMPACT-TWIN system). The CBD acted as an affinity tag and allowed binding of the fusion protein to a chitin bead column, after which self-cleavage of the intein at its C-terminus was induced, resulting in the release of mature PorA. Cleavage of the fusion protein was temperature- and time-dependent, and was optimal at pH 7.0 after 5 days of storage at 4 degrees C. Efficient cleavage was also dependent on the addition of a minimal amino acid sequence (Gly-Arg-Ala) to the N-terminus of the mature PorA protein. This represented a significant improvement on the large N-terminal sequences introduced by other expression systems previously used to prepare recombinant PorA, and the yields of PorA purified with the IMPACT-TWIN system were similar. Thus, the IMPACT-TWIN system provides a facile method for producing recombinant PorA and may also be useful for the production of other bacterial outer-membrane proteins for vaccine studies.  相似文献   

6.

Background

The meningococcal serogroup A (MenA) polysaccharide conjugate vaccine used in Sub-Saharan Africa does not prevent disease caused by MenW or MenX strains, which also cause epidemics in the region. We investigated the vaccine-potential of native outer membrane vesicles with over-expressed factor H-binding protein (NOMV-fHbp), which targeted antigens in African meningococcal strains, and was combined with a MenA polysaccharide conjugate vaccine.

Methodology/Principal Findings

The NOMV-fHbp vaccine was prepared from a mutant African MenW strain with PorA P1.5,2, attenuated endotoxin (ΔLpxL1), deleted capsular genes, and over-expressed fHbp in variant group 1. The NOMV-fHbp was adsorbed with Al(OH)3 and used to reconstitute a lyophilized MenA conjugate vaccine, which normally is reconstituted with liquid MenC, Y and W conjugates in a meningococcal quadrivalent conjugate vaccine (MCV4-CRM, Novartis). Mice immunized with the NOMV-fHbp vaccine alone developed serum bactericidal (human complement) activity against 13 of 15 African MenA strains tested; 10 of 10 African MenX strains, 7 of 7 African MenW strains, and 6 of 6 genetically diverse MenB strains with fHbp variant group 1 (including 1 strain from The Gambia). The combination NOMV-fHbp/MenA conjugate vaccine elicited high serum bactericidal titers against the two MenA strains tested that were resistant to bactericidal antibodies elicited by the NOMV-fHbp alone; the combination elicited higher titers against the MenA and MenW strains than those elicited by a control MCV4-CRM vaccine (P<0.05); and high titers against MenX and MenB strains. For most strains, the titers elicited by a control NOMV-fHbp knock out vaccine were <1∶10 except when the strain PorA matched the vaccine (titers >1∶000).

Conclusion/Significance

The NOMV-fHbp/MenA conjugate vaccine provided similar or higher coverage against MenA and MenW strains than a quadrivalent meningococcal conjugate vaccine, and extended protection against MenX strains responsible for epidemics in Africa, and MenB strains with fHbp in variant group 1.  相似文献   

7.
Neisseria meningitidis is efficiently phagocytosed by polymorphonuclear leukocytes (PMNS) following opsonization with opsonic antibodies; opsonophagocytosis is the primary mechanism for clearance of meningococci from the host. Thus, in testing meningococcal vaccines, the level of opsonophagocytic antibodies appears to correlate with vaccine-induced protection. Our previous studies demonstrated that the conjugation ofN. meningitidis serogroup A capsular polysaccharide (CPSA) to serogroup B outer membrane vesicle (OMV) could induce a high level of bactericidal antibody response against serogroup A meningococci in animals. The purpose of this study was to evaluate opsonophagocytic activity of the conjugate of CPSA to OMV (CPSA-OMV). In order to evaluate the potential efficacy of CPSA-OMV a flow cytometric opsonophagocytic assay was used. The conjugate and controls were injected intramuscularly into four groups of rabbits with boosters on days 14, 28 and 42 following primary immunization. The rabbits were bled prior to injection and two weeks after each injection. Opsonophagocytic activity of antibodies in hyperimmune sera through rabbit PMNS were measured with flow cytometer, using dihydrorhodamine-123 as a probe. The results indicated that our conjugate could induce a highly significant level of opsonophagocytic activity against serogroup A meningococci after 56 days compared to the control groups (P<0.05). We conclude that this conjugate represents a vaccine candidate against serogroups A and B meningococci after further investigation.  相似文献   

8.

Background

The serogroup A conjugate meningococcal vaccine, MenAfriVac, was introduced in mass vaccination campaigns in December 2010 in Burkina Faso, Mali and Niger. In the coming years, vaccination will be extended to other African countries at risk of epidemics. To document the molecular characteristics of disease-causing meningococcal strains circulating in the meningitis belt of Africa before vaccine introduction, the World Health Organization Collaborating Centers on Meningococci in Europe and United States established a common strain collection of 773 isolates from cases of invasive meningococcal disease collected between 2004 and 2010 from 13 sub-Saharan countries.

Methodology

All isolates were characterized by multilocus sequence typing, and 487 (62%) were also analyzed for genetic variation in the surface antigens PorA and FetA. Antibiotic susceptibility was tested for part of the collection.

Principal Findings

Only 19 sequence types (STs) belonging to 6 clonal complexes were revealed. ST-5 clonal complex dominated with 578 (74.8%) isolates. All ST-5 complex isolates were remarkably homogeneous in their PorA (P1.20,9) and FetA (F3-1) and characterized the serogroup A strains which have been responsible for most epidemics during this time period. Sixty-eight (8.8%) of the 773 isolates belonged to the ST-11 clonal complex which was mainly represented by serogroup W135, while an additional 38 (4.9%) W135 isolates belonged to the ST-175 complex. Forty-eight (6.2%) serogroup X isolates from West Africa belonged to the ST-181 complex, while serogroup X cases in Kenya and Uganda were caused by an unrelated clone, ST-5403. Serogroup X, ST-181, emerged in Burkina Faso before vaccine introduction.

Conclusions

In the seven years preceding introduction of a new serogroup A conjugate vaccine, serogroup A of the ST-5 clonal complex was identified as the predominant disease-causing strain.  相似文献   

9.
Recently, we developed a high yield production process for outer membrane particles from genetically modified bacteria, called Generalized Modules of Membrane Antigens (GMMA), and the corresponding simple two step filtration purification, enabling economic manufacture of these particles for use as vaccines. Using a Shigella sonnei strain that was genetically modified to produce penta-acylated lipopolysaccharide (LPS) with reduced endotoxicity and to maintain the virulence plasmid encoding for the immunodominant O antigen component of the LPS, scale up of the process to GMP pilot scale was straightforward and gave high yields of GMMA with required purity and consistent results. GMMA were formulated with Alhydrogel and were highly immunogenic in mice and rabbits. In mice, a single immunization containing 29 ng protein and 1.75 ng of O antigen elicited substantial anti-LPS antibody levels. As GMMA contain LPS and lipoproteins, assessing potential reactogenicity was a key aspect of vaccine development. In an in vitro monocyte activation test, GMMA from the production strain showed a 600-fold lower stimulatory activity than GMMA with unmodified LPS. Two in vivo tests confirmed the low potential for reactogenicity. We established a modified rabbit pyrogenicity test based on the European Pharmacopoeia pyrogens method but using intramuscular administration of the full human dose (100 μg of protein). The vaccine elicited an average temperature rise of 0.5°C within four hours after administration, which was considered acceptable and showed that the test is able to detect a pyrogenic response. Furthermore, a repeat dose toxicology study in rabbits using intramuscular (100 μg/dose), intranasal (80 μg/dose), and intradermal (10 μg/dose) administration routes showed good tolerability of the vaccine by all routes and supported its suitability for use in humans. The S. sonnei GMMA vaccine is now in Phase 1 dose-escalation clinical trials.  相似文献   

10.
Several different meningococcal outer membrane protein vaccines have been prepared and used in human safety and immunogenicity studies. The results of these studies have led to some general conclusions regarding the human antibody response to these vaccines. A review of these conclusions, however, indicates that a number of important questions and problems still need to be addressed. Two of these are the determination of the protective level of bactericidal antibody in human serum and the impact of phase variation of surface antigens on vaccine strategy. Bactericidal assays using intrinsic complement and high concentrations of serum suggest that the level of natural immunity to group B meningococci is quite high, but is increased by vaccination with outer membrane protein vaccine. Phase variation in meningococcal surface antigens including capsule, class 1 protein, class 5 protein, and lipopolysaccharide was demonstrated using colony blotting with monoclonal antibodies. Phase variation resulted in differences in susceptibility to the bactericidal activity of human sera.  相似文献   

11.
Ab-initiated, complement-dependent killing contributes to host defenses against invasive meningococcal disease. Sera from nonimmunized individuals vary widely in their bactericidal activity against group B meningococci. We show that IgG isolated from select individuals can block killing of group B meningococci by human sera that are otherwise bactericidal. This IgG also reduced the bactericidal efficacy of Abs directed against the group B meningococcal protein vaccine candidates factor H-binding protein currently undergoing clinical trials and Neisserial surface protein A. Immunoblots revealed that the blocking IgG was directed against a meningococcal Ag called H.8. Killing of meningococci in reactions containing bactericidal mAbs and human blocking Abs was restored when binding of blocking Ab to meningococci was inhibited using either synthetic peptides corresponding to H.8 or a nonblocking mAb against H.8. Furthermore, genetic deletion of H.8 from target organisms abrogated blocking. The Fc region of the blocking IgG was required for blocking because F(ab')(2) fragments were ineffective. Blocking required IgG glycosylation because deglycosylation with peptide:N-glycanase eliminated blocking. C4b deposition mediated by an anti-factor H-binding protein mAb was reduced by intact blocking IgG, but not by peptide:N-glycanase-treated blocking IgG, suggesting that blocking resulted from inhibition of classical pathway of complement. In conclusion, we have identified H.8 as a meningococcal target for novel blocking Abs in human serum. Such blocking Abs may reduce the efficacy of select antigroup B meningococcal protein vaccines. We also propose that outer membrane vesicle-containing meningococcal vaccines may be more efficacious if purged of subversive immunogens such as H.8.  相似文献   

12.
《PloS one》2016,11(2)
The pattern of epidemic meningococcal disease in the African meningitis belt may be influenced by the background level of population immunity but this has been measured infrequently. A standardised enzyme-linked immunosorbent assay (ELISA) for measuring meningococcal serogroup A IgG antibodies was established at five centres within the meningitis belt. Antibody concentrations were then measured in 3930 individuals stratified by age and residence from six countries. Seroprevalence by age was used in a catalytic model to determine the force of infection. Meningococcal serogroup A IgG antibody concentrations were high in each country but showed heterogeneity across the meningitis belt. The geometric mean concentration (GMC) was highest in Ghana (9.09 μg/mL [95% CI 8.29, 9.97]) and lowest in Ethiopia (1.43 μg/mL [95% CI 1.31, 1.57]) on the margins of the belt. The force of infection was lowest in Ethiopia (λ = 0.028). Variables associated with a concentration above the putative protective level of 2 μg/mL were age, urban residence and a history of recent vaccination with a meningococcal vaccine. Prior to vaccination with the serogroup A meningococcal conjugate vaccine, meningococcal serogroup A IgG antibody concentrations were high across the African meningitis belt and yet the region remained susceptible to epidemics.  相似文献   

13.
A new approach to the development of a vaccine against meningococci of serogroups A and B was proposed. It involves the synthesis of conjugates of high-molecular capsule polysaccharides of the serogroup A meningococcus (PsA) with earlier synthesized protective fragments of membrane proteins from serogroup B meningococci. The conjugates were synthesized using a method that consists of the generation of aldehyde groups by oxidizing free vicinal hydroxyl groups of PsA and subsequent reaction of these groups with amino groups of the peptide. The reaction proceeds with the intermediate formation of the Schiff base, which is reduced to the stable secondary amine. The main parameters of the reaction were optimized in the synthesis of a PsA conjugate with a model peptide and methods of their characterization were developed. The reproducibility and efficiency of the synthetic procedure were demonstrated by the example of synthesis of PsA conjugates with fragments of protein PorA from the outer membrane of the serogroup B meningococcus. It was shown that, when administered without adjuvant, a conjugate of PsA with a protective peptide, which represents an exposed conserved fragment 306–332 of protein PorA, stimulates the formation of antibodies to the peptide and polysaccharide moieties of the molecule and is also capable of decreasing the degree of bacteremia in animals infected with serogroup A and serogroup B meningococci. The approach can be applied to the development of a complex vaccine for serogroup A and serogroup B meningococci.  相似文献   

14.
In various western countries, subtype P1.4 of Neisseria meningitidis serogroup B causes the greatest incidence of meningococcal disease. To investigate the molecular recognition of this subtype, we crystallised a peptide (P1HVVVNNKVATH(P11)), corresponding to the subtype P1.4 epitope sequence of outer membrane protein PorA, in complex with a Fab fragment of the bactericidal antibody MN20B9.34 directed against this epitope. Structure determination at 1.95 A resolution revealed a unique complex of one P1.4 antigen peptide bound to two identical Fab fragments. One Fab recognises the putative epitope residues in a 2:2 type I beta-turn at residues P5NNKV(P8), whereas the other Fab binds the C-terminal residues of the peptide that we consider a crystallisation artefact. Interestingly, recognition of the P1.4 epitope peptide is mediated almost exclusively through the complementarity-determining regions of the heavy chain. We exploited the observed turn conformation for designing conformationally restricted cyclic peptides for use as a peptide vaccine. The conformational stability of the two peptide designs was assessed by molecular dynamics simulations. Unlike the linear peptide, both cyclic peptides, conjugated to tetanus toxoid as a carrier protein, elicited antibody responses in mice that recognised meningococci of subtype P1.7-2,4. Serum bactericidal assays showed that some, but not all, of the sera induced with the cyclic peptide conjugates could activate the complement system with titres that were very high compared to the titres induced by complete PorA protein in its native conformation administered in outer membrane vesicles.  相似文献   

15.
Use of the serogroup B meningococcal capsular polysaccharide (MenB CP) as a vaccine is hampered by the presence of epitopes that cross-react with human polysialic acid. As non-cross-reactive, protective capsular epitopes have also been described, we set out to develop protein mimics of one of such epitopes using as a template a highly protective mAb (mAb Seam 3) raised against a chemically modified form of the MenB CP (N-Pr MenB CP). Using phage display, anti-idiotypic single-chain Ab fragments (scFvs) were obtained from spleen cells of mice immunized with the Seam 3 mAb. Two Seam 3-specific scFvs competed with N-Pr MenB CP for binding to either mAb Seam 3 or rabbit Abs present in typing sera. Moreover, in mice and rabbits the scFvs elicited the production of Abs reacting with both N-Pr MenB CP and whole meningococci, but not with human polysialic acid. These scFv-induced Ab responses were boostable and of the Th1 type, as shown by a predominance of IgG2a. In addition, passive immunization with sera from scFv-immunized animals partially protected neonatal mice from experimental infection with group B meningococci. In conclusion, we have produced anti-idiotypic scFvs that mimic a protective MenB CP epitope and may be useful in the development of an alternative group B meningococcal vaccine.  相似文献   

16.
To increase the humoral immune response against two cyclic synthetic peptides, derived from variable regions within the outer membrane meningococcal protein PorA (subtypes 19 and 15), we conjugated the peptides to P64k, a novel carrier protein from the same bacterium expressed in Escherichia coli. In addition, one of these peptides was restricted to a linear conformation before it was chemically coupled to the carrier. The conjugates were administered to mice in a three-dose immunization schedule, resulting in a potent anti-peptide immune response, which suggested that chemical conjugation to this carrier provided T-cell help. Antisera directed to the three conjugates reacted with Neisseria meningitidis outer membrane PorA upon immunoblot analysis. Moreover, in two out of three conjugates, the anti-peptide sera reacted with native meningococcal outer membrane vesicles in ELISA.  相似文献   

17.
Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH) to fH-binding protein (fHbp) is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a ∼17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA), a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep) I chain of lipooligosaccharide (LOS), or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6–7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components.  相似文献   

18.
Carriage of non-serogroupable Neisseria meningitidis or Neisseria lactamica induces antibodies protective against meningococcal disease. Antibodies directed against outer membrane proteins are bactericidal and the serotype and subtype outer membrane protein antigens are being examined for their value as vaccine candidates for serogroup B disease. The aim of this study was to examine the effect of carriage of these two Neisseria species among children and young adults on induction of antibodies to outer membrane components from strains causing disease in Greece. Among 53 patients with meningococcal disease, IgG or IgM antibodies were detected by ELISA in 9 of 13 (69%) from whom the bacteria were isolated and 27 of 40 (67%) who were culture-negative. For military recruits (n = 604), the proportion of carriers of meningococci with IgM or IgG to outer membrane proteins was higher than non-carriers, P < 0.05 and P = 0.000000, respectively. Among school children (n = 319), the proportion with IgM or IgG to outer membrane proteins for carriers of meningococci was higher compared with non-carriers, P = 0.000000 and P = 0000043, respectively. Carriage of N. lactamica was not associated with the presence of either IgM or IgG to the outer membrane proteins in the children. The higher proportion of children (50%) with IgM to outer membrane proteins compared with recruits (10%) might reflect more recent exposure and primary immune responses to the bacteria. The lack of association between antibodies to outer membrane proteins and carriage of N. lactamica could reflect observations that the majority of N. lactamica isolates from Greece and other countries do not react with monoclonal typing reagents. Bactericidal antibodies to meningococci associated with high levels of IgG to N. lactamica were found in a previous study; these are thought to be directed to antigens other than outer membrane proteins or capsules and imply antigens such as lipo-oligosaccharide are involved in induction of antibodies cross-reactive with meningococci.  相似文献   

19.
Synthetic peptides derived from the predicted loops 1 and 4 of meningococcal PorA, sero-subtype P1.7,16, were used to study the epitope specificity of murine and human PorA P1.7,16 bactericidal antibodies. The predicted loops 1 and 4 are surface exposed and carry in their apices the sero-subtype epitopes P1.7 (loop 1) or P1.16 (loop 4), respectively. Peptides were synthesized as mono- and multimeric peptides. Murine monoclonal and polyclonal antibodies were induced with meningococcal whole cell preparations. Polyclonal antibodies were evoked in volunteers after one immunization with 50 μg or 100 μg protein of a hexavalent meningococcal PorA vesicle vaccine. The induction of PorA antibodies was determined in ELISA using purified PorA P1.7,16. The epitope specificity of anti-PorA antibodies for both murine and human antibodies could be demonstrated by direct peptide ELISA using overlapping multimeric peptides almost spanning the entire loops 1 or 4 of the protein. The capacity of peptides to inhibit the bactericidal activity of murine and human antibodies was investigated using meningococcal strain H44/76 (B:15:P1.7,16) as a target strain. Bactericidal activities could be inhibited with both monomeric and multimeric peptides derived from epitopes P1.7 and P1.16.  相似文献   

20.
Vipond C  Suker J  Jones C  Tang C  Feavers IM  Wheeler JX 《Proteomics》2006,6(11):3400-3413
In the absence of a suitable carbohydrate-based vaccine, outer membrane vesicle (OMV) vaccines have been used to disrupt outbreaks of serogroup B meningococcal disease for more than 20 years. Proteomic technology provides physical methods with the potential to assess the composition and consistency of these complex vaccines. 2-DE, combined with MS, were used to generate a proteome map of an OMV vaccine, developed to disrupt a long-running outbreak of group B disease in New Zealand. Seventy four spots from the protein map were identified including the outer membrane protein (OMP) antigens: PorA, PorB, RmpM and OpcA. Protein identification indicates that, in addition to OMPs, OMV vaccines contain periplasmic, membrane-associated and cytoplasmic proteins. 2-D-DIGE technology highlighted differences between preclinical development batches of vaccines from two different manufacturers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号