首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
DNA barcoding with the mitochondrial COI gene reveals distinct haplotype subgroups within the monophyletic and parthenogenetic nematode species, Mesocriconema xenoplax. Biological attributes of these haplotype groups (HG) have not been explored. An analysis of M. xenoplax from 40 North American sites representing both native plant communities and agroecosystems was conducted to identify possible subgroup associations with ecological, physiological, or geographic factors. A dataset of 132 M. xenoplax specimens was used to generate sequences of a 712 bp region of the cytochrome oxidase subunit I gene. Maximum-likelihood and Bayesian phylogenies recognized seven COI HG (≥99/0.99 posterior probability/bootstrap value). Species delimitation metrics largely supported the genetic integrity of the HG. Discriminant function analysis of HG morphological traits identified stylet length, total body length, and stylet knob width as the strongest distinguishing features among the seven groups, with stylet length as the strongest single distinguishing morphological feature. Multivariate analysis identified land cover, ecoregion, and maximum temperature as predictors of 53.6% of the total variation (P = 0.001). Within land cover, HG categorized under “herbaceous,” “woody wetlands,” and “deciduous forest” were distinct in DAPC and RDA analyses and were significantly different (analysis of molecular variance P = 0.001). These results provide empirical evidence for molecular, morphological, and ecological differentiation associated with HG within the monophyletic clade that represents the species Mesocriconema xenoplax.  相似文献   

2.
We investigated the diversity of methane-oxidizing bacteria (i.e., methanotrophs) in an annual upland grassland in northern California, using comparative sequence analysis of the pmoA gene. In addition to identifying type II methanotrophs commonly found in soils, we discovered three novel pmoA lineages for which no cultivated members have been previously reported. These novel pmoA clades clustered together either with clone sequences related to “RA 14” or “WB5FH-A,” which both represent clusters of environmentally retrieved sequences of putative atmospheric methane oxidizers. Conservation of amino acid residues and rates of nonsynonymous versus synonymous nucleotide substitution in these novel lineages suggests that the pmoA genes in these clades code for functionally active methane monooxygenases. The novel clades responded to simulated global changes differently than the type II methanotrophs. We observed that the relative abundance of type II methanotrophs declined in response to increased precipitation and increased atmospheric temperature, with a significant antagonistic interaction between these factors such that the effect of both together was less than that expected from their individual effects. Two of the novel clades were not observed to respond significantly to these environmental changes, while one of the novel clades had an opposite response, increasing in relative abundance in response to increased precipitation and atmospheric temperature, with a significant antagonistic interaction between these factors.  相似文献   

3.
Sex is evolutionarily more costly than parthenogenesis, evolutionary ecologists therefore wonder why sex is much more frequent than parthenogenesis in the majority of animal lineages. Intriguingly, parthenogenetic individuals and species are as common as or even more common than sexuals in some major and putative ancient animal lineages such as oribatid mites and rotifers. Here, we analyzed oribatid mites (Acari: Oribatida) as a model group because these mites are ancient (early Paleozoic), widely distributed around the globe, and include a high number of parthenogenetic species, which often co‐exist with sexual oribatid mite species. There is evidence that the reproductive mode is phylogenetically conserved in oribatid mites, which makes them an ideal model to test hypotheses on the relationship between reproductive mode and species'' ecological strategies. We used oribatid mites to test the frozen niche variation hypothesis; we hypothesized that parthenogenetic oribatid mites occupy narrow specialized ecological niches. We used the geographic range of species as a proxy for specialization as specialized species typically do have narrower geographic ranges than generalistic species. After correcting for phylogenetic signal in reproductive mode and demonstrating that geographic range size has no phylogenetic signal, we found that parthenogenetic lineages have a higher probability to have broader geographic ranges than sexual species arguing against the frozen niche variation hypothesis. Rather, the results suggest that parthenogenetic oribatid mite species are more generalistic than sexual species supporting the general‐purpose genotype hypothesis. The reason why parthenogenetic oribatid mite species are generalists with wide geographic range sizes might be that they are of ancient origin reflecting that they adapted to varying environmental conditions during evolutionary history. Overall, our findings indicate that parthenogenetic oribatid mite species possess a widely adapted general‐purpose genotype and therefore might be viewed as “Jack‐of‐all‐trades.”  相似文献   

4.
Divergence in song between allopatric populations can contribute to premating reproductive isolation in territorial birds. Song divergence is typically measured by quantifying divergence in vocal traits using audio recordings, but field playback experiments provide a more direct way to behaviorally measure song divergence between allopatric populations. The White-breasted Wood-Wren (Henicorhina leucosticta; hereafter “WBWW”) is an abundant Neotropical species with four mitochondrial clades (in Central America, the Darién, the Chocó and the Amazon) that are deeply divergent (~5–16% sequence divergence). We assessed the possibility that the WBWW as currently defined may represent multiple biological species by conducting both statistical analysis of vocal characters and field playback experiments within three clades (Central America, Chocó and Amazon). Our analysis of vocal traits revealed that Central American songs overlapped in acoustic space with Chocó songs, indicating vocal similarity between these two populations, but that Central American songs were largely divergent from Amazonian songs. Playback experiments in the Caribbean lowlands of Costa Rica revealed that Central American WBWWs typically responded aggressively to songs from the Chocó population but did not respond to playback of songs from the Amazonian population, echoing the results of the vocal trait analysis. This marked difference in behavioral response demonstrates that the songs of Central American and Amazonian WBWWs (but not Central American and Chocó WBWWs) have diverged sufficiently that Central American WBWWs no longer recognize song from Amazonian WBWWs as a signal to elicit territorial defense. This suggests that significant premating reproductive isolation has evolved between these two populations, at least from the perspective of the Central American population, and is consistent with the possibility that Central American and Amazonian populations represent distinct biological species. We conclude by advocating for the further use of field playback experiments to assess premating reproductive isolation (and species limits) between allopatric songbird populations, a situation where behavioral systematics can answer questions that phylogenetic systematics cannot.  相似文献   

5.
Natural selection and sexual selection are cardinal factors in shaping the body of animals such as scorpions. Scorpio maurus (Scorpiones: Scorpionidae) has a worldwide distribution. Sexual dimorphism has been reported from this species in a study in Egypt. Morphometry is used to determine the sexual dimorphism between the two sexes. In the current study, scorpions were collected from six locations of the southern and northern provinces of Fars, Iran. In this study, 53 morphological characters of 15 specimens of each sex of Scorpio maurus were studied based on statistical analyses; however, dimorphism was only observed in 21 morphological characters, including chelicerae and carapace length, pedipalp characters, width of the second segment of metasoma, telson and pectin length, number of left pectin teeth, and some of the leg''s segments. It means that these characters are in the control of sexual and natural selection. This study was performed for the first time on Scorpio maurus species in Iran.  相似文献   

6.
The gram-negative bacterium Haemophilus influenzae is a human-restricted commensal of the nasopharynx that can also be associated with disease. The majority of H. influenzae respiratory isolates lack the genes for capsule production and are nontypeable (NTHI). Whereas encapsulated strains are known to belong to serotype-specific phylogenetic groups, the structure of the NTHI population has not been previously described. A total of 656 H. influenzae strains, including 322 NTHI strains, have been typed by multilocus sequence typing and found to have 359 sequence types (ST). We performed maximum-parsimony analysis of the 359 sequences and calculated the majority-rule consensus of 4,545 resulting equally most parsimonious trees. Eleven clades were identified, consisting of six or more ST on a branch that was present in 100% of trees. Two additional clades were defined by branches present in 91% and 82% of trees, respectively. Of these 13 clades, 8 consisted predominantly of NTHI strains, three were serotype specific, and 2 contained distinct NTHI-specific and serotype-specific clusters of strains. Sixty percent of NTHI strains have ST within one of the 13 clades, and eBURST analysis identified an additional phylogenetic group that contained 20% of NTHI strains. There was concordant clustering of certain metabolic reactions and putative virulence loci but not of disease source or geographic origin. We conclude that well-defined phylogenetic groups of NTHI strains exist and that these groups differ in genetic content. These observations will provide a framework for further study of the effect of genetic diversity on the interaction of NTHI with the host.  相似文献   

7.
The yeast species Saccharomyces bayanus and Saccharomyces pastorianus are of industrial importance since they are involved in the production process of common beverages such as wine and lager beer; however, they contain strains whose variability has been neither fully investigated nor exploited in genetic improvement programs. We evaluated this variability by using PCR-restriction fragment length polymorphism analysis of 48 genes and partial sequences of 16. Within these two species, we identified “pure” strains containing a single type of genome and “hybrid” strains that contained portions of the genomes from the “pure” lines, as well as alleles termed “Lager” that represent a third genome commonly associated with lager brewing strains. The two pure lines represent S. uvarum and S. bayanus, the latter a novel group of strains that may be of use in strain improvement programs. Hybrid lines identified include (i) S. cerevisiae/S. bayanus/Lager, (ii) S. bayanus/S. uvarum/Lager, and (iii) S. cerevisiae/S. bayanus/S. uvarum/Lager. The genome of the lager strains may have resulted from chromosomal loss, replacement, or rearrangement within the hybrid genetic lines. This study identifies brewing strains that could be used as novel genetic sources in strain improvement programs and provides data that can be used to generate a model of how naturally occurring and industrial hybrid strains may have evolved.  相似文献   

8.
To investigate the fine-scale diversity of the polyphosphate-accumulating organisms (PAO) “Candidatus Accumulibacter phosphatis” (henceforth referred to as “Ca. Accumulibacter”), two laboratory-scale sequencing batch reactors (SBRs) for enhanced biological phosphorus removal (EBPR) were operated with sodium acetate as the sole carbon source. During SBR operations, activated sludge always contained morphologically different “Ca. Accumulibacter” strains showing typical EBPR performances, as confirmed by the combined technique of fluorescence in situ hybridization (FISH) and microautoradiography (MAR). Fragments of “Ca. Accumulibacter” 16S rRNA genes were retrieved from the sludge. Phylogenetic analyses together with sequences from the GenBank database showed that “Ca. Accumulibacter” 16S rRNA genes of the EBPR sludge were clearly differentiated into four “Ca. Accumulibacter” clades, Acc-SG1, Acc-SG2, Acc-SG3, and Acc-SG4. The specific FISH probes Acc444, Acc184, Acc72, and Acc119 targeting these clades and some helpers and competitors were designed by using the ARB program. Microbial characterization by FISH analysis using specific FISH probes also clearly indicated the presence of different “Ca. Accumulibacter” cell morphotypes. Especially, members of Acc-SG3, targeted by probe Acc72, were coccobacillus-shaped cells with a size of approximately 2 to 3 μm, while members of Acc-SG1, Acc-SG2, and Acc-SG4, targeted by Acc444, Acc184, and Acc119, respectively, were coccus-shaped cells approximately 1 μm in size. Subsequently, cells targeted by each FISH probe were sorted by use of a flow cytometer, and their polyphosphate kinase 1 (ppk1) gene homologs were amplified by using a ppk1-specific PCR primer set for “Ca. Accumulibacter.” The phylogenetic tree based on sequences of the ppk1 gene homologs was basically congruent with that of the 16S rRNA genes, but members of Acc-SG3 with a distinct morphology comprised two different ppk1 genes. These results suggest that “Ca. Accumulibacter” strains may be diverse physiologically and ecologically and represent distinct populations with genetically determined adaptations in EBPR systems.Enhanced biological phosphorus removal (EBPR) has been applied in many wastewater treatment plants to reduce the phosphorus that causes eutrophication in surface waters. EBPR employs polyphosphate-accumulating organisms (PAOs), which are enriched through alternating aerobic-anaerobic cycles (34). Since PAOs are essential for an understanding of EBPR, many candidates have been proposed as potential PAOs, such as Acinetobacter spp. (11), Tetrasphaera spp. (31), Microlunatus phosphovorus (36), Lampropedia spp. (40), and Gram-positive Actinobacteria (24). However, those organisms do not exhibit all of the characteristics of the EBPR biochemistry model. Recently developed culture-independent approaches such as PCR-clone libraries, fluorescence in situ hybridization (FISH), and microautoradiography (MAR) have highlighted an uncultured Rhodocyclus-related bacterium, “Candidatus Accumulibacter phosphatis” (henceforth referred to as “Ca. Accumulibacter”), as one of the most important PAO candidates (2, 5, 16, 22, 23, 27, 28, 47).Numerous studies have sought to investigate uncultured “Ca. Accumulibacter” and have shown the presence of genetically and physiologically different members with a global geographic distribution (3, 9, 22, 27, 39). For example, Kong et al. (22) identified two morphologically different “Ca. Accumulibacter” cells of small cocci and large coccobacilli labeled with PAOmix (PAO462, PAO651, and PAO846) in laboratory-scale EBPR reactors. Additional results showing phenotypic and morphological diversities of “Ca. Accumulibacter” cells also existed with respect to the different roles of denitrifying PAO (DPAO) in the EBPR process (3, 9, 23). Carvalho et al. (3) detected two different morphotypes of “Ca. Accumulibacter” with different nitrate reduction capabilities. The presence of other “Ca. Accumulibacter” strains with 15% genome sequence divergence from the dominant strains in metagenomic analyses is likely to explain these morphological and phenotypic differences (12). McMahon et al. (33) suggested the use of the polyphosphate kinase (ppk) gene, which is involved in the production of polyphosphate, for a finer elucidation of “Ca. Accumulibacter” diversity. He et al. (15) grouped “Ca. Accumulibacter” strains into five distinct clades, designated clades I, IIA, IIB, IIC, and IID, using ppk gene sequence information. Flowers and colleagues (9) previously reported that “Ca. Accumulibacter” cells of clade IA had nitrate reduction activity with phosphorus uptake but that “Ca. Accumulibacter” cells of clade IIA did not.FISH-fluorescence activated cell sorting (FACS) techniques have been used for the separation of specific microbial cells from complex microbial consortia and their metabolic gene analysis (14, 46). For example, Miyauchi et al. (35) sorted PAOmix probe-labeled “Ca. Accumulibacter” cells from EBPR sludge and analyzed their nitrite reductase gene (nirS) diversity. In the current study, we found that four different “Ca. Accumulibacter” clades (Acc-SG1, Acc-SG2, Acc-SG3, and Acc-SG4) were present in the EBPR sludge of laboratory-scale reactors supplied with acetate as the sole carbon source. We analyzed their morphological characteristics and ppk gene sequence information using a suite of FISH and FACS approaches and linked fine-scale phylogenetic diversities of “Ca. Accumulibacter” strains with their morphological characteristics and metabolic genes. This study will be useful for further genetic and physiological studies of different “Ca. Accumulibacter” clades.  相似文献   

9.
We investigated the fine-scale population structure of the “Candidatus Accumulibacter” lineage in enhanced biological phosphorus removal (EBPR) systems using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. We retrieved fragments of “Candidatus Accumulibacter” 16S rRNA and ppk1 genes from one laboratory-scale and several full-scale EBPR systems. Phylogenies reconstructed using 16S rRNA genes and ppk1 were largely congruent, with ppk1 granting higher phylogenetic resolution and clearer tree topology and thus serving as a better genetic marker than 16S rRNA for revealing population structure within the “Candidatus Accumulibacter” lineage. Sequences from at least five clades of “Candidatus Accumulibacter” were recovered by ppk1-targeted PCR, and subsequently, specific primer sets were designed to target the ppk1 gene for each clade. Quantitative real-time PCR (qPCR) assays using “Candidatus Accumulibacter”-specific 16S rRNA and “Candidatus Accumulibacter” clade-specific ppk1 primers were developed and conducted on three laboratory-scale and nine full-scale EBPR samples and two full-scale non-EBPR samples to determine the abundance of the total “Candidatus Accumulibacter” lineage and the relative distributions and abundances of the five “Candidatus Accumulibacter” clades. The qPCR-based estimation of the total “Candidatus Accumulibacter” fraction as a proportion of the bacterial community as measured using 16S rRNA genes was not significantly different from the estimation measured using ppk1, demonstrating the power of ppk1 as a genetic marker for detection of all currently defined “Candidatus Accumulibacter” clades. The relative distributions of “Candidatus Accumulibacter” clades varied among different EBPR systems and also temporally within a system. Our results suggest that the “Candidatus Accumulibacter” lineage is more diverse than previously realized and that different clades within the lineage are ecologically distinct.  相似文献   

10.
Crustaceans that initially colonize a freshwater temporary pond can strongly bias the subsequent genetic composition of the population, causing nearby populations to be genetically distinct. In addition, these crustaceans have various reproductive modes that can influence genetic differentiation and diversity within and between populations. We report on two species of tadpole shrimp, Triops newberryi and Triops longicaudatus “short”, with different reproductive modes. Reproduction in the tadpole shrimp can occur clonally (parthenogenesis), with self fertilization (hermaphroditism), or through outcrossing of hermaphrodites with males (androdioecy). For all these reproductive modes, population genetic theory predicts decreased genetic diversity and increased population differentiation. Here we use mitochondrial control region (mtCR) sequences and nuclear microsatellite loci to determine if the difference in reproductive mode affects the high genetic structure typical of persistent founder effects. Previous authors indicated that T. newberryi is androdioecious because populations are composed of hermaphrodites and males, and T. longicaudatus “short” is hermaphroditic or parthenogenetic because males are absent. In our data, T. newberryi and T. longicaudatus “short” populations were highly structured genetically over short geographic distances for mtCR sequences and microsatellite loci (T. newberryi: ΦST = 0.644, F ST = 0.252, respectively; T. l. “short”: invariant mtCR sequences, F ST = 0.600). Differences between the two Triops species in a number of diversity measures were generally consistent with expectations from population genetic theory regarding reproductive mode; however, three of four comparisons were not statistically significant. We conclude the high genetic differentiation between populations is likely due to founder effects and results suggest both species are composed of selfing hermaphrodites with some level of outcrossing; the presence of males in T. newberryi does not appreciably reduce inbreeding. We cannot exclude the possibility that males in T. newberryi are non-reproductive individuals and the two species have the same mating system.  相似文献   

11.
To characterize the denitrifying phosphorus (P) uptake properties of “Candidatus Accumulibacter phosphatis,” a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of “Ca. Accumulibacter” and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescence in situ hybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized “Ca. Accumulibacter” subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas [from 1.2% to 19.2%] and “Candidatus Competibacter phosphatis” [from 16.4% to 20.0%]), while the overall “Ca. Accumulibacter” abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the “Ca. Accumulibacter” clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all “Ca. Accumulibacter” clades successfully took up phosphorus in the presence of nitrate. However, the “Ca. Accumulibacter” clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by “Ca. Accumulibacter” clades occurred when nitrite was added. These results suggest that the “Ca. Accumulibacter” cells lack nitrate reduction capabilities and that P uptake by “Ca. Accumulibacter” is dependent upon nitrite generated by associated nitrate-reducing bacteria such as Dechloromonas and “Ca. Competibacter.”  相似文献   

12.
The rise of molecular techniques in the study of evolutionary histories has resulted in a gradual abandonment of morphological characters as the only sources of phylogenetic inference. However, morphological characters may be valuable for phylogenetic reconstruction, especially for tracking adaptive changes across phylogeographic groups defined by genetic markers. We examined the discriminative power of morphological characters between four mitochondrial clades covering almost the entire distribution area of the smooth snake Coronella girondica in the Western Mediterranean. We detected three characters showing sexual dimorphism (relative tail length, number of ventral and of subcaudal scale counts) and, more interestingly, two characters (number of subcaudal and of dorsal rows) displaying interclade differences. Almost all C. girondica examined had 21 dorsal rows except those from a narrow coastal belt in the south-eastern Iberian Peninsula, which had 19 dorsal rows. The distribution of these specimens matches a mitochondrial clade that originated approximately 1.4–2.0 million years ago. Both of these morphological characters support a Betic lineage with a rather well-defined contact zone with the other Iberian lineage, which has been maintained even without the existence of current geographic barriers. The long-term survival of the Betic lineage throughout the Pleistocene climatic oscillations suggests a systematic revision within C. girondica.  相似文献   

13.
Mating type in the Gibberella fujikuroi species complex is controlled by a single locus with two alleles and is usually identified following sexual crosses with standard, female-fertile tester isolates. The mating type alleles have been arbitrarily designated “+” and “−” within each biological species, and the nomenclature is tied to the standard tester strains. We developed a pair of PCR primers that can be used to amplify a unique fragment of one of the mating type alleles (MAT-2) from at least seven of the biological species in this species complex. Based on the amplification pattern, we propose a replacement for the existing, arbitrary +/− terminology that is presently in use. The new terminology is based on DNA sequence similarities between the mating type allele fragments from the biological species of the G. fujikuroi species complex and the corresponding fragments from other filamentous ascomycetes.  相似文献   

14.
Species delimitation studies based on integrative taxonomic approaches have received considerable attention in the last few years, and have provided the strongest hypotheses of species boundaries. We used three lines of evidence (molecular, morphological, and niche envelopes) to test for species boundaries in Peruvian populations of the Liolaemus walkeri complex. Our results show that different lines of evidence and analyses are congruent in different combinations, for unambiguous delimitation of three lineages that were “hidden” within known species, and now deserve species status. Our phylogenetic analysis shows that L. walkeri, L. tacnae and the three new species are strongly separated from other species assigned to the alticolor-bibronii group. Few conventional morphological characters distinguish the new species from closely related taxa and this highlights the need to integrate other sources of data to erect strong hypothesis of species limits. A taxonomic key for known Peruvian species of the subgenus Lioalemus is provided.  相似文献   

15.
Transposable elements (TEs) are self-replicating “genetic parasites” ubiquitous to eukaryotic genomes. In addition to conflict between TEs and their host genomes, TEs of the same family are in competition with each other. They compete for the same genomic niches while experiencing the same regime of copy-number selection. This suggests that competition among TEs may favor the emergence of new variants that can outcompete their ancestral forms. To investigate the sequence evolution of TEs, we developed a method to infer clades: collections of TEs that share SNP variants and represent distinct TE family lineages. We applied this method to a panel of 85 Drosophila melanogaster genomes and found that the genetic variation of several TE families shows significant population structure that arises from the population-specific expansions of single clades. We used population genetic theory to classify these clades into younger versus older clades and found that younger clades are associated with a greater abundance of sense and antisense piRNAs per copy than older ones. Further, we find that the abundance of younger, but not older clades, is positively correlated with antisense piRNA production, suggesting a general pattern where hosts preferentially produce antisense piRNAs from recently active TE variants. Together these findings suggest a pattern whereby new TE variants arise by mutation and then increase in copy number, followed by the host producing antisense piRNAs that may be used to silence these emerging variants.  相似文献   

16.
Two new species of Pristionchus, P. lucani n. sp. and P. bulgaricus n. sp., are described from France and Bulgaria, respectively. Additionally, new morphological and morphometric data are provided for two previously described species from Europe, P. brevicauda (Kotlán, 1928) Paramonov, 1952 and P. clavus (von Linstow, 1901) Sudhaus and Fürst von Lieven, 2003. A phylogeny including these four species was inferred from a dataset including 26 ribosomal protein-coding genes, sequences of which are original for P. bulgaricus n. sp. and P. clavus. Relationships support a radiation of all sequenced European Pristionchus species from a single, gonochoristic common ancestor, and current knowledge of species ranges supports “western” and “eastern” clades. Similar diagnostic morphologies reflect the close relationships among the new and recharacterized species, especially P. bulgaricus n. sp., P. brevicauda, and P. clavus, although mating tests as well as genetic and phylogenetic separation support their identities as unique species. Our results show that Pristionchus species in Europe are more diverse than typological characters suggest, and thus biological and molecular profiling will be essential for future delimitation of Pristionchus species from the region.  相似文献   

17.
Historical climate changes and orogenesis are two important factors that have shaped intraspecific biodiversity patterns worldwide. Although southern South America has experienced such complex events, there is a paucity of studies examining the effects on intraspecific diversification in this part of the world. Liolaemus pictus is the southernmost distributed lizard in the Chilean temperate forest, whose genetic structure has likely been influenced by Pleistocene glaciations. We conducted a phylogeographic study of L. pictus in Chile and Argentina based on one mitochondrial and two nuclear genes recovering two strongly divergent groups, Northern and Southern clades. The first group is distributed from the northernmost limit of the species to the Araucanía region while the second group is distributed throughout the Andes and the Chiloé archipelago in Southern Chile. Our results suggest that L. pictus originated 751 Kya, with divergence between the two clades occurring in the late Pleistocene. Demographic reconstructions for the Northern and Southern clades indicate a decrease in effective population sizes likely associated with Pleistocene glaciations. Surprisingly, patterns of genetic variation, clades age and historical gene flow in populations distributed within the limits of the Last Glacial Maximum (LGM) are not explained by recent colonization. We propose an “intra-Andean multiple refuge” hypothesis, along with the classical refuge hypothesis previously proposed for the biota of the Chilean Coastal range and Eastern Andean Cordillera. Our hypothesis is supported by niche modelling analysis suggesting the persistence of fragments of suitable habitat for the species within the limits of the LGM ice shield. This type of refuge hypothesis is proposed for the first time for an ectothermic species.  相似文献   

18.
19.
The genetic diversity among a worldwide collection of 120 strains of Ralstonia solanacearum was assessed by restriction fragment length polymorphism (RFLP) analysis of amplified fragments from the hrp gene region. Five amplified fragments appeared to be specific to R. solanacearum. Fifteen different profiles were identified among the 120 bacterial strains, and a hierarchical cluster analysis distributed them into eight clusters. Each cluster included strains belonging to a single biovar, except for strains of biovars 3 and 4, which could not be separated. However, the biovar 1 strains showed rather extensive diversity since they were distributed into five clusters whereas the biovar 2 and the biovar 3 and 4 strains were gathered into one and two clusters, respectively. PCR-RFLP analysis of the hrp gene region confirmed the results of previous studies which split the species into an “Americanum” division including biovar 1 and 2 strains and an “Asiaticum” division including biovar 3 and 4 strains. However, the present study showed that most of the biovar 1 strains, originating from African countries (Reunion Island, Madagascar, Zimbabwe, and Angola) and being included in a separate cluster, belong to the “Asiaticum” rather than to the “Americanum” division. These African strains could thus have evolved separately from other biovar 1 strains originating from the Americas.  相似文献   

20.
The cosmopolitanism paradigm in the biogeography of freshwater invertebrates is currently being replaced by non-cosmopolitanism or continental endemism. Benthic water fleas (Cladocera) from the family Chydoridae were the first group of freshwater invertebrates for which non-cosmopolitanism and cryptic diversity was substantiated by morphological studies. Yet, little is known about genetic differentiation and evolutionary history of chydorid species complexes. Here we present the first analysis of the genetic versus morphological differentiation in a benthic cladoceran species complex—Chydorus sphaericus s. str. using sequence variation in a nuclear (ribosomal internal transcribed spacer 2, ITS-2) and a mitochondrial (cytochrome c oxidase subunit I, COI) genes in 50 Holarctic localities. We tested for continental endemism and cryptic diversity predicted by previous morphological studies. We found evidence for the presence of at least seven putative regional species in the Holarctic, at least three of them being distributed beyond a single continent. While the molecular and sexual stage characters showed general concordance on species lineages, parthenogenetic female characters lacked resolution or were unassociated with molecular lineages. We conclude that cryptic regional lineages of benthic cladocerans are apparent and that the sexual stages represent the most informative morphological source of species characters for this environmental indicator group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号