首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bivariate femoral length allometry in recent humans, Pan, and Gorilla is investigated with special reference to the diminutive Liang Bua (LB) 1 specimen (the holotype of Homo floresiensis) and six early Pleistocene femora referred to the genus Homo. Relative to predicted body mass, Pan and Gorilla femora show strong negative length allometry while recent human femora evince isometry to positive allometry, depending on sample composition and line-fitting technique employed. The allometric trajectories of Pan and Homo show convergence near the small body size range of LB 1, such that LB 1 manifests a low percentage deviation (dyx of Smith [1980]) from the Pan allometric trajectory and falls well within the 95% confidence limits around the Pan individuals (but also outside the 95% confidence limits for recent Homo). In contrast, the six early Pleistocene Homo femora, belonging to larger individuals, show much greater dyx values from both Pan and Gorilla and fall well above the 95% confidence limits for these taxa. All but one of these Pleistocene Homo specimens falls within the 95% confidence limits of the recent human sample. Similar results are obtained when femoral length is regressed on femoral head diameter in unlogged bivariate space. Regardless of the ultimate taxonomic status of LB 1, these findings are consistent with a prediction made by us (Franciscus and Holliday, 1992) that hominins in the small body size range of A.L. 288-1 (“Lucy”), including members of the genus Homo, will tend to possess short, ape-like lower limbs as a function of body size scaling.  相似文献   

2.
Entheseal changes have been widely studied with regard to their correlation to biomechanical stress and their usefulness for biocultural reconstructions. However, anthropological and medical studies have demonstrated the marked influence of both age and sex on the development of these features. Studies of entheseal changes are mostly aimed in testing functional hypotheses and are mostly focused on modern humans, with few data available for non-human primates. The lack of comparative studies on the effect of age and sex on entheseal changes represent a gap in our understanding of the evolutionary basis of both development and degeneration of the human musculoskeletal system. The aim of the present work is to compare age trajectories and patterns of sexual dimorphism in entheseal changes between modern humans and African great apes. To this end we analyzed 23 postcranial entheses in a human contemporary identified skeletal collection (N = 484) and compared the results with those obtained from the analysis of Pan (N = 50) and Gorilla (N = 47) skeletal specimens. Results highlight taxon-specific age trajectories possibly linked to differences in life history schedules and phyletic relationships. Robusticity trajectories separate Pan and modern humans from Gorilla, whereas enthesopathic patterns are unique in modern humans and possibly linked to their extended potential lifespan. Comparisons between sexes evidence a decreasing dimorphism in robusticity from Gorilla, to modern humans to Pan, which is likely linked to the role played by size, lifespan and physical activity on robusticity development. The present study confirms previous hypotheses on the possible relevance of EC in the study of life history, pointing moreover to their usefulness in evolutionary studies.  相似文献   

3.
Bone form reflects both the genetic profile and behavioural history of an individual. As cortical bone is able to remodel in response to mechanical stimuli, interspecific differences in cortical bone thickness may relate to loading during locomotion or manual behaviours during object manipulation. Here, we test the application of a novel method of cortical bone mapping to the third metacarpal (Mc3) and talus of Pan, Pongo, and Homo. This method of analysis allows measurement of cortical thickness throughout the bone, and as such is applicable to elements with complex morphology. In addition, it allows for registration of each specimen to a canonical surface, and identifies regions where cortical thickness differs significantly between groups. Cortical bone mapping has potential for application to palaeoanthropological studies; however, due to the complexity of correctly registering homologous regions across varied morphology, further methodological development would be advantageous.  相似文献   

4.
《L'Anthropologie》2022,126(4):103065
The Caune de l’Arago (Arago) and Sima de los Huesos (Sima) human bones from the European Middle Pleistocene are penecontemporaneous, although the Sima hominins are closely related to Neandertal, and Arago hominins present more archaic features. In previous and in press studies, the cross-sectional geometric properties (CSG) of lower limb bones of Arago and Sima have been studied separately without comparative analyses. Here, in order to bridge this gap, we use the same criteria for both samples to highlight evolutionary affinities and to compare their level and pattern of mobility. This study focuses on the femur, fibula and tibia from Arago and Sima with references to fossils from the sites of Trinil, Zhoukoudian and Lazaret, and ancient and recent Homo sapiens (including athletes and non-athletes). We analyze the cross-sectional areas, biomechanical bone “shape” indices (Ix/Iy, Imax/Imin) and pattern of cortical bone distribution. All lower limb bones from Arago have noticeably high to very high relative cortical areas and low to very low medullary areas. The overall femoral pattern in Arago, like Sima, is similar to that of Middle Pleistocene hominins (e.g., low femoral shape indices, Ix/Iy) and Neandertals (e.g., large cross-sectional size). However, the femoral midshaft in Sima presents prominent posteromedial cortical thickening, as a result of a spiral cortical reinforcement along the medial side of the diaphysis. This characteristic is specific to Neandertal and some Middle Pleistocene hominins. In contrast, the midshaft femoral pattern in Arago is close to that of some Homo erectus. We also note that the femoral cross-sectional size and relative cortical area in Arago differ drastically to the small size and low relative cortical area of Lazaret and Trinil hominins. The very high shape index at midshaft (i.e., high Imax/Imin) of the Arago tibia is observed in ancient H. sapiens and runners; the tibial posterior “pilaster” is found in Neandertals and ancient H. sapiens; and the flat or convex tibial faces are similar to Neandertals. Furthermore, the Arago fibulas show marked fibular posterolateral cortical reinforcement with low anteroposterior strengthening. These leg features (tibia, fibula) are also found in some Sima hominins (but not in all individuals). Consequently, this study confirms the presence of archaic features in Arago and the close evolutionary relationship between Sima and Neandertal. This proposition is mainly based on the femoral midshaft pattern influenced by the pelvofemoral complex, considered to be substantially genetically controlled. The leg functional analysis highlights a high level of mobility and travelling in uneven terrains or in mountainous areas in Arago, consistent with known environments and hunting practices. Previously, an analogous hypothesis was proposed put forward for Sima hominins.  相似文献   

5.

Scientific evidence has shown the nutritional importance of boron (B) in the remodeling and repair of cancellous bone tissue. However, the effects of the nutritional deficiency of B on the cortical bone tissue of the appendicular skeleton have not yet been described. Thus, a study was performed to histomorphometrically evaluate the density of osteocyte lacunae of cortical bone of mouse femora under conditions of nutritional deficiency of B and to analyze the effects of the deficiency on the biomechanical properties of mouse tibiae. Weaning, 21-day-old male Swiss mice were assigned to the following two groups: controls (B+; n = 10) and experimental (B−; n = 10). Control mice were fed a basal diet containing 3 mg B/kg, whereas experimental mice were fed a B-deficient diet containing 0.07 mg B/kg for 9 weeks. The histological and histomorphometric evaluations of the mice fed a B-deficient diet showed a decrease in the density of osteocyte lacunae in the femoral cortical bone tissue and the evaluation of biomechanical properties showed lower bone rigidity in the tibia.

  相似文献   

6.
The relative biomechanical effects of antiresorptive treatment on cortical thickness vs. trabecular bone microarchitecture in the spine are not well understood. To address this, T-10 vertebral bodies were analyzed from skeletally mature female beagle dogs that had been treated with oral saline (n=8 control) or a high dose of oral risedronate (0.5 mg/kg/day, n=9 RIS-suppressed) for 1 year. Two linearly elastic finite element models (36-μm voxel size) were generated for each vertebral body—a whole-vertebra model and a trabecular-compartment model—and subjected to uniform compressive loading. Tissue-level material properties were kept constant to isolate the effects of changes in microstructure alone. Suppression of bone turnover resulted in increased stiffness of the whole vertebra (20.9%, p=0.02) and the trabecular compartment (26.0%, p=0.01), while the computed stiffness of the cortical shell (difference between whole-vertebra and trabecular-compartment stiffnesses, 11.7%, p=0.15) was statistically unaltered. Regression analyses indicated subtle but significant changes in the relative structural roles of the cortical shell and the trabecular compartment. Despite higher average cortical shell thickness in RIS-suppressed vertebrae (23.1%, p=0.002), the maximum load taken by the shell for a given value of shell mass fraction was lower (p=0.005) for the RIS-suppressed group. Taken together, our results suggest that—in this canine model—the overall changes in the compressive stiffness of the vertebral body due to suppression of bone turnover were attributable more to the changes in the trabecular compartment than in the cortical shell. Such biomechanical studies provide an unique insight into higher-scale effects such as the biomechanical responses of the whole vertebra.  相似文献   

7.
Adult craniofacial morphology results from complex processes that involve growth by bone modelling and interactions of skeletal components to keep a functional and structural balance. Previous analyses of growth dynamics in humans revealed critical changes during late ontogeny explaining particular morphological features in our species. Data on bone modelling patterns from other primate species could help us to determine whether postnatal changes in the growth dynamics of the craniofacial complex are human specific or are shared with other primates. However, characterizations of bone modelling patterns through ontogeny in non-human hominids are scarce and restricted to isolated data on facial and mandibular regions. In the present study, we analyse the bone modelling patterns in an ontogenetic series of Pan and Gorilla to infer the growth dynamics of their craniofacial complex during postnatal development. Our results show that both Pan troglodytes and Gorilla gorilla are characterized by species-specific bone modelling patterns indicative of a mainly forward growth direction during postnatal development. Both species show minor but consistent ontogenetic changes in the distribution of bone modelling fields in specific regions of the face and mandible, in contrast to other regions which show more constant bone modelling patterns. In addition, we carry out a preliminary integrative study merging histological and geometric morphometric data. Both approaches yield highly complementary data, each analysis providing details on specific growth dynamics unavailable to the other. Moreover, geometric morphometric data show that ontogenetic variation in the modelling pattern of the mandibular ramus may be linked to sexual dimorphism.  相似文献   

8.
SKX 1084 is an isolated partial patella from Swartkrans Member 2, South Africa, attributed to a small-bodied Paranthropus robustus. This study provides complementary information on its outer conformation and, for the first time for a fossil hominin patella, documents its inner structure in the perspective of adding biomechanically-related evidence to clarify its identity. We used X-ray micro-tomography to investigate SKX 1084 and to extract homologous information from a sample of 12 recent human, one Neanderthal, and two adult Pan, patellae. We used geometric morphometrics to compare the outer equatorial contours. In SKX 1084, we identified two cancellous bony spots suitable for textural assessment (trabecular bone volume fraction, trabecular thickness, degree of anisotropy), and two related virtual slices for measuring the maximum cortico-trabecular thickness (CTT) of the articular surface. SKX 1084 shows a more complex articular shape than that for Pan, but still simpler than typical in Homo sapiens. At all sites, its CTT is thinner compared to Pan and approaches the condition in humans. This is also true for the expanded volume of the cancellous network. However, at both investigated spots, SKX 1084 is systematically intermediate between Homo and Pan for trabecular bone volume fraction and trabecular thickness, a pattern already shown in previous analyses on other Paranthropus postcranial remains. In the absence of any structural signal from patellae unambiguously sampling Paranthropus, as well as of comparable evidence extracted from specimens representing early Homo, our results do not allow rejection of the original taxonomic attribution of SKX 1084.  相似文献   

9.
Periostin (gene Postn) is a secreted extracellular matrix protein involved in cell recruitment and adhesion and plays an important role in odontogenesis. In bone, periostin is preferentially expressed in the periosteum, but its functional significance remains unclear. We investigated Postn−/− mice and their wild type littermates to elucidate the role of periostin in the skeletal response to moderate physical activity and direct axial compression of the tibia. Furthermore, we administered a sclerostin-blocking antibody to these mice in order to demonstrate the influence of sustained Sost expression in their altered bone phenotypes. Cancellous and cortical bone microarchitecture as well as bending strength were altered in Postn−/− compared with Postn+/+ mice. Exercise and axial compression both significantly increased bone mineral density and trabecular and cortical microarchitecture as well as biomechanical properties of the long bones in Postn+/+ mice by increasing the bone formation activity, particularly at the periosteum. These changes correlated with an increase of periostin expression and a consecutive decrease of Sost in the stimulated bones. In contrast, mechanical stimuli had no effect on the skeletal properties of Postn−/− mice, where base-line expression of Sost levels were higher than Postn+/+ and remained unchanged following axial compression. In turn, the concomitant injection of sclerostin-blocking antibody rescued the bone biomechanical response in Postn−/− mice. Taken together, these results indicate that the matricellular periostin protein is required for Sost inhibition and thereby plays an important role in the determination of bone mass and microstructural in response to loading.  相似文献   

10.
11.
It is well established that bones functionally adapt by mechanisms that control tissue density, whole bone geometry, and trabecular orientation. In this study, we propose the existence of another such powerful mechanism, namely, trabecular eccentricity, i.e. non-central placement of trabecular bone within a cortical envelope. In the human femoral neck, trabecular eccentricity results in a thicker cortical shell on the inferior than superior aspect. In an overall context of expanding understanding of bone adaptation, the goal of this study was to demonstrate the biomechanical significance of, and provide a mechanistic explanation for, the relationship between trabecular eccentricity and stresses in the human femoral neck. Using composite beam theory, we showed that the biomechanical effects of eccentricity during a habitual loading situation were to increase the stress at the superior aspect of the neck and decrease the stress at the inferior aspect, resulting in an overall protective effect. Further, increasing eccentricity had a stress-reducing effect equivalent to that of increasing cortical thickness or increasing trabecular modulus. We conclude that an asymmetric placement of trabecular bone within a cortical bone envelope represents yet another mechanism by which whole bones can adapt to mechanical demands.  相似文献   

12.
Characterizing the biomechanical behavior of sutures in the human craniofacial skeleton (CFS) is essential to understand the global impact of these articulations on load transmission, but is challenging due to the complexity of their interdigitated morphology, the multidirectional loading they are exposed to and the lack of well-defined suture material properties. This study aimed to quantify the impact of morphological features, direction of loading and suture material properties on the mechanical behavior of sutures and surrounding bone in the CFS. Thirty-six idealized finite element (FE) models were developed. One additional specimen-specific FE model was developed based on the morphology obtained from a µCT scan to represent the morphological complexity inherent in CFS sutures. Outcome variables of strain energy (SE) and von Mises stress (σvm) were evaluated to characterize the sutures’ biomechanical behavior. Loading direction was found to impact the relationship between SE and interdigitation index and yielded varied patterns of σvm in both the suture and surrounding bone. Adding bone connectivity reduced suture strain energy and altered the σvm distribution. Incorporating transversely isotropic material properties was found to reduce SE, but had little impact on stress patterns. High-resolution µCT scanning of the suture revealed a complex morphology with areas of high and low interdigitations. The specimen specific suture model results were reflective of SE absorption and σvm distribution patterns consistent with the simplified FE results. Suture mechanical behavior is impacted by morphologic factors (interdigitation and connectivity), which may be optimized for regional loading within the CFS.  相似文献   

13.
Bone is composed of a mineral matrix reinforced by a network of collagen that governs the biomechanical functions of the skeletal system in the body. The purpose of the study was to investigate the possible effect of extremely low-frequency magnetic field (ELF-MF) on geometric and biomechanical properties of rats' bone. In this study, 30 male Sprague-Dawley rats were used. The rats were divided into three groups: two experimental and one control sham. The first and second experimental group (n=10) were exposed to 100?μT and 500?μT-MF during 10 months, 2?h a day, respectively, and the third (sham) (n=10) group was treated like experimental group except ELF-MF exposure in methacrylate boxes. After ELF-MF and sham exposure, geometric and the biomechanical properties of rats' bone, such as cross-sectional area of the femoral shaft, length of the femur, cortical thickness of the femur, ultimate tensile strength (maximum load), displacement, stiffness, energy absorption capacity, elastic modulus, and toughness of bone were determined. The geometric and biomechanical analyses showed that a significant decrease in rats exposed to 100?μT-MF in comparison to sham and 500?μT-MF exposed rats about the values of cross-sectional area of the femoral shaft (P<0.05). Maximum load increased in 100?μT-MF and 500?μT-MF exposed rats when compared to that of the sham rats (P<0.05). The cortical thickness of the femurs of MF-exposed rats (100?μT and 500?μT) were significantly decreased in comparison to that of sham groups' rats (P<0.05 and P<0.001). However, no significant differences were found in the other biomechanical endpoints between each other groups, such as: length of the femur, displacement, stiffness, energy absorption capacity, elastic modulus, and toughness of bone (P>0.05). These experiments demonstrated that 100?μT-MF and 500?μT-MF can affect biomechanical and geometrical properties of rats' bone.  相似文献   

14.
ObjectiveThis study used microcomputed tomography (micro-CT) to evaluate the effects of ovariectomy on the trabecular bone microarchitecture and cortical bone morphology in the femoral neck and mandible of female rats.ResultsRegarding the trabecular bone microarchitectural parameters, the BV/TV of the trabecular bone microarchitecture in the femoral necks of the control group (61.199±11.288%, median ± interquartile range) was significantly greater than that of the ovariectomized group (40.329±5.153%). Similarly, the BV/TV of the trabecular bone microarchitecture in the mandibles of the control group (51.704±6.253%) was significantly greater than that of the ovariectomized group (38.486±9.111%). Furthermore, the TbSp of the femoral necks in the ovariectomized group (0.185±0.066 mm) was significantly greater than that in the control group (0.130±0.026mm). Similarly, the TbSp of the mandibles in the ovariectomized group (0.322±0.047mm) was significantly greater than that in the control group (0.285±0.041mm). However, the TbTh and TbN trends for the mandibles and femoral necks were inconsistent between the control and ovariectomized groups. Regarding the cortical bone morphology parameters, the TtAr of the femoral necks in the ovariectomized group was significantly smaller than that in the control group. There was no significant difference in the TtAr, CtAr, or CtTh of the femoral necks between the control and ovariectomized groups, and no significant difference in the CtTh of the mandibles between the control and ovariectomized groups. Moreover, the BV/TV and TbSp of the mandibles were highly correlated with those of the femurs (rs = 0.874 and rs = 0.755 for BV/TV and TbSp, respectively). Nevertheless, the TbTh, TbN, and CtTh of the mandibles were not correlated with those of the femoral necks.ConclusionAfter the rats were ovariectomized, osteoporosis of the trabecular bone microarchitecture occurred in their femurs and mandibles; however, ovariectomy did not influence the cortical bone morphology. In addition, the parametric values of the trabecular bone microarchitecture in the femoral necks were highly correlated with those of the trabecular bone microarchitecture in the mandibles.  相似文献   

15.

Background

Activation of peroxisome proliferator-activated receptor (PPAR)gamma is associated with bone loss and increased fracture risk, while PPARalpha activation seems to have positive skeletal effects. To further explore these effects we have examined the effect of the PPARalpha agonists fenofibrate and Wyeth 14643, and the PPARgamma agonist pioglitazone, on bone mineral density (BMD), bone architecture and biomechanical strength in ovariectomized rats.

Methods

Fifty-five female Sprague-Dawley rats were assigned to five groups. One group was sham-operated and given vehicle (methylcellulose), the other groups were ovariectomized and given vehicle, fenofibrate, Wyeth 14643 and pioglitazone, respectively, daily for four months. Whole body and femoral BMD were measured by dual X-ray absorptiometry (DXA), and biomechanical testing of femurs, and micro-computed tomography (microCT) of the femoral shaft and head, were performed.

Results

Whole body and femoral BMD were significantly higher in sham controls and ovariectomized animals given fenofibrate, compared to ovariectomized controls. Ovariectomized rats given Wyeth 14643, maintained whole body BMD at sham levels, while rats on pioglitazone had lower whole body and femoral BMD, impaired bone quality and less mechanical strength compared to sham and ovariectomized controls. In contrast, cortical volume, trabecular bone volume and thickness, and endocortical volume were maintained at sham levels in rats given fenofibrate.

Conclusions

The PPARalpha agonist fenofibrate, and to a lesser extent the PPARaplha agonist Wyeth 14643, maintained BMD and bone architecture at sham levels, while the PPARgamma agonist pioglitazone exaggerated bone loss and negatively affected bone architecture, in ovariectomized rats.  相似文献   

16.
This study compared the capabilities of micro-computed tomography (micro-CT) and dental cone-beam computed tomography (CBCT) in assessing trabecular bone parameters and cortical bone strength. Micro-CT and CBCT scans were applied to 28 femurs from 14 rats to obtain independent measurements of the volumetric cancellous bone mineral density (vCanBMD) in the femoral head, volumetric cortical bone mineral density (vCtBMD) in the femoral diaphysis, cross-sectional moment of inertia (CSMI), and bone strength index (BSI) (=CSMI×vCtBMD). Five structural parameters of the trabecular bone of the femoral head were calculated from micro-CT images. A three-point bending test was then conducted to measure the fracture load of each femur. Bivariate linear Pearson analysis was conducted to calculate the correlation coefficients (r values) of the micro-CT, dental CBCT, and three-point bending measurements. The statistical analyses showed a strong correlation between vCanBMD values obtained using micro-CT and dental CBCT (r=0.830). There were strong or moderate correlation between vCanBMD measured using dental CBCT and five parameters of trabecular structure measured using micro-CT. Additionally, the results were satisfactory regardless of whether micro-CT or dental CBCT was used to measure the femoral diaphysis vCtBMD (r=0.733 and 0.680, respectively), CSMI (r=0.756 and 0.726, respectively), or BSI (r=0.846 and 0.847, respectively) to predict fracture loads. This study has yielded a new method for using dental CBCT to evaluate bone parameters and bone strength; however, further studies are necessary to validate the use of dental CBCT on humans.  相似文献   

17.

Objective

The objective of this study was to evaluate the relationship between the trabecular bone microarchitecture and cortical bone morphology by using micro-computed tomography (micro-CT) and dental cone-beam computed tomography (dental CT).

Materials and Methods

Sixteen femurs and eight fifth lumbar vertebrae were collected from eight male Sprague Dawley rats. Four trabecular bone microarchitecture parameters related to the fifth lumbar vertebral body (percent bone volume [BV/TV], trabecular thickness [TbTh], trabecular separation [TbSp], and trabecular number [TbN]) were calculated using micro-CT. In addition, the volumetric cancellous bone grayscale value (vCanGrayscale) of the fifth lumbar vertebral body was measured using dental CT. Furthermore, four cortical bone morphology parameters of the femoral diaphysis (total cross-sectional area [TtAr], cortical area [CtAr], cortical bone area fraction [CtAr/TtAr], and cortical thickness [CtTh]) were calculated using both micro-CT and dental CT. Pearson analysis was conducted to calculate the correlation coefficients (r) of the micro-CT and dental CT measurements. Paired-sample t tests were used to compare the differences between the measurements of the four cortical bone morphology parameters obtained using micro-CT and dental CT.

Results

High correlations between the vCanGrayscale measured using dental CT and the trabecular bone microarchitecture parameters (BV/TV [r = 0.84] and TbTh [r = 0.84]) measured using micro-CT were observed. The absolute value of the four cortical bone morphology parameters may be different between the dental CT and micro-CT approaches. However, high correlations (r ranged from 0.71 to 0.90) among these four cortical bone morphology parameters measured using the two approaches were obtained.

Conclusion

We observed high correlations between the vCanGrayscale measured using dental CT and the trabecular bone microarchitecture parameters (BV/TV and TbTh) measured using micro-CT, in addition to high correlations between the cortical bone morphology measured using micro-CT and dental CT. Further experiments are necessary to validate the use of dental CT on human bone.  相似文献   

18.
The cortical bone distributions in the femoral necks of apes and humans differ as a result of different loading environments caused by the realignment of the hip abductor apparatus. Femoral neck cortical bone in extant humans is very thin superiorly and thicker inferiorly, while the cortical bone in apes tends to be more uniformly thick. The unique internal anatomy of extant humans allows inferences to be made about primary locomotor function from incomplete femora. Here the differences in cortical bone distributions are quantified using moment coefficient of skewness. Skewness coefficients at two locations along the neck of the 6 million years old African femoral specimen BAR 1002’00 were compared to samples of 9 extant adult humans and 10 adult chimpanzees. The skewness coefficients of cortical bone in the femoral neck of BAR 1002’00 are more similar to those of chimpanzees than to humans, although the contrast is less pronounced in the region closer to the neck-shaft junction than more proximally toward the femoral head; this pattern indicates that in at least one respect this specimen attributed to Orrorin tugenensis manifests structural features suggesting influences of a hip abductor apparatus that had not yet evolved to the same extent as in extant humans.  相似文献   

19.
Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (GorabPrx1) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the GorabPrx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that GorabPrx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the GorabPrx1 tibiae (p < .05), suggesting delayed mineralization. In vivo strain gauge measurement and finite element analysis showed ∼two times higher tissue-level strains within the GorabPrx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that GorabPrx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the GorabPrx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO.  相似文献   

20.
Heterochrony has been invoked to explain differences in the morphology of modern humans as compared to other great apes. The distal femur is one area where heterochrony has been hypothesized to explain morphological differentiation among Plio-Pleistocene hominins. This hypothesis is evaluated here using geometric morphometric data to describe the ontogenetic shape trajectories of extant hominine distal femora and place Plio-Pleistocene hominins within that context. Results of multivariate statistical analyses showed that in both Homo and Gorilla, the shape of the distal femur changes significantly over the course of development, whereas that of Pan changes very little. Development of the distal femur of Homo is characterized by an elongation of the condyles, and a greater degree of enlargement of the medial condyle relative to the lateral condyle, whereas Gorilla are characterized by a greater degree of enlargement of the lateral condyle, relative to the medial. Early Homo and Australopithecus africanus fossils fell on the modern human ontogenetic shape trajectory and were most similar to either adult or adolescent modern humans while specimens of Australopithecus afarensis were more similar to Gorilla/Pan. These results indicate that shape differences among the distal femora of Plio-Pleistocene hominins and humans cannot be accounted for by heterochrony alone; heterochrony could explain a transition from the distal femoral shape of early Homo/A. africanus to modern Homo, but not a transition from A. afarensis to Homo. That change could be the result of genetic or epigenetic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号