首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.  相似文献   

2.
Atlantic brant (Branta bernicla hrota) are important game birds in the Atlantic Flyway and several long-term monitoring data sets could assist with harvest management, including a count-based survey and demographic data. Considering their relative strengths and weaknesses, integrated analysis to these data would likely improve harvest management, but tools for integration have not yet been developed. Managers currently use an aerial count survey on the wintering grounds, the mid-winter survey, to set harvest regulations. We developed an integrated population model (IPM) for Atlantic brant that uses multiple data sources to simultaneously estimate population abundance, survival, and productivity. The IPM abundance estimates for data from 1975–2018 were less variable than annual mid-winter survey counts or Lincoln estimates, presumably reflecting better accounting for observer error and incorporation of demographic estimates by the IPM. Posterior estimates of adult survival were high (0.77–0.87), and harvest rates of adults and juveniles were positively correlated with more liberal hunting regulations (i.e., hunting days and the daily bag limit). Productivity was variable, with the percent of juveniles in the winter population ranging from 1% to >40%. We found no evidence for environmental relationships with productivity. Using IPM-predicted population abundances rather than mid-winter survey counts alone would have meant fewer annual changes to hunting regulations since 2004. Use of the IPM could improve harvest management for Atlantic brant by providing the ability to predict abundance before annual hunting regulations are set, and by providing more stable hunting regulations, with fewer annual changes. © 2021 The Wildlife Society.  相似文献   

3.
Effective population size (Ne) is a central evolutionary concept, but its genetic estimation can be significantly complicated by age structure. Here we investigate Ne in Atlantic salmon (Salmo salar) populations that have undergone changes in demography and population dynamics, applying four different genetic estimators. For this purpose we use genetic data (14 microsatellite markers) from archived scale samples collected between 1951 and 2004. Through life table simulations we assess the genetic consequences of life history variation on Ne. Although variation in reproductive contribution by mature parr affects age structure, we find that its effect on Ne estimation may be relatively minor. A comparison of estimator models suggests that even low iteroparity may upwardly bias Ne estimates when ignored (semelparity assumed) and should thus empirically be accounted for. Our results indicate that Ne may have changed over time in relatively small populations, but otherwise remained stable. Our ability to detect changes in Ne in larger populations was, however, likely hindered by sampling limitations. An evaluation of Ne estimates in a demographic context suggests that life history diversity, density-dependent factors, and metapopulation dynamics may all affect the genetic stability of these populations.THE effective size of a population (Ne) is an evolutionary parameter that can be informative on the strength of stochastic evolutionary processes, the relevance of which relative to deterministic forces has been debated for decades (e.g., Lande 1988). Stochastic forces include environmental, demographic, and genetic components, the latter two of which are thought to be more prominent at reduced population size, with potentially detrimental consequences for average individual fitness and population persistence (Newman and Pilson 1997; Saccheri et al. 1998; Frankham 2005). The quantification of Ne in conservation programs is thus frequently advocated (e.g., Luikart and Cornuet 1998; Schwartz et al. 2007), although gene flow deserves equal consideration given its countering effects on genetic stochasticity (Frankham et al. 2003; Palstra and Ruzzante 2008).Effective population size is determined mainly by the lifetime reproductive success of individuals in a population (Wright 1938; Felsenstein 1971). Variance in reproductive success, sex ratio, and population size fluctuations can reduce Ne below census population size (Frankham 1995). Given the difficulty in directly estimating Ne through quantification of these demographic factors (reviewed by Caballero 1994), efforts have been directed at inferring Ne indirectly through measurement of its genetic consequences (see Leberg 2005, Wang 2005, and Palstra and Ruzzante 2008 for reviews). Studies employing this approach have quantified historical levels of genetic diversity and genetic threats to population persistence (e.g., Nielsen et al. 1999b; Miller and Waits 2003; Johnson et al. 2004). Ne has been extensively studied in (commercially important) fish species, due to the common availability of collections of archived samples that facilitate genetic estimation using the temporal method (e.g., Hauser et al. 2002; Shrimpton and Heath 2003; Gomez-Uchida and Banks 2006; Saillant and Gold 2006).Most models relating Ne to a population''s genetic behavior make simplifying assumptions regarding population dynamics. Chiefly among these is the assumption of discrete generations, frequently violated in practice given that most natural populations are age structured with overlapping generations. Here, theoretical predictions still apply, provided that population size and age structure are constant (Felsenstein 1971; Hill 1972). Ignored age structure can introduce bias into temporal genetic methods for the estimation of Ne, especially for samples separated by time spans that are short relative to generation interval (Jorde and Ryman 1995; Waples and Yokota 2007; Palstra and Ruzzante 2008). Moreover, estimation methods that do account for age structure (e.g., Jorde and Ryman 1995) still assume this structure to be constant. Population dynamics will, however, likely be altered as population size changes, thus making precise quantifications of the genetic consequences of acute population declines difficult (Nunney 1993; Engen et al. 2005; Waples and Yokota 2007). This problem may be particularly relevant when declines are driven by anthropogenic impacts, such as selective harvesting regimes, that can affect age structure and Ne simultaneously (Ryman et al. 1981; Allendorf et al. 2008). Demographic changes thus have broad conservation implications, as they can affect a population''s sensitivity to environmental stochasticity and years of poor recruitment (Warner and Chesson 1985; Ellner and Hairston 1994; Gaggiotti and Vetter 1999). Consequently, although there is an urgent need to elucidate the genetic consequences of population declines, relatively little is understood about the behavior of Ne when population dynamics change (but see Engen et al. 2005, 2007).Here we focus on age structure and Ne in Atlantic salmon (Salmo salar) river populations in Newfoundland and Labrador. The freshwater habitat in this part of the species'' distribution range is relatively pristine (Parrish et al. 1998), yet Atlantic salmon in this area have experienced demographic declines, associated with a commercial marine fishery, characterized by high exploitation rates (40–80% of anadromous runs; Dempson et al. 2001). A fishery moratorium was declared in 1992, with rivers displaying differential recovery patterns since then (Dempson et al. 2004b), suggesting a geographically variable impact of deterministic and stochastic factors, possibly including genetics. An evaluation of those genetic consequences thus requires accounting for potential changes in population dynamics as well as in life history. Life history in Atlantic salmon can be highly versatile (Fleming 1996; Hutchings and Jones 1998; Fleming and Reynolds 2004), as exemplified by the high variation in age-at-maturity displayed among and within populations (Hutchings and Jones 1998), partly reflecting high phenotypic plasticity (Hutchings 2004). This diversity is particularly evident in the reproductive biology of males, which can mature as parr during juvenile freshwater stages (Jones and King 1952; Fleming and Reynolds 2004) and/or at various ages as anadromous individuals, when returning to spawn in freshwater from ocean migration. Variability in life history strategies is further augmented by iteroparity, which can be viewed as a bet-hedging strategy to deal with environmental uncertainty (e.g., Orzack and Tuljapurkar 1989; Fleming and Reynolds 2004). Life history diversity and plasticity may allow salmonid fish populations to alter and optimize their life history under changing demography and population dynamics, potentially acting to stabilize Ne. Reduced variance in individual reproductive success at low breeder abundance (genetic compensation) will achieve similar effects and might be a realistic aspect of salmonid breeding systems (Ardren and Kapuscinski 2003; Fraser et al. 2007b). Little is currently known about the relationships between life history plasticity, demographic change and Ne, partly due to scarcity of the multivariate data required for these analyses.Our objective in this article is twofold. First, we use demographic data for rivers in Newfoundland to quantify how life history variation influences age structure in Atlantic salmon and hence Ne and its empirical estimation from genetic data. We find that variation in reproductive contribution by mature parr has a much smaller effect on the estimation of Ne than is often assumed. Second, we use temporal genetic data to estimate Ne and quantify the genetic consequences of demographic changes. We attempt to account for potential sources of bias, associated with (changes in) age structure and life history, by using four different analytical models to estimate Ne: a single-sample estimator using the linkage disequilibrium method (Hill 1981), the temporal model assuming discrete generations (Nei and Tajima 1981; Waples 1989), and two temporal models for species with overlapping generations (Waples 1990a,b; Jorde and Ryman 1995) that differ principally in assumptions regarding iteroparity. A comparison of results from these different estimators suggests that iteroparity may often warrant analytical consideration, even when it is presumably low. Although sometimes limited by statistical power, a quantification and comparison of temporal changes in Ne among river populations suggests a more prominent impact of demographic changes on Ne in relatively small river populations.  相似文献   

4.
Atlantic salmon (Salmo salar) populations in Maine, USA, are listed as a Distinct Population Segment under the U.S. Endangered Species Act due to reduced spawning runs and juvenile densities. Whenever possible, optimal conservation strategies for endangered populations should incorporate both present and historical knowledge of genetic variation. We assayed genetic diversity at seven microsatellite loci and at the mitochondrial ND1 gene in an endangered wild population of Atlantic salmon captured from the Dennys River from 1963 to 2001 using DNA’s extracted from archival scale and tissue samples. We examined temporal trends of genetic diversity, population structure, and effective population size (Ne). Overall temporal trends of diversity and Ne show significant reductions from 1963 to 2001 raising the possibility that current restoration efforts may be impacted by historical loss of diversity potentially critical to adaptation. Although our results suggest genetic stability in this population from 1963 to 1981, significant differentiation was observed for both the 1995 and 2001 samples compared with all other temporal samples. The presence of an ND1 mtDNA haplotype in this population, historically observed only in European and Newfoundland stocks, may represent previously unrecognized local wild diversity or, alternatively, may represent introgression from non-native fish.  相似文献   

5.
Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world’s largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15–30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970–2010. Based upon the analysis of 22 microsatellites, individual admixture, FST and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P = 0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global FST = 0.038) and contemporary data sets (global FST = 0.030), although significantly reduced with time (P = 0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global FST dropped from 0.058 to 0.039, P = 0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population.  相似文献   

6.
Quorum sensing is a wide-spread mode of cell–cell communication among bacteria in which cells release a signalling substance at a low rate. The concentration of this substance allows the bacteria to gain information about population size or spatial confinement. We consider a model for \(N\) cells which communicate with each other via a signalling substance in a diffusive medium with a background flow. The model consists of an initial boundary value problem for a parabolic PDE describing the exterior concentration \(u\) of the signalling substance, coupled with \(N\) ODEs for the masses \(a_i\) of the substance within each cell. The cells are balls of radius \(R\) in \(\mathbb {R} ^3\) , and under some scaling assumptions we formally derive an effective system of \(N\) ODEs describing the behaviour of the cells. The reduced system is then used to study the effect of flow on communication in general, and in particular for a number of geometric configurations.  相似文献   

7.
We show that many of the morphological features of the respiratory system of growth enhanced transgenic salmon are greater than those of similarly sized control salmon. Growth hormone transgenic Atlantic salmon, Salmo salar were the F2 generation produced using eggs from a transgenic F1 female and milt from a nontransgenic male. At the time the gill tissues were sampled, the transgenic salmon were growing 2.1 times more rapidly than the nontransgenic control salmon, and they had oxygen uptake rates that were about 1.6 times greater than control salmon. In the present study we show that the gill surface area available for respiratory exchange in the transgenic salmon is about 1.24 times that in control salmon which does not parallel the 1.6 elevation in oxygen uptake. The increase in gill exchange area was due largely to a relatively uniform increase in length of each gill filament.  相似文献   

8.
Infectious salmon anaemia (ISA) is an important, systemic viral disease of farmed Atlantic salmon, Salmo salar L. Endothelial cells are the main target cells for highly virulent HPR-deleted ISA virus (ISAV) types. Here we examine the pathogenesis of non-virulent ISAV HPR0 infections, presenting evidence of an epithelial tropism for this virus type, including actual infection and replication in the epithelial cells. Whereas all HPR0 RT-qPCR positive gills prepared for cryosection tested positive by immunohistochemistry (IHC) and immunofluorescent labelling, only 21% of HPR0 RT-qPCR positive formalin-fixed paraffin-embedded gills were IHC positive, suggesting different methodological sensitivities. Only specific epithelial cell staining was observed and no staining was observed in endothelial cells of positive gills. Furthermore, using an ISAV segment 7 RT-PCR assay, we demonstrated splicing of HPR0, suggesting initial activation of the replication machinery in the epithelial gill cells. Immunological responses were investigated by the expression of interferon-related genes (e.g. Mx and γIP) and by ELISA for presence of anti-ISAV antibodies on samples taken sequentially over several months during an episode of transient HPR0 infection. All fish revealed a variable, but increased expression of the immunological markers in comparison to normal healthy fish. Taken together, we conclude that HPR0 causes a localized epithelial infection of Atlantic salmon.  相似文献   

9.
Marine Biotechnology - The determination of sex in salmonid fishes is controlled by genetic mechanisms, with males being the heterogametic sex. The master sex-determining gene, the sexually...  相似文献   

10.
Antarctic krill (Euphausia superba; herein krill) is monitored as part of an on-going fisheries observer program that collects length-frequency data. A krill feedback management programme is currently being developed, and as part of this development, the utility of data-derived indices describing population level processes is being assessed. To date, however, little work has been carried out on the selection of optimum recruitment indices and it has not been possible to assess the performance of length-based recruitment indices across a range of recruitment variability. Neither has there been an assessment of uncertainty in the relationship between an index and the actual level of recruitment. Thus, until now, it has not been possible to take into account recruitment index uncertainty in krill stock management or when investigating relationships between recruitment and environmental drivers. Using length-frequency samples from a simulated population – where recruitment is known – the performance of six potential length-based recruitment indices is assessed, by exploring the index-to-recruitment relationship under increasing levels of recruitment variability (from ±10% to ±100% around a mean annual recruitment). The annual minimum of the proportion of individuals smaller than 40 mm (F40 min, %) was selected because it had the most robust index-to-recruitment relationship across differing levels of recruitment variability. The relationship was curvilinear and best described by a power law. Model uncertainty was described using the 95% prediction intervals, which were used to calculate coverage probabilities and assess model performance. Despite being the optimum recruitment index, the performance of F40 min degraded under high (>50%) recruitment variability. Due to the persistence of cohorts in the population over several years, the inclusion of F40 min values from preceding years in the relationship used to estimate recruitment in a given year improved its accuracy (mean bias reduction of 8.3% when including three F40 min values under a recruitment variability of 60%).  相似文献   

11.
Vibrio and Pseudomonas species have been shown to be part of the normal microbiota of Atlantic salmon (Salmo salar L.), with some strains causing disease in fish. The factors affecting their prevalence and persistence in the salmon gut, however, have not been well studied. In this study, we collected 340 Vibrio and 150 Pseudomonas isolates from the hindgut of farmed Tasmanian Atlantic salmon, fed with two commercially available diets. Samples were collected every 6–8 weeks between July 2011 and May 2012. Isolates from selective agar were initially identified using biochemical tests and confirmed using genus-specific primers and 16S ribosomal RNA (16S rRNA) sequencing. Random amplified polymorphic DNA (RAPD) PCR was used to type both Pseudomonas and Vibrio; the latter was further typed using a biochemical fingerprinting method (PhP-RV plates). We observed low species diversity with strains comprising Vibrio ichthyoenteri/Vibrio scophthalmi, Vibrio crassostreae/Vibrio splendidus, Aliivibrio finisterrensis, Photobacterium phosphoreum and Pseudomonas fragi. Out of 340 Vibrio isolates, 238 (70 %) belonged to 21 clonal types and were found predominantly during summer when water temperatures reached 15 to 21 °C. Of these, the four major clonal types were found in multiple samples (70 %). P. fragi, on the other hand, was only found during the colder water temperatures and belonged to 18 clonal types. The presence of both groups of bacteria and their clonal types were independent of the fish diets used, suggesting that the water temperature was the main factor of the prevalence and persistence of these bacteria in the gut of Atlantic salmon.  相似文献   

12.
The major histocompatibility complex class II (MHCII) has a central role in the immune response of vertebrates with its function of presenting antigenic peptides to the T-cell receptors. We have isolated the promoters and intron 1 of MHCII and MHCII genes of Atlantic salmon. To isolate these promoters, we constructed an Atlantic salmon (Salmo salar) promoter finder kit (analogous to the commercially available human promoter finder kit). By nucleotide sequence alignment of known MHCII promoter regions, we identified the 3 conserved regulatory X, X2, and Y boxes in the salmon promoters. The W box was not found. In contrast, a salmon-specific putative W box was identified. Both of the isolated Atlantic salmon MHCII and promoters (included in patent applications by Genomar A/S, Oslo, Norway) were found to be functional since they both gave positive yellow fluorescence protein signal when inserted as promoters in the pEYFP-1 reporter plasmid and transfected into the salmon head kidney cell line (SHK-1).  相似文献   

13.
The global increase in the production of domestic farmed fish in open net pens has created concerns about the resilience of wild populations owing to shifts in host–parasite systems in coastal ecosystems. However, little is known about the effects of increased parasite abundance on life-history traits in wild fish populations. Here, we report the results of two separate studies in which 379 779 hatchery-reared Atlantic salmon smolts were treated (or not) against salmon lice, marked and released. Adults were later recaptured, and we specifically tested whether the age distribution of the returning spawners was affected by the treatment. The estimates of parasite-induced mortality were 31.9% and 0.6% in the River Vosso and River Dale stock experiments, respectively. Age of returning salmon was on average higher in treated versus untreated fish. The percentages of fish returning after one winter at sea were 37.5% and 29.9% for the treated and untreated groups, respectively. We conclude that salmon lice increase the age of returning salmon, either by affecting their age at maturity or by disproportionately increasing mortality in fish that mature early.  相似文献   

14.
The hearing of the Atlantic Salmon, Salmo salar   总被引:1,自引:0,他引:1  
The hearing of the salmon, Salmo salar L., was studied by means of a cardiac conditioning technique. Fish were trained to show a slowing of the heart, on hearing a sound, in anticipation of a mild electric shock applied later. The minimum sound level to which the fish would respond was determined for a range of pure tones, both in the sea, and in the laboratory. The fish responded only to low frequency tones (below 380 Hz), and particle motion, rather than sound pressure, proved to be the relevant stimulus. The sensitivity of the fish to sound was not affected by the level of sea noise under natural conditions but hearing is likely to be masked by ambient noise in a turbulent river. Sound measurements made in the River Dee, near Aberdeen, lead to the conclusion that salmon are unlikely to detect sounds originating in air, but that they are sensitive to substrate borne sounds. Compared with the carp and cod the hearing of the salmon is poor, and more like that of the perch and plaice.  相似文献   

15.
Atlantic salmon, Salmo salar, deposit their eggs in excavated depressions called nests. These nests are built from downstream to upstream within one or more redds, and each redd corresponds to a continuous area of the streambed disturbed by the female digging activities. Redd topographic measurements and egg excavation were performed to determine number of nests per redd and per female, nest depth, distances between successive nests, number of eggs deposited per nest, and egg survival in nests created by six grilse Atlantic salmon, five spawning in an experimental stream (Lapitxuri channel) and one in a natural stream (Lurgorrieta Creek, a tributary of the Nivelle River in southwest France). All females constructed a single redd, except one which built two redds in the channel. Redd surface area ranged between 2.3 and 5.7m2. Each redd had a raised mound of gravel or dome under which most of the eggs were located, and an upstream depression or pot. Based on expected egg-to-juvenile survival rates previously obtained in the Lapitxuri channel and on juvenile recoveries, between 96 and 97% of the eggs deposited in the channel sections were retrieved. Each female constructed 7 to 11 nests over a period of 3 to 5 days. The first three nests had an average burial depth of 12.9cm (±1.6SD) which was greater than the last three nests (mean 9.5cm±2.6SD). Eggs removed from the first three nests had higher fertility rates (95.5% vs. 87.2%), greater survival (83.5% vs. 63.1%) and lower occurrences of abnormalities (1.9% vs. 5.5%) than those deposited in the last three nests. Typically, the percentage of eggs deposited per female decreased from the first to the last nest, such that the last two to three nests possessed only a small number of scattered eggs. Similar results were observed in the redd located in Lurgorrieta Creek. The adaptive consequences of the topographic features of redds and the egg allocation patterns we found are discussed.  相似文献   

16.
Anadromous Atlantic salmon parr (Salmo salar) were captured from three Newfoundland lakes. Yearling and 2 year parr were captured most often in shallow water <2 m deep around lake perimeters and were not abundant at greater depths. The 3+ and 4+ parr age groups were rarely found inshore (<2 m) but were captured in deeper offshore areas. Though the parr population in one deep lake was too small to be estimated by mark-recapture, estimates of the yearlings plus 2+ age groups in two shallower lakes were 55 and 63 parr ha−1. respectively. No under yearlings were found in lake habitats. Parr density in the three study lakes varied inversely with mean lake depth. Lacustrine parr growth rate was greater than or equal to that of stream dwelling parr. It is concluded that some shallow lakes of Newfoundland provide major rearing areas for juvenile anadromous Atlantic salmon.  相似文献   

17.
18.

Background

Within-population genetic diversity is expected to be dramatically reduced if a population is founded by a low number of individuals. Three females and one male white-tailed deer Odocoileus virginianus, a North American species, were successfully introduced in Finland in 1934 and the population has since been growing rapidly, but remained in complete isolation from other populations.

Methodology/Principal Findings

Based on 14 microsatellite loci, the expected heterozygosity H was 0.692 with a mean allelic richness (AR) of 5.36, which was significantly lower than what was found in Oklahoma, U.S.A. (H = 0.742; AR = 9.07), demonstrating that a bottleneck occurred. Observed H was in line with predictions from an individual-based model where the genealogy of the males and females in the population were tracked and the population''s demography was included.

Conclusion

Our findings provide a rare within-population empirical test of the founder effect and suggest that founding a population by a small number of individuals need not have a dramatic impact on heterozygosity in an iteroparous species.  相似文献   

19.
Interspecific hybridization is common in nature but can be increased in frequency or even originated by human actions, such as species introduction or habitat modification, which may threaten species persistence. When hybridization occurs between distantly related species, referred to as “distant hybridization,” the resulting hybrids are generally infertile or fertile but do not undergo chromosomal recombination during gametogenesis. Here, we present a model describing this frequent but poorly studied interspecific hybridization to assess its consequences on parental species and to anticipate the conditions under which they can reach extinction. Our general model fully incorporates three important processes: density-dependent competition, dominance/recessivity inheritance of traits and assortative mating. We demonstrate its use and flexibility by assessing population extinction risk between Atlantic salmon and brown trout in Norway, whose interbreeding has recently increased due to farmed fish releases into the wild. We identified the set of conditions under which hybridization may threaten salmonid species. Thanks to the flexibility of our model, we evaluated the effect of an additional risk factor, a parasitic disease, and showed that the cumulative effects dramatically increase the extinction risk. The consequences of distant hybridization are not genetically, but demographically mediated. Our general model is useful to better comprehend the evolution of such hybrid systems and we demonstrated its importance in the field of conservation biology to set up management recommendations when this increasingly frequent type of hybridization is in action.  相似文献   

20.
Our aim was to investigate the level of genetic differentiation in northern European populations of Atlantic salmon, to establish the genetic relationship among major salmon populations in Russia and North Norway, and to compare these to populations from the western Atlantic lineage. Samples were collected along an east—west axis, from Pechora River in Russia to Restigouche River in Quebec, Canada. A total of 439 individual salmon were collected from seven rivers (sample sizes from 50 to 84 individuals). The samples were analysed for variation at four microsatellite loci; Ssa13.37, Ssa14, Ssa171 and Ssa171. Significant differences were found between most of the European populations, and the populations from the Tana and Pechora Rivers were most distinct. The samples from the Rivers Mezenskaya Pizhma and Emtsa in Arkhangelsk oblast in Russia were not significantly different from each other in an exact test of population differences. All other river pairs were significantly different. These results confirmed the deep genetic divergence between American and European salmon populations demonstrated in earlier studies, with alleles specific to continent found in three of the microsatellites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号