首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
The hypothesis that sperm competition should favour increases in sperm size, because it results in faster swimming speeds, has received support from studies on many taxa, but remains contentious for mammals. We suggest that this may be because mammalian lineages respond differently to sexual selection, owing to major differences in body size, which are associated with differences in mass-specific metabolic rate. Recent evidence suggests that cellular metabolic rate also scales with body size, so that small mammals have cells that process energy and resources from the environment at a faster rate. We develop the 'metabolic rate constraint hypothesis' which proposes that low mass-specific metabolic rate among large mammals may limit their ability to respond to sexual selection by increasing sperm size, while this constraint does not exist among small mammals. Here we show that among rodents, which have high mass-specific metabolic rates, sperm size increases under sperm competition, reaching the longest sperm sizes found in eutherian mammals. By contrast, mammalian lineages with large body sizes have small sperm, and while metabolic rate (corrected for body size) influences sperm size, sperm competition levels do not. When all eutherian mammals are analysed jointly, our results suggest that as mass-specific metabolic rate increases, so does maximum sperm size. In addition, species with low mass-specific metabolic rates produce uniformly small sperm, while species with high mass-specific metabolic rates produce a wide range of sperm sizes. These findings support the hypothesis that mass-specific metabolic rates determine the budget available for sperm production: at high levels, sperm size increases in response to sexual selection, while low levels constrain the ability to respond to sexual selection by increasing sperm size. Thus, adaptive and costly traits, such as sperm size, may only evolve under sexual selection when metabolic rate does not constrain cellular budgets.  相似文献   

2.
Two complementary hypotheses have been proposed to explain variation in sperm size. The first proposes that post-copulatory sexual selection favors an increase in sperm size because it enhances sperm swimming speed, which is an important determinant of fertilization success in competitive contexts. The second hypothesis proposes that mass-specific metabolic rate acts as a constraint, because large animals with low mass-specific metabolic rates will not be able to process resources at the rates needed to produce large sperm. This constraint is expected to be particularly pronounced among mammals, given that this group contains some of the largest species on Earth. We tested these hypotheses among marsupials, a group in which mass-specific metabolic rates are roughly 30% lower than those of eutherian mammals of similar size, leading to the expectation that metabolic rate should be a major constraint. Our findings support both hypotheses because levels of sperm competition are associated with increases in sperm size, but low mass-specific metabolic rate constrains sperm size among large species. We also found that the relationship between sperm size and mass-specific metabolic rate is steeper among marsupials and shallower among eutherian mammals. This finding has two implications: marsupials respond to changes in mass-specific metabolic rate by modifying sperm length to a greater extent, suggesting that they are more constrained by metabolic rate. In addition, for any given mass-specific metabolic rate, marsupials produce longer sperm. We suggest that this is the consequence of marsupials diverting resources away from sperm numbers and into sperm size, due to their efficient sperm transport along the female tract and the existence of mechanisms to protect sperm.  相似文献   

3.
Power laws describing the dependence of metabolic rate on body mass have been established for many taxa, but not for prokaryotes, despite the ecological dominance of the smallest living beings. Our analysis of 80 prokaryote species with cell volumes ranging more than 1,000,000-fold revealed no significant relationship between mass-specific metabolic rate q and cell mass. By absolute values, mean endogenous mass-specific metabolic rates of non-growing bacteria are similar to basal rates of eukaryote unicells, terrestrial arthropods and mammals. Maximum mass-specific metabolic rates displayed by growing bacteria are close to the record tissue-specific metabolic rates of insects, amphibia, birds and mammals. Minimum mass-specific metabolic rates of prokaryotes coincide with those of larger organisms in various energy-saving regimes: sit-and-wait strategists in arthropods, poikilotherms surviving anoxia, hibernating mammals. These observations suggest a size-independent value around which the mass-specific metabolic rates vary bounded by universal upper and lower limits in all body size intervals.  相似文献   

4.
Animal body size often varies systematically along latitudinal gradients, where individuals are either larger or smaller with varying season length. This study examines ecotypic responses by the generalist grasshopper Melanoplus femurrubrum (Orthoptera: Acrididae) in body size and covarying, physiologically based life history traits along a latitudinal gradient with respect to seasonality and energetics. The latitudinal compensation hypothesis predicts that smaller body size occurs in colder sites when populations must compensate for time constraints due to short seasons. Shorter season length requires faster developmental and growth rates to complete life cycles in one season. Using a common garden experimental design under laboratory conditions, we examined how grasshopper body size, consumption, developmental time, growth rate and metabolism varied among populations collected along an extended latitudinal gradient. When reared at the same temperature in the lab, individuals from northern populations were smaller, developed more rapidly, and showed higher growth rates, as expected for adaptations to shorter and generally cooler growing seasons. Temperature-dependent, whole organism metabolic rate scaled positively with body size and was lower at northern sites, but mass-specific standard metabolic rate did not differ among sites. Total food consumption varied positively with body size, but northern populations exhibited a higher mass-specific consumption rate. Overall, compensatory life history responses corresponded with key predictions of the latitudinal compensation hypothesis in response to season length.  相似文献   

5.
The outcome of sperm competition is influenced by the relative quantity and quality of sperm among competing ejaculates. Whereas it is well established that individual ejaculate traits evolve rapidly under postcopulatory sexual selection, little is known about other factors that might influence the evolution of ejaculates. For example, the metabolic rate is likely to affect the sperm production rate and the cellular activity or metabolism of sperm, and it has recently been suggested to constrain the evolution of sperm length in large but not small mammals. I thus examined in eutherian mammals how ejaculate quality traits vary with one another and with testis mass, body size, and metabolism. I found all ejaculate traits to covary positively with one another and to increase with relative testis mass. When controlling for testis mass, small‐bodied species showed superior sperm quality (but not sperm number). Furthermore, sperm motility and viability were positively associated with the mass‐corrected metabolic rate, but the percentage of morphologically normal and acrosome‐intact sperm were not. These results indicate that body size and the energy budget may also influence the evolution of ejaculate quality, although these influences appear to vary among traits.  相似文献   

6.
The allometric scaling of metabolic rate with organism body mass can be partially accounted for by differences in cellular metabolic rates. For example, hepatocytes isolated from horses consume almost 10-fold less oxygen per unit time as mouse hepatocytes [Porter and Brand, Am J Physiol Regul Integr Comp Physiol 269: R226-R228, 1995]. This could reflect a genetically programmed, species-specific, intrinsic metabolic rate set point, or simply the adaptation of individual cells to their particular in situ environment (i.e., within the organism). We studied cultured cell lines derived from 10 mammalian species with donor body masses ranging from 5 to 600,000 g to determine whether cells propagated in an identical environment (media) exhibited metabolic rate scaling. Neither metabolic rate nor the maximal activities of key enzymes of oxidative or anaerobic metabolism scaled significantly with donor body mass in cultured cells, indicating the absence of intrinsic, species-specific, cellular metabolic rate set points. Furthermore, we suggest that changes in the metabolic rates of isolated cells probably occur within 24 h and involve a reduction of cellular metabolism toward values observed in lower metabolic rate organisms. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms. To examine the effect of oxygen on steady-state cellular respiration rates, we grew cells under a variety of physiologically relevant oxygen regimens. Long-term exposure to higher medium oxygen levels increased respiration rates of all cells, consistent with the hypothesis that higher rates of oxygen delivery in smaller mammals might increase cellular metabolic rates.  相似文献   

7.
Metabolism is a defining feature of all living organisms, with the metabolic process resulting in the production of free radicals that can cause permanent damage to DNA and other molecules. Surprisingly, birds, bats and other organisms with high metabolic rates have some of the slowest rates of senescence begging the question whether species with high metabolic rates also have evolved mechanisms to cope with damage induced by metabolism. To test whether species with the highest metabolic rates also lived the longest I determined the relationship between relative longevity (maximum lifespan), after adjusting for annual adult survival rate, body mass and sampling effort, and mass-specific field metabolic rate (FMR) in 35 species of birds. There was a strongly positive relationship between relative longevity and FMR, consistent with the hypothesis. This conclusion was robust to statistical control for effects of potentially confounding variables such as age at first reproduction, latitude and migration distance, and similarity in phenotype among species because of common phylogenetic descent. Therefore, species of birds with high metabolic rates senesce more slowly than species with low metabolic rates.  相似文献   

8.
During the early development of avian nestlings, their mass-specific resting metabolic rate (RMR) changes in a biphasic pattern with the peak value often being much higher than that expected for an adult bird of similar body mass. In the present study we examined the possible influence of variations in the size of internal organs in “setting” the high RMR and peak metabolic rate (PMR) during development in a large altricial species, the European shag (Phalacrocorax aristotelis). Thermoneutral RMR and cold-exposure induced PMR were measured in nestlings 15 days old, the age at which the highest RMR occurred during development. Body mass averaged 414 g. Mean values of RMR and PMR were 5.75 W and 9.08 W, respectively; the RMR value corresponds to approximately 250% of the expected value for an adult non-passerine bird of similar body mass. The masses of all the organs measured (breast and leg muscles, heart, liver, intestine, and kidney) varied isometrically with total body mass. However, large chicks had a significantly lower fractional water content than small chicks, suggesting that the former had achieved a higher level of functional maturity. In contrast to what has been suggested for adult birds in general, the heart and kidney masses of shag nestlings were not significantly correlated with the metabolic rates. The intestine length, in contrast, was highly and positively correlated with both the RMR and the PMR, i.e. intestine length was a better predictor of RMR and PMR than was total body mass. In addition, liver mass was positively correlated with RMR. The results of the present study suggest that the liver in particular may play a key role in establishing the high, mass-specific RMR which is attained during development in bird chicks. Our results also support previous suggestions that early in their development, altricial chicks mainly allocate energy to the growth of `energy-processing' organs (such as the intestine and liver) rather than to `energy-consuming' organs. Accepted: 3 March 1999  相似文献   

9.
Basic assumptions of two distributive network models designed to explain the 3/4 power scaling between metabolic rate and body mass are re-analysed. It is shown that these models could have consistently accounted for the observed scaling patterns if and only if body mass M had scaled as L4, where L is body length, in the model of Banavar et al. (1999, Nature 399, 130-132), or if spatial volume VF occupied by the distributive network had scaled as M3/4 in the model of West et al. (1997, Science 276, 122-126). Lack of agreement between these predictions and observational evidence invalidates both models rendering them mathematically controversial. It is further shown that consideration of distributive networks can nevertheless yield realistic values of scaling exponents under the major assumption that living organisms are designed so as to keep the mass-specific metabolic rate of important functional tissues in the vicinity of a size-independent optimum value. Mass-specific metabolic rate of subsidiary mechanical tissues can be small and vary with body mass. Different patterns of spatial distribution of metabolically active biomass within the organism result in different patterns of allometric scaling. From the available evidence the presumable optimum value of mass-specific metabolic rate of living matter is estimated to be in the vicinity of 1-10 W kg-1.  相似文献   

10.
Fish cover a large size range, from milligrams to tonnes, and many of them are regularly exposed to large variations in ambient oxygen levels. For more than half a century, there have been various, often divergent, claims regarding the effect of body size on hypoxia tolerance in fish. Here, we attempt to link old and new empirical data with the current understanding of the physiological mechanisms behind hypoxia tolerance. Three main conclusions are drawn: (1) body size per se has little or no impact on the ability to take up oxygen during hypoxic conditions, primarily because the respiratory surface area matches metabolic rate over a wide size range. If size-related differences are seen in the ability for oxygen uptake in a species, these are likely to reflect adaptation to different life-styles or habitat choice. (2) During severe hypoxia and anoxia, where fish have to rely on anaerobic ATP production (glycolysis) for survival, large individuals have a clear advantage over smaller ones, because small fish will run out of glycogen or reach lethal levels of anaerobic end-products (lactate and H(+)) much faster due to their higher mass-specific metabolic rate. (3) Those fish species that have evolved extreme adaptations to hypoxia, including haemoglobins with exceptionally high oxygen affinities and an alternative anaerobic end-product (ethanol), reveal that natural selection can be a much more powerful determinant of hypoxia tolerance than scaling of physiological functions.  相似文献   

11.
The development of thermoregulation was studied in turkeys (Meleagris gallopavo, 60.5 g) and guinea fowl (Numida meleagris, 33.5 g) from 2 to 24 h after hatching. Thermoregulation was measured at different ages during 1 h of cold exposure (20°C). Final body temperature rose linearly with age in turkeys, but reached a plateau in guinea fowl between 12 and 16 h. At 2 h after hatch final body temperature was highest in guinea fowl, while at 24 h after hatch there was no difference between the species. The development of mass-specific metabolic rate with age resembled the pattern of final body temperature. At 2 h post-hatch mass-specific metabolic rate was highest in guinea fowl; however, at 24 h post-hatch there was no difference between the species. since mass-specific metabolic rate reached a plateau in guinea fowl at 16 h. In turkeys mass-specific dry thermal conductance decreased with age initially, while in guinea fowl it remained stable. Nevertheless, at both 2 and 24 h after hatch mass-specific wet conductance did not differ significantly between the species. In turkeys mass-specific wet conductance increased initially. This increase in mass-specific wet conductance may be due to the rapid onset of feather growth in turkeys. The O2 consumption per breath doubled during the first 24 h in turkeys but remained stable in guine fowl. This suggests that at least two different developmental patterns of O2 intake exist within Galliformes. The results show that 2 h post-hatch the thermoregulatory ability was lowest in turkeys, despite their larger body mass. However, at 24 h post-hatch the difference between the species was not significant, because the thermoregulatory ability had increased more in turkeys.Abbreviations B f breathing frequency - BM body mass - BMR basal metabolic rate - C D mass-specific dry thermal conductance - C w mass-specific wet thermal conductance - HI homeothermy index - H E evaporative heat loss - H B loss of stored body heat - MR metabolic rate - M MS mass-specific metabolic rate - RH relative humidity - I A ambient temperature - T Bi initial body temperature - T Bf final body temperature - VO2 volume oxygen consumed - VCO2 volume carbon dioxide produced  相似文献   

12.
The mechanisms dictating upper limits to animal body size are not well understood. We have analysed body length data for the largest representatives of 24 taxa of terrestrial poikilotherms from tropical, temperate and polar environments. We find that poikilothermic giants on land become two-three times shorter per each 10 degrees of decrease in ambient temperature. We quantify that this diminution of maximum body size accurately compensates the drop of metabolic rate dictated by lower temperature. This supports the idea that the upper limit to body size within each taxon can be set by a temperature-independent critical minimum value of mass-specific metabolic rate, a fall below which is not compatible with successful biological performance.  相似文献   

13.
Sperm mobility is known to be an important determinant of a male's sperm competitive ability. Although more debated, sperm length and its relation to sperm swimming ability has also been proposed to determine a male's fertilisation potential. Furthermore, both mobility and length may covary with a male's phenotype, either positively (the phenotype‐linked fertility hypothesis) or negatively if, for instance, low‐quality males have less access to females but invest more in sperm production. Using dummy females, we collected sperm samples from wild sand martins Riparia raparia males. We investigated the relationship between sperm length and sperm swimming speed as measured by sperm straight line velocity (VSL), and determined whether sperm traits are correlated with male body size and condition. We found that total sperm length is repeatable within‐ejaculate and shows substantial inter‐male variation. Sperm length was associated with sperm velocity: males with short sperm have sperm that swim initially faster but die sooner, whereas males with longer sperm have sperm that swim more slowly but for a longer time. Smaller males produced sperm with higher overall velocity. This correlation between male size and sperm behaviour may reflect alternative fertilisation strategies where small males having less mating opportunities invest more in sperm competitive ability. The existence of such alternative strategies would participate in maintaining variation in sperm length and velocity in this species.  相似文献   

14.
Sperm morphology (size and shape) and sperm velocity are both positively associated with fertilization success, and are expected to be under strong selection. Until recently, evidence for a link between sperm morphology and velocity was lacking, but recent comparative studies have shown that species with high levels of sperm competition have evolved long and fast sperm. It is therefore surprising that evidence for a phenotypic or genetic relationship between length and velocity within species is equivocal, even though sperm competition is played out in the intraspecific arena. Here, we first show that sperm velocity is positively phenotypically correlated with measures of sperm length in the zebra finch Taeniopygia guttata . Second, by using the quantitative genetic "animal model" on a dataset from a multigenerational-pedigreed population, we show that sperm velocity is heritable, and positively genetically correlated to a number of heritable components of sperm length. Therefore, selection for faster sperm will simultaneously lead to the evolution of longer sperm (and vice versa). Our results provide, for the first time, a clear phenotypic and genetic link between sperm length and velocity, which has broad implications for understanding how recently described macroevolutionary patterns in sperm traits have evolved.  相似文献   

15.
The study of which life history traits primarily affect molecular evolutionary rates is often confounded by the covariance of these traits. Scombroid fishes (billfishes, tunas, barracudas, and their relatives) are unusual in that their mass-specific metabolic rate is positively associated with body size. This study exploits this atypical pattern of trait variation, which allows for direct tests of whether mass-specific metabolic rate or body size is the more important factor of molecular evolutionary rates. We inferred a phylogeny for scombroids from a supermatrix of molecular and morphological characters and used new phylogenetic comparative approaches to assess the associations of body size and mass-specific metabolic rate with substitution rate. As predicted by the body size hypothesis, there is a negative correlation between body size and substitution rate. However, unexpectedly, we also find a negative association between mass-specific metabolic and substitution rates. These relationships are supported by analyses of the total molecular data, separate mitochondrial and nuclear genes, and individual loci, and they are robust to phylogenetic uncertainty. The molecular evolutionary rates of scombroids are primarily tied to body size. This study demonstrates that groups with novel patterns of trait variation can be particularly informative for identifying which life history traits are the primary factors of molecular evolutionary rates.  相似文献   

16.
Within mammalian species, standard metabolic rate (SMR) increases disproportionately with body mass (Mb), such that the mass-specific SMR correlates negatively with Mb. This phenomenon can be explained in part by reduced cellular metabolic rates in larger species. To better understand the cause(s) of this cellular metabolic rate allometry we have used an ex vivo approach to isolate and identify potential contributors. Skeletal myoblasts from mammalian species ranging inMb from 30 g to over 300,000 g were isolated and differentiated into myotubes in vitro. Oxygen consumption rates, citrate synthase (CS) activity, and lactate dehydrogenase (LDH) activity were measured in myotubes under standardized conditions. No correlation of any of these parameters was observedwith speciesMb, suggesting that there is no genetic contribution to between-species differences in cellular metabolic rates. Myotubes were incubated in serum from species ranging from 30 g to 400,000 g to determine whether between-species differences in the levels of metabolically important hormones might produce allometric trends in the cultured cells. However, there was no observed effect of serum donor Mb on any of the metabolic characteristicsmeasured. Thus, there is no evidence for a relationship between skeletal muscle oxidative metabolism and Mb in an ex vivo model.  相似文献   

17.
Mouse sperm produce enough ATP to sustain motility by anaerobic glycolysis and respiration. However, previous studies indicated that an active glycolytic pathway is required to achieve normal sperm function and identified glycolysis as the main source of ATP to fuel the motility of mouse sperm. All the available evidence has been gathered from the studies performed using the laboratory mouse. However, comparative studies of closely related mouse species have revealed a wide range of variation in sperm motility and ATP production and that the laboratory mouse has comparatively low values in these traits. In this study, we compared the relative reliance on the usage of glycolysis or oxidative phosphorylation as ATP sources for sperm motility between mouse species that exhibit significantly different sperm performance parameters. We found that the sperm of species with higher oxygen consumption/lactate excretion rate ratios were able to produce higher amounts of ATP, achieving higher swimming velocities. Additionally, we show that the species with higher respiration/glycolysis ratios have a higher degree of dependence upon active oxidative phosphorylation. Moreover, we characterize for the first time two mouse species in which sperm depend on functional oxidative phosphorylation to achieve normal performance. Finally, we discuss that sexual selection could promote adaptations in sperm energetic metabolism tending to increase the usage of a more efficient pathway for the generation of ATP (and faster sperm).  相似文献   

18.
Postcopulatory sexual selection is widely accepted to underlie the extraordinary diversification of sperm morphology. However, why does it favour longer sperm in some taxa but shorter in others? Two recent hypotheses addressing this discrepancy offered contradictory explanations. Under the sperm dilution hypothesis, selection via sperm density in the female reproductive tract favours more but smaller sperm in large, but the reverse in small, species. Conversely, the metabolic constraint hypothesis maintains that ejaculates respond positively to selection in small endothermic animals with high metabolic rates, whereas low metabolic rates constrain their evolution in large species. Here, we resolve this debate by capitalizing on the substantial variation in mammalian body size and reproductive physiology. Evolutionary responses shifted from sperm length to number with increasing mammalian body size, thus supporting the sperm dilution hypothesis. Our findings demonstrate that body-size-mediated trade-offs between sperm size and number can explain the extreme diversification in sperm phenotypes.  相似文献   

19.
Females of internally fertilizing species can significantly extend sperm lifespan and functionality during sperm storage. The mechanisms for such delayed cellular senescence remain unknown. Here, we apply current hypotheses of cellular senescence developed for diploid cells to sperm cells, and empirically test opposing predictions on the relationship between sperm metabolic rate and oxygen radical production in an insect model, the cricket Gryllus bimaculatus. Using time-resolved microfluorimetry, we found a negative correlation between metabolic rate (proportion of protein-bound NAD[P]H) and in situ intracellular oxygen radicals production in freshly ejaculated sperm. In contrast, sperm stored by females for periods of 1 h to 26 days showed a positive correlation between metabolic rate and oxygen radicals production. At the same time, stored sperm showed a 37 per cent reduced metabolic rate, and 42 per cent reduced reactive oxygen species (ROS) production, compared with freshly ejaculated sperm. Rank differences between males in ROS production and metabolic rate observed in ejaculated sperm did not predict rank differences in stored sperm. Our method of simultaneously measuring ROS production and metabolic rate of the same sample has the advantage of providing data that are independent of sperm density and any extracellular antioxidants that are proteins. Our method also excludes effects owing to accumulated hydrogen peroxide. Our results unify aspects of competing theories of cellular ageing and suggest that reducing metabolic rate may be an important means of extending stored sperm lifespan and functionality in crickets. Our data also provide a possible explanation for why traits of ejaculates sampled from the male may be rather poor predictors of paternity in sexual selection studies and likelihood of pregnancy in reproductive medicine.  相似文献   

20.
Daphnids were reared for 2 weeks in different concentrations of food or cadmium, and growth and reproduction were measured as endpoints. At the end of the 14-day experimental period, scope for growth (SFG) was measured and expressed per individual (mJ/ind/h=absolute SFG) and per mg dry weight (mJ/mg/h=mass-specific SFG). Both food deprivation and cadmium stress decreased body size, and absolute SFG decreased with decreasing body size in both exposure scenarios. Also mass-specific SFG decreased with decreasing body size under cadmium exposure, but an increase in mass-specific SFG was observed in the food ration experiment. This suggested that cadmium stress, apart from decreasing energy assimilation, also disturbs energy metabolism. Changes in both absolute and mass-specific SFG were mainly determined by changes in energy uptake, whereas energy loss varied little in response to both environmental stressors. With the cadmium-stressed daphnids, reproduction correlated positively with both absolute and mass-specific SFG. With the food-stressed daphnids however, reproduction correlated positively with absolute SFG but negatively with mass-specific SFG. Mass-corrected SFG still decreased with increasing cadmium stress, but did not differ between ration groups. Thus, mass-corrected SFG provides an indication of metabolic functioning, but appears less suited as an indicator of reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号