首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 氮沉降对树木生长的影响是全球变化研究的一个核心问题。该文通过设置4种氮添加水平(对照(0)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)), 研究了模拟氮沉降对落叶松(Larix gmelinii)原始林树木胸径生长的影响。结果表明: 中氮和高氮添加对落叶松胸径相对生长率有显著影响, 而且这种影响随施氮年限的增加而增强。不同高度的树木对氮添加的响应有很大差异, 较低树木(树高<16.5 m)的生长对氮添加无显著响应, 而较高(树高>16.5 m)的树木在中氮和高氮处理下胸径生长有显著加速(胸径相对生长率增幅>79.5%), 但随着树木高度的进一步增加, 这种加速作用明显下降。研究结果显示氮添加会促进落叶松胸径生长, 这种促进作用主要发生在较高的落叶松个体中。  相似文献   

2.
We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time  = 122.43 hours ±17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (−13±17% and −10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (−24±13% and −26±19%, P<0.01) with alteration of the central activation ratio (−24±24% and −28±34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: −18±18% and PF: −20±15%, P<0.01) and peak twitch (KE: −33±12%, P<0.001 and PF: −19±14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·1), lactate dehydrogenase (1145±511 UI·L−1), C-Reactive Protein (13.1±7.5 mg·L−1) and myoglobin (449.3±338.2 µg·L−1) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.  相似文献   

3.

Background and Purpose

Maternal glucocorticoid treatment for threatened premature delivery dramatically improves neonatal survival and short-term morbidity; however, its effects on neurodevelopmental outcome are variable. We investigated the effect of maternal glucocorticoid exposure after acute asphyxia on injury in the preterm brain.

Methods

Chronically instrumented singleton fetal sheep at 0.7 of gestation received asphyxia induced by complete umbilical cord occlusion for 25 minutes. 15 minutes after release of occlusion, ewes received a 3 ml i.m. injection of either dexamethasone (12 mg, n = 10) or saline (n = 10). Sheep were killed after 7 days recovery; survival of neurons in the hippocampus and basal ganglia, and oligodendrocytes in periventricular white matter were assessed using an unbiased stereological approach.

Results

Maternal dexamethasone after asphyxia was associated with more severe loss of neurons in the hippocampus (CA3 regions, 290±76 vs 484±98 neurons/mm2, mean±SEM, P<0.05) and basal ganglia (putamen, 538±112 vs 814±34 neurons/mm2, P<0.05) compared to asphyxia-saline, and with greater loss of both total (913±77 vs 1201±75/mm2, P<0.05) and immature/mature myelinating oligodendrocytes in periventricular white matter (66±8 vs 114±12/mm2, P<0.05, vs sham controls 165±10/mm2, P<0.001). This was associated with transient hyperglycemia (peak 3.5±0.2 vs. 1.4±0.2 mmol/L at 6 h, P<0.05) and reduced suppression of EEG power in the first 24 h after occlusion (maximum −1.5±1.2 dB vs. −5.0±1.4 dB in saline controls, P<0.01), but later onset and fewer overt seizures.

Conclusions

In preterm fetal sheep, exposure to maternal dexamethasone during recovery from asphyxia exacerbated brain damage.  相似文献   

4.
Physical exercise is the cornerstone of cardiovascular disease treatment. The present study investigated whether exercise training affects atherosclerotic plaque composition through the modification of inflammatoryrelated pathways in apolipoprotein E knockout (apoE−/−) mice with diabetic atherosclerosis. Forty-five male apoE−/− mice were randomized into three equivalent (n=15) groups: control (CO), sedentary (SED), and exercise (EX). Diabetes was induced by streptozotocin administration. High-fat diet was administered to all groups for 12 weeks. Afterwards, CO mice were euthanatized, while the sedentary and exercise groups continued high-fat diet for 6 additional weeks. Exercising mice followed an exercise program on motorizedtreadmill (5 times/week, 60 min/session). Then, blood samples and atherosclerotic plaques in the aortic root were examined. A considerable (P<0.001) regression of the atherosclerotic lesions was observed in the exercise group (180.339±75.613×103µm2) compared to the control (325.485±72.302×103 µm2) and sedentary (340.188±159.108×103µm2) groups. We found decreased macrophages, matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-8 and interleukin-6 (IL-6) concentrations (P<0.05) in the atherosclerotic plaques of the exercise group. Compared to both control and sedentary groups, exercise training significantly increased collagen (P<0.05), elastin (P<0.001), and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) (P<0.001) content in the atherosclerotic plaques. Those effects paralleled with increased fibrous cap thickness and less internal elastic lamina ruptures after exercise training (P<0.05), while body-weight and lipid parameters did not significantly change. Plasma MMP-2 and MMP-3 concentrations in atherosclerotic tissues followed a similar trend. From our study we can conclude that exercise training reduces and stabilizes atherosclerotic lesions in apoE−/− mice with diabetic atherosclerosis. A favorable modification of the inflammatory regulators seems to explain those beneficial effects.Key words: diabetes, atherosclerosis, exercise, matrix metalloproteinases, plaque stability.  相似文献   

5.
Our aim was to assess the timing and mechanisms of the sympathoexcitation that occurs immediately after coronary ligation. We recorded thoracic sympathetic (tSNA) and phrenic activities, heart rate (HR) and perfusion pressure in Wistar rats subjected to either ligation of the left anterior descending coronary artery (LAD) or Sham operated in the working heart-brainstem preparation. Thirty minutes after LAD ligation, tSNA had increased (basal: 2.5±0.2 µV, 30 min: 3.5±0.3 µV), being even higher at 60 min (5.2±0.5 µV, P<0.01); while no change was observed in Sham animals. HR increased significantly 45 min after LAD (P<0.01). Sixty minutes after LAD ligation, there was: (i) an augmented peripheral chemoreflex – greater sympathoexcitatory response (50, 45 and 27% of increase to 25, 50 and 75 µL injections of NaCN 0.03%, respectively, when compared to Sham, P<0.01); (ii) an elevated pressor response (32±1 versus 23±1 mmHg in Sham, P<0.01) and a reduced baroreflex sympathetic gain (1.3±0.1 versus Sham 2.0±0.1%.mmHg−1, P<0.01) to phenylephrine injection; (iii) an elevated cardiac sympathetic tone (ΔHR after atenolol: −108±8 versus −82±7 bpm in Sham, P<0.05). In contrast, no changes were observed in cardiac vagal tone and bradycardic response to both baroreflex and chemoreflex between LAD and Sham groups. The immediate sympathoexcitatory response in LAD rats was dependent on an excitatory spinal sympathetic cardiocardiac reflex, whereas at 3 h an angiotensin II type 1 receptor mechanism was essential since Losartan curbed the response by 34% relative to LAD rats administered saline (P<0.05). A spinal reflex appears key to the immediate sympathoexcitatory response after coronary ligation. Therefore, the sympathoexcitatory response seems to be maintained by an angiotensinergic mechanism and concomitant augmentation of sympathoexcitatory reflexes.  相似文献   

6.
Hyperlipidemic apolipoprotein E (APOE) knockout mice show an enhanced level of adrenal-derived anti-inflammatory glucocorticoids. Here we determined in APOE knockout mice the impact of total removal of adrenal function through adrenalectomy (ADX) on two inflammation-associated pathologies, endotoxemia and atherosclerosis. ADX mice exhibited 91% decreased corticosterone levels (P<0.001), leukocytosis (WBC count: 10.0 ± 0.4 x 10E9/L vs 6.5 ± 0.5 x 10E9/L; P<0.001) and an increased spleen weight (P<0.01). FACS analysis on blood leukocytes revealed increased B-lymphocyte numbers (55 ± 2% vs 46 ± 1%; P<0.01). T-cell populations in blood appeared to be more immature (CD62L+: 26 ± 2% vs 19 ± 1% for CD4+ T-cells, P<0.001 and 58 ± 7% vs 47 ± 4% for CD8+ T-cells, P<0.05), which coincided with immature CD4/CD8 double positive thymocyte enrichment. Exposure to lipopolysaccharide failed to increase corticosterone levels in ADX mice and was associated with a 3-fold higher (P<0.05) TNF-alpha response. In contrast, the development of initial fatty streak lesions and progression to advanced collagen-containing atherosclerotic lesions was unaffected. Plasma cholesterol levels were decreased by 35% (P<0.001) in ADX mice. This could be attributed to a decrease in pro-atherogenic very-low-density lipoproteins (VLDL) as a result of a diminished hepatic VLDL secretion rate (-24%; P<0.05). In conclusion, our studies show that adrenalectomy induces leukocytosis and enhances the susceptibility for endotoxemia in APOE knockout mice. The adrenalectomy-associated rise in white blood cells, however, does not alter atherosclerotic lesion development probably due to the parallel decrease in plasma levels of pro-atherogenic lipoproteins.  相似文献   

7.
We investigated the effects of ingesting a multi-ingredient (53g carbohydrate, 14.5g whey protein, 5g glutamine, 1.5g L-carnitine-L-tartrate) supplement, carbohydrate only, or placebo on intermittent performance, perception of fatigue, immunity, and functional and metabolic markers of recovery. Sixteen amateur soccer players ingested their respective treatments before, during and after performing a 90-min intermittent repeated sprint test. Primary outcomes included time for a 90-min intermittent repeated sprint test (IRS) followed by eleven 15 m sprints. Measurements included creatine kinase, myoglobin, interleukine-6, Neutrophil; Lymphocytes and Monocyte before (pre), immediately after (post), 1h and 24h after exercise testing period. Overall, time for the IRS and 15 m sprints was not different between treatments. However, the perception of fatigue was attenuated (P<0.001) for the multi-ingredient (15.9±1.4) vs. placebo (17.8±1.4) but not for the carbohydrate (17.0±1.9) condition. Several changes in immune/inflammatory indices were noted as creatine kinase peaked at 24h while Interleukin-6 and myoglobin increased both immediately after and at 1h compared with baseline (P<0.05) for all three conditions. However, Myoglobin (P<0.05) was lower 1h post-exercise for the multi-ingredient (241.8±142.6 ng·ml-1) and CHO (265.4±187.8 ng·ml-1) vs. placebo (518.6±255.2 ng·ml-1). Carbohydrate also elicited lower neutrophil concentrations vs. multi-ingredient (3.9±1.5 109/L vs. 4.9±1.8 109/L, P = 0.016) and a reduced (P<0.05) monocytes count (0.36±0.09 109/L) compared to both multi-ingredient (0.42±0.09 109/L) and placebo (0.42±0.12 109/L). In conclusion, multi-ingredient and carbohydrate supplements did not improve intermittent performance, inflammatory or immune function. However, both treatments did attenuate serum myoglobin, while only carbohydrate blunted post-exercise leukocytosis.  相似文献   

8.
In order to discover the advantages and disadvantages of different fertilization regimes and identify the best management practice of fertilization in greenhouse fields, soil enzyme activities involved in carbon (C) transformations, soil chemical characteristics, and crop yields were monitored after long-term (20-year) fertilization regimes, including no fertilizer (CK), 300 kg N ha-1 and 600 kg N ha-1 as urea (N1 and N2), 75 Mg ha-1 horse manure compost (M), and M with either 300 or 600 kg N ha-1 urea (MN1 and MN2). Compared with CK, fertilization increased crop yields by 31% (N2) to 69% (MN1). However, compared with CK, inorganic fertilization (especially N2) also caused soil acidification and salinization. In the N2 treatment, soil total organic carbon (TOC) decreased from 14.1±0.27 g kg-1 at the beginning of the long-term experiment in 1988 to 12.6±0.11 g kg-1 (P<0.05). Compared to CK, N1 and N2 exhibited higher soil α-galactosidase and β-galactosidase activities, but lower soil α-glucosidase and β-glucosidase activities (P<0.05), indicating that inorganic fertilization had different impacts on these C transformation enzymes. Compared with CK, the M, MN1 and MN2 treatments exhibited higher enzyme activities, soil TOC, total nitrogen, dissolved organic C, and microbial biomass C and N. The fertilization regime of the MN1 treatment was identified as optimal because it produced the highest yields and increased soil quality, ensuring sustainability. The results suggest that inorganic fertilizer alone, especially in high amounts, in greenhouse fields is detrimental to soil quality.  相似文献   

9.

Background

The analysis of heart rate variability (HRV) has been shown as a promising non-invasive technique for assessing the cardiac autonomic modulation in trauma. The aim of this study was to evaluate HRV during hemorrhagic shock and fluid resuscitation, comparing to traditional hemodynamic and metabolic parameters.

Methods

Twenty anesthetized and mechanically ventilated pigs were submitted to hemorrhagic shock (60% of estimated blood volume) and evaluated for 60 minutes without fluid replacement. Surviving animals were treated with Ringer solution and evaluated for an additional period of 180 minutes. HRV metrics (time and frequency domain) as well as hemodynamic and metabolic parameters were evaluated in survivors and non-survivors animals.

Results

Seven of the 20 animals died during hemorrhage and initial fluid resuscitation. All animals presented an increase in time-domain HRV measures during haemorrhage and fluid resuscitation restored baseline values. Although not significantly, normalized low-frequency and LF/HF ratio decreased during early stages of haemorrhage, recovering baseline values later during hemorrhagic shock, and increased after fluid resuscitation. Non-surviving animals presented significantly lower mean arterial pressure (43±7vs57±9 mmHg, P<0.05) and cardiac index (1.7±0.2vs2.6±0.5 L/min/m2, P<0.05), and higher levels of plasma lactate (7.2±2.4vs3.7±1.4 mmol/L, P<0.05), base excess (-6.8±3.3vs-2.3±2.8 mmol/L, P<0.05) and potassium (5.3±0.6vs4.2±0.3 mmol/L, P<0.05) at 30 minutes after hemorrhagic shock compared with surviving animals.

Conclusions

The HRV increased early during hemorrhage but none of the evaluated HRV metrics was able to discriminate survivors from non-survivors during hemorrhagic shock. Moreover, metabolic and hemodynamic variables were more reliable to reflect hemorrhagic shock severity than HRV metrics.  相似文献   

10.

Background

Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy.

Methodology/Principal Findings

EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2±2.9% and 83.7±3.0% vs. 53.5±2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62±0.03 and 1.68±0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6±0.3 and 8.1±0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7±44.1 vs. 340.0±29.1 CD34+/CD45 cells/1×105 mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9±0.7 vs. 2.6±0.4 CD34+ cells/HPF, P<0.001) 3 days after the last injection.

Conclusions/Significance

Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.  相似文献   

11.

Background

Although a significant progress has been made in the management of ischemic heart disease (IHD), the number of severe IHD patients is increasing. Thus, it is crucial to develop new, non-invasive therapeutic strategies. In the present study, we aimed to develop low-intensity pulsed ultrasound (LIPUS) therapy for the treatment of IHD.

Methods and Results

We first confirmed that in cultured human endothelial cells, LIPUS significantly up-regulated mRNA expression of vascular endothelial growth factor (VEGF) with a peak at 32-cycle (P<0.05). Then, we examined the in vivo effects of LIPUS in a porcine model of chronic myocardial ischemia with reduced left ventricular ejection fraction (LVEF) (n = 28). The heart was treated with either sham (n = 14) or LIPUS (32-cycle with 193 mW/cm2 for 20 min, n = 14) at 3 different short axis levels. Four weeks after the treatment, LVEF was significantly improved in the LIPUS group (46±4 to 57±5%, P<0.05) without any adverse effects, whereas it remained unchanged in the sham group (46±5 to 47±6%, P = 0.33). Capillary density in the ischemic region was significantly increased in the LIPUS group compared with the control group (1084±175 vs. 858±151/mm2, P<0.05). Regional myocardial blood flow was also significantly improved in the LIPUS group (0.78±0.2 to 1.39±0.4 ml/min/g, P<0.05), but not in the control group (0.84±0.3 to 0.97±0.4 ml/min/g). Western blot analysis showed that VEGF, eNOS and bFGF were all significantly up-regulated only in the LIPUS group.

Conclusions

These results suggest that the LIPUS therapy is promising as a new, non-invasive therapy for IHD.  相似文献   

12.

Background

Previous studies observed the high prevalence of venous thromboembolism in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The current study analyzed the coagulation and fibrinolysis index profile in AAV patients.

Methods

The current study recruited 321 AAV patients in active stage and 78 AAV patients in quiescent stage. Coagulation and fibrinolysis index profiles in these AAV patients were analysed, and their associations with various clinical and pathological parameters were further investigated.

Results

The circulating levels of D-dimer, fibrin degradation products and platelet count were significantly higher in AAV patients in active stage compared with those in remission [0.8 (0.4, 1.5) mg/L vs. 0.28 (0.2, 0.55) mg/L, P<0.05; 5.6 (5.0, 10.0) mg/L vs. 1.9 (1.2, 2.8) mg/L, P<0.05; 269±127×109/L vs. 227±80×109/L, P<0.05, respectively]. Among the 321 AAV patients in active stage, compared with patients with normal levels of D-dimer, patients with elevated D-dimer levels had significantly higher levels of initial serum creatinine, erythrocyte sedimentation rate, C reactive protein and the Birmingham Vasculitis Activity Scores (P = 0.014, P<0.001, P<0.001, P = 0.002, respectively). Moreover, correlation analysis showed that the levels of D-dimer correlated with erythrocyte sedimentation rate and C reactive protein levels (r = 0.384, P<0.001; r = 0.380, P<0.001, respectively).

Conclusion

Patients with active AAV are in hypercoagulable states, and circulating levels of D-dimer are associated with disease activity of AAV.  相似文献   

13.

Aims

Currently, there is no effective resuscitative adjunct to fluid and blood products to limit tissue injury for traumatic hemorrhagic shock. The objective of this study was to investigate the role of inhaled carbon monoxide (CO) to limit inflammation and tissue injury, and specifically mitochondrial damage, in experimental models of hemorrhage and resuscitation.

Results

Inhaled CO (250 ppm for 30 minutes) protected against mortality in severe murine hemorrhagic shock and resuscitation (HS/R) (20% vs. 80%; P<0.01). Additionally, CO limited the development of shock as determined by arterial blood pH (7.25±0.06 vs. 7.05±0.05; P<0.05), lactate levels (7.2±5.1 vs 13.3±6.0; P<0.05), and base deficit (13±3.0 vs 24±3.1; P<0.05). A dose response of CO (25–500 ppm) demonstrated protection against HS/R lung and liver injury as determined by MPO activity and serum ALT, respectively. CO limited HS/R-induced increases in serum tumor necrosis factor-α and interleukin-6 levels as determined by ELISA (P<0.05 for doses of 100–500ppm). Furthermore, inhaled CO limited HS/R induced oxidative stress as determined by hepatic oxidized glutathione:reduced glutathione levels and lipid peroxidation. In porcine HS/R, CO did not influence hemodynamics. However, CO limited HS/R-induced skeletal muscle and platelet mitochondrial injury as determined by respiratory control ratio (muscle) and ATP-linked respiration and mitochondrial reserve capacity (platelets).

Conclusion

These preclinical studies suggest that inhaled CO can be a protective therapy in HS/R; however, further clinical studies are warranted.  相似文献   

14.

Background

Curcumin (CUR) has deserved extensive research due to its anti-inflammatory properties, of interest in human diseases including cancer. However, pleiotropic even paradoxical responses of tumor cells have been reported, and the mechanisms of action of CUR remain uncompletely elucidated.

Methodology/Principal Findings

1H-NMR spectroscopy-based metabolomics was applied to get novel insight into responses of MCF7 and MDA-MB-231 breast cancer cells to CUR alone, and MCF7 cells to CUR in cotreatment with docetaxel (DTX). In both cell types, a major target of CUR was glutathione metabolism. Total glutathione (GSx) increased at low dose CUR (≤ 10 mg.l−1–28 µM-) (up to +121% in MCF7 cells, P<0.01, and +138% in MDA-MB-231 cells, P<0.01), but decreased at high dose (≥ 25 mg.l−1 −70 µM-) (−49%, in MCF7 cells, P<0.02, and −56% in MDA-MB-231 cells, P<0.025). At high dose, in both cell types, GSx-related metabolites decreased, including homocystein, creatine and taurine (−60 to −80%, all, P<0.05). Together with glutathione-S-transferase actvity, data established that GSx biosynthesis was upregulated at low dose, and GSx consumption activated at high dose. Another major target, in both cell types, was lipid metabolism involving, at high doses, accumulation of polyunsaturated and total free fatty acids (between ×4.5 and ×11, P<0.025), and decrease of glycerophospho-ethanolamine and -choline (about −60%, P<0.025). Multivariate statistical analyses showed a metabolic transition, even a biphasic behavior of some metabolites including GSx, between low and high doses. In addition, CUR at 10 mg.l−1 in cotreatment with DTX induced modifications in glutathione metabolism, lipid metabolism, and glucose utilization. Some of these changes were biphasic depending on the duration of exposure to CUR.

Conclusions/Significance

Metabolomics reveals major metabolic targets of CUR in breast cancer cells, and biphasic responses that challenge the widely accepted beneficial effects of the phytochemical.  相似文献   

15.
Cancer cachexia is a wasting condition, driven by systemic inflammation and oxidative stress. This study investigated eicosapentaenoic acid (EPA) in combination with oxypurinol as a treatment in a mouse model of cancer cachexia. Mice with cancer cachexia were randomized into 4 treatment groups (EPA (0.4 g/kg/day), oxypurinol (1 mmol/L ad-lib), combination, or control), and euthanized after 29 days. Analysis of oxidative damage to DNA, mRNA analysis of pro-oxidant, antioxidant and proteolytic pathway components, along with enzyme activity of pro- and antioxidants were completed on gastrocnemius muscle. The control group displayed earlier onset of tumor compared to EPA and oxypurinol groups (P<0.001). The EPA group maintained body weight for an extended duration (20 days) compared to the oxypurinol (5 days) and combination (8 days) groups (P<0.05). EPA (18.2±3.2 pg/ml) and combination (18.4±3.7 pg/ml) groups had significantly higher 8-OH-dG levels than the control group (12.9±1.4 pg/ml, P≤0.05) indicating increased oxidative damage to DNA. mRNA levels of GPx1, MURF1 and MAFbx were higher following EPA treatment compared to control (P≤0.05). Whereas oxypurinol was associated with higher GPx1, MnSOD, CAT, XDH, MURF1, MAFbx and UbB mRNA compared to control (P≤0.05). Activity of total SOD was higher in the oxypurinol group (32.2±1.5 U/ml) compared to control (27.0±1.3 U/ml, P<0.01), GPx activity was lower in the EPA group (8.76±2.0 U/ml) compared to control (14.0±1.9 U/ml, P<0.05), and catalase activity was lower in the combination group (14.4±2.8 U/ml) compared to control (20.9±2.0 U/ml, P<0.01). There was no change in XO activity. The increased rate of weight decline in mice treated with oxypurinol indicates that XO may play a protective role during the progression of cancer cachexia, and its inhibition is detrimental to outcomes. In combination with EPA, there was little significant improvement from control, indicating oxypurinol is unlikely to be a viable treatment compound in cancer cachexia.  相似文献   

16.
Lung fluid accumulation was determined using wet/dry lung mass ratio. Rats subjected to LPS-induced acute lung injury (2.8 ± 0.33, P < 0.05) presented with a significantly higher wet to dry lung weight ration ratio than sham rats (1.6 ± 0.23, P < 0.05). These results demonstrate that acutely inured rats'' lungs were oedematous. On the other hand, treatment with scutellarin alone and in combination with a JNK inhibitor, SP600125, both significantly attenuated pulmonary edema as shown via reduced wet/dry lung mass ratios (1.7 ± 0.09 and 1.8 ± 0.23; P < 0.05, respectively). These results showed that the interventions were effective against LPS-induced edema of the lungs. However, the difference between treatment groups'' weight ratios was not statistically significant (P > 0.05). In the sham control rats, the levels of ROS and SOD production were maintained at a low and at a high concentration, respectively (P < 0.05). However, following LPS infusion, the ROS levels skyrocketed while that of SOD decreased significantly relative to the control rats (P < 0.05). Furthermore, we noted that pre-treatment with scutellarin reduced the ROS levels in LPS-injured rats while the SOD was increased to near control levels (P < 0.05). Moreover, the combined effect of scutellarin and JNK inhibitor SP600125 on the levels of ROS and the SOD activity followed a similar trend to that of scutellarin alone albeit with a lower magnitude of change. Our results also showed that the combinatorial treatment was not significantly different from scutellarin alone in terms of influence on the levels of ROS production and SOD activity (P > 0.05). The effect of Scutellarin on broncho-alveolar lavage fluid (BALF) cytokine secretion The expression of interleukins-1β, −18 and −6 in the broncho-alveolar lavage fluid were significantly upregulated by LPS infusion (P < 0.05). The rise was, however, attenuated via pre-treatment with scutellarin only or in conjunction with SP600125, a JNK inhibitor (all P < 0.05). On the contrary, we observed that LPS injection caused a reduction of interlekins −4 and −10 secreted in the BALF. Pre-treatment with scutellarin alone (P < 0.05) and not in combination with SP600125 or SP600125 was able to significantly reverse this noted down-regulation (all P > 0.05).  相似文献   

17.
Previously, we have shown that fetal uninephrectomy (uni-x) causes hypertension in female sheep by 2 years of age. Whilst the hypertension was not exacerbated by 5 years of age, these uni-x sheep had greater reductions in renal blood flow (RBF). To further explore these early indications of a decline in renal function, we investigated the renal response to a saline load (25 ml/kg/40 min) in 5-year old female uni-x and sham sheep. Basal mean arterial pressure was ∼15 mmHg greater (PGroup<0.001), and sodium excretion (∼50%), glomerular filtration rate (∼30%, GFR) and RBF (∼40%) were all significantly lower (PGroup<0.01) in uni-x compared to sham animals. In response to saline loading, sodium excretion increased significantly in both groups (PTime<0.001), however this response was blunted in uni-x sheep (PGroupxTime<0.01). This was accompanied with an attenuated increase in GFR and fractional sodium excretion (both PGroupxTime<0.05), and reduced activation of the renin-angiotensin system (both P<0.05), as compared to the sham group. The reduction in sodium excretion was associated with up-regulations in the renal gene expression of NHE3 and Na+/K+ ATPase α and β subunits in the kidney cortex of the uni-x compared to the sham animals (P<0.05). Notably, neither group completely excreted the saline load within the recovery period, but the uni-x retained a higher percentage of the total volume (uni-x: 48±7%; sham: 22±9%, P<0.05). In conclusion, a reduced ability to efficiently regulate extracellular fluid homeostasis is evident in female sheep at 5 years of age, which was exacerbated in animals born with a congenital nephron deficit. Whilst there was no overt exacerbation of hypertension and renal insufficiency with age in the uni-x sheep, these animals may be more vulnerable to secondary renal insults.  相似文献   

18.
Nanocarriers can deliver a wide variety of drugs, target them to sites of interest, and protect them from degradation and inactivation by the body. They have the capacity to improve drug action and decrease undesirable systemic effects. We have previously developed a well-defined non-toxic PEG-dendritic block telodendrimer for successful delivery of chemotherapeutics agents and, in these studies, we apply this technology for therapeutic development in asthma. In these proof-of-concept experiments, we hypothesized that dexamethasone contained in self-assembling nanoparticles (Dex-NP) and delivered systemically would target the lung and decrease allergic lung inflammation and airways hyper-responsiveness to a greater degree than equivalent doses of dexamethasone (Dex) alone. We found that ovalbumin (Ova)-exposed mice treated with Dex-NP had significantly fewer total cells (2.78±0.44×105 (n = 18) vs. 5.98±1.3×105 (n = 13), P<0.05) and eosinophils (1.09±0.28×105 (n = 18) vs. 2.94±0.6×105 (n = 12), p<0.05) in the lung lavage than Ova-exposed mice alone. Also, lower levels of the inflammatory cytokines IL-4 (3.43±1.2 (n = 11) vs. 8.56±2.1 (n = 8) pg/ml, p<0.05) and MCP-1 (13.1±3.6 (n = 8) vs. 28.8±8.7 (n = 10) pg/ml, p<0.05) were found in lungs of the Dex-NP compared to control, and they were not lower in the Dex alone group. In addition, respiratory system resistance was lower in the Dex-NP compared to the other Ova-exposed groups suggesting a better therapeutic effect on airways hyperresponsiveness. Taken together, these findings from early-stage drug development studies suggest that the encapsulation and protection of anti-inflammatory agents such as corticosteroids in nanoparticle formulations can improve efficacy. Further development of novel drugs in nanoparticles is warranted to explore potential treatments for chronic inflammatory diseases such as asthma.  相似文献   

19.

Background

Caffeine is one of the most widely consumed pharmacologically active substances. Its acute effect on myocardial blood flow is widely unknown. Our aim was to assess the acute effect of caffeine in a dose corresponding to two cups of coffee on myocardial blood flow (MBF) in coronary artery disease (CAD).

Methodology/Principal Findings

MBF was measured with 15O-labelled H2O and Positron Emission Tomography (PET) at rest and after supine bicycle exercise in controls (n = 15, mean age 58±13 years) and in CAD patients (n = 15, mean age 61±9 years). In the latter, regional MBF was assessed in segments subtended by stenotic and remote coronary arteries. All measurements were repeated fifty minutes after oral caffeine ingestion (200 mg). Myocardial perfusion reserve (MPR) was calculated as ratio of MBF during bicycle stress divided by MBF at rest. Resting MBF was not affected by caffeine in both groups. Exercise-induced MBF response decreased significantly after caffeine in controls (2.26±0.56 vs. 2.02±0.56, P<0.005), remote (2.40±0.70 vs. 1.78±0.46, P<0.001) and in stenotic segments (1.90±0.41 vs. 1.38±0.30, P<0.001). Caffeine decreased MPR significantly by 14% in controls (P<0.05 vs. baseline). In CAD patients MPR decreased by 18% (P<0.05 vs. baseline) in remote and by 25% in stenotic segments (P<0.01 vs. baseline).

Conclusions

We conclude that caffeine impairs exercise-induced hyperaemic MBF response in patients with CAD to a greater degree than age-matched controls.  相似文献   

20.
Marginal deficiency of vitamin B-6 is common among segments of the population worldwide. Because pyridoxal 5′-phosphate (PLP) serves as a coenzyme in the metabolism of amino acids, carbohydrates, organic acids, and neurotransmitters, as well as in aspects of one-carbon metabolism, vitamin B-6 deficiency could have many effects. Healthy men and women (age: 20-40 y; n = 23) were fed a 2-day controlled, nutritionally adequate diet followed by a 28-day low-vitamin B-6 diet (<0.5 mg/d) to induce marginal deficiency, as reflected by a decline of plasma PLP from 52.6±14.1 (mean ± SD) to 21.5±4.6 nmol/L (P<0.0001) and increased cystathionine from 131±65 to 199±56 nmol/L (P<0.001). Fasting plasma samples obtained before and after vitamin B6 restriction were analyzed by 1H-NMR with and without filtration and by targeted quantitative analysis by mass spectrometry (MS). Multilevel partial least squares-discriminant analysis and S-plots of NMR spectra showed that NMR is effective in classifying samples according to vitamin B-6 status and identified discriminating features. NMR spectral features of selected metabolites indicated that vitamin B-6 restriction significantly increased the ratios of glutamine/glutamate and 2-oxoglutarate/glutamate (P<0.001) and tended to increase concentrations of acetate, pyruvate, and trimethylamine-N-oxide (adjusted P<0.05). Tandem MS showed significantly greater plasma proline after vitamin B-6 restriction (adjusted P<0.05), but there were no effects on the profile of 14 other amino acids and 45 acylcarnitines. These findings demonstrate that marginal vitamin B-6 deficiency has widespread metabolic perturbations and illustrate the utility of metabolomics in evaluating complex effects of altered vitamin B-6 intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号