首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Salt is a severe abiotic stress causing soybean yield loss in saline soils and irrigated fields. Marker-assisted selection (MAS) is a powerful genomic tool for improving the efficiency of breeding salt-tolerant soybean varieties. The objectives of this study were to uncover novel single-nucleotide polymorphisms (SNPs) and quantitative trait loci (QTLs) associated with salt tolerance and to confirm the previously identified genomic regions and SNPs for salt tolerance. A total of 283 diverse soybean plant introductions (PIs) were screened for salt tolerance in the greenhouse based on leaf chloride concentrations and leaf chlorophyll concentrations after 12–18 days of 120-mM NaCl treatment. A total of 33,009 SNPs across 283 genotypes from the Illumina Infinium SoySNP50K BeadChip database were employed in the association analysis with leaf chloride concentrations and leaf chlorophyll concentrations. Genome-wide association mapping showed that 45 SNPs representing nine genomic regions on chromosomes (Chr.) 2, 3, 7, 8, 10, 13, 14, 16, and 20 were significantly associated with both leaf chloride concentrations and leaf chlorophyll concentrations in 2014, 2015, and combined years. A total of 31 SNPs on Chr. 3 were mapped at or near the previously reported major salt tolerance QTL. The significant SNP on Chr. 2 was also in proximity to the previously reported SNP for salt tolerance. The other significant SNPs represent seven putative novel QTLs for salt tolerance. The significant SNP markers on Chr. 2, 3, 14, 16, and 20, which were identified in both general linear model and mixed linear model, were highly recommended for MAS in breeding salt-tolerant soybean varieties.  相似文献   

2.

Key message

Genome-wide association analysis identified 61 SNP markers for canopy wilting, which likely tagged 51 different loci. Based on the allelic effects of the significant SNPs, the slowest and fastest wilting genotypes were identified.

Abstract

Drought stress is a major global constraint for crop production, and slow canopy wilting is a promising trait for improving drought tolerance. The objective of this study was to identify genetic loci associated with canopy wilting and to confirm those loci with previously reported canopy wilting QTLs. A panel of 373 maturity group (MG) IV soybean genotypes was grown in four environments to evaluate canopy wilting. Statistical analysis of phenotype indicated wide variation for the trait, with significant effects of genotype (G), environment (E), and G × E interaction. Over 42,000 SNP markers were obtained from the Illumina Infinium SoySNP50K iSelect SNP Beadchip. After filtration for quality control, 31,260 SNPs with a minor allele frequency (MAF) ≥5% were used for association mapping using the Fixed and random model Circulating Probability Unification (FarmCPU) model. There were 61 environment-specific significant SNP-canopy wilting associations, and 21 SNPs that associated with canopy wilting in more than one environment. There were 34 significant SNPs associated with canopy wilting when averaged across environments. Together, these SNPs tagged 23 putative loci associated with canopy wilting. Six of the putative loci were located within previously reported chromosomal regions that were associated with canopy wilting through bi-parental mapping. Several significant SNPs were located within a gene or very close to genes that had a reported biological connection to transpiration or water transport. Favorable alleles from significant SNPs may be an important resource for pyramiding genes to improve drought tolerance and for identifying parental genotypes for use in breeding programs.
  相似文献   

3.
Rapid establishment of canopy coverage decreases soil evaporation relative to transpiration, improves water use efficiency and light interception, and increases soybean competitiveness against weeds. The objective of this study was to identify genomic loci associated with canopy coverage (CC). Canopy coverage was evaluated using a panel of 373 MG IV soybean genotypes that was grown in five environments. Digital image analysis was used to determine canopy coverage two times (CC1 and CC2) during vegetative development approximately 8 to 16 days apart for each environment. After filtration for quality control, 31,260 SNPs with a minor allele frequency (MAF)?≥?5% were used for association mapping with the FarmCPU model. Analysis identified significant SNP-canopy coverage associations including 36 for CC1 and 56 for CC2. Five SNPs for CC1 and 11 SNPs for CC2 were present in at least two environments. The significant SNP associations likely tagged 33 (CC1) and 50 (CC2) different quantitative trait loci (QTLs). Eleven putative loci were identified in which chromosomal regions associated were coincident for CC1 and CC2. Candidate genes identified using these significant SNPs included those with reported functions associated with growth, developmental, and light responses. Favorable alleles from significant SNPs may be an important resource for pyramiding genes to improve canopy coverage and for identifying parental genotypes for use in breeding programs.  相似文献   

4.
冠层光谱反射率直接关系到毛竹(Phyllostachys pubescens Mazel)林冠层参数的反演,对毛竹林地土壤肥力间接估测具有重要意义。以PROSPECT5、PROSAIL模型为基础,从叶片尺度和冠层尺度分析模型参数对叶片和冠层反射率的影响,构建毛竹冠层叶面积指数(LAI)-冠层反射率查找表并通过代价函数选取最优冠层反射率,从而实现毛竹林分冠层反射率的准确模拟。结果表明,在叶片尺度,PROSPECT模型参数敏感性从高到低依次为叶肉结构参数(N) > 叶绿素含量(Cab) > 等效水厚度(EWT) > 干物质含量(Cm) > 类胡萝卜素含量(Car);在冠层尺度,PROSAIL模型参数敏感性从高到低依次为LAI > Cab > EWT > Cm > N > Car > ALA(平均叶倾角);叶片尺度反射率整体大于冠层尺度反射率;在400~900 nm波长范围内,PROSAIL模型模拟的冠层光谱反射率与实测光谱反射率拟合效果较好,相对误差为6.71%。  相似文献   

5.
Nondestructive techniques developed by the authors for assessment of chlorophylls, carotenoids, and anthocyanins in higher plant leaves and fruits are presented. The spectral features of leaf reflectance in the visible and near infrared regions are briefly considered. For pigment analysis only reflectance values at several specific wavelengths are required. The chlorophyll (Chl) content over a wide range of its changes can be assessed during leaf ontogeny using reflectance near 700 nm and, in the absence of anthocyanins, at 550 nm. The approaches used for elimination of Chl interference in the analysis of carotenoids (reflectance at 520 nm) and anthocyanins (at 550 nm) are described. The suitability of reflectance spectroscopy for estimates of carotenoid/chlorophyll ratios during leaf senescence and fruit ripening is demonstrated. The algorithms developed for pigment analysis are presented, and the conditions of their applicability are considered. Further perspectives for the application of reflectance spectroscopy including remote sensing for estimation of plant pigment content and physiological states are discussed.  相似文献   

6.
Accelerated wheat development and deployment of high-yielding, climate resilient, and disease resistant cultivars can contribute to enhanced food security and sustainable intensification. To facilitate gene discovery, we assembled an association mapping panel of 528 spring wheat landraces of diverse geographic origin for a genome-wide association study (GWAS). All accessions were genotyped using an Illumina Infinium 9K wheat single nucleotide polymorphism (SNP) chip and 4781 polymorphic SNPs were used for analysis. To identify loci underlying resistance to the major leaf spot diseases and to better understand the genomic patterns, we quantified population structure, allelic diversity, and linkage disequilibrium. Our results showed 32 loci were significantly associated with resistance to the major leaf spot diseases. Further analysis identified QTL effective against major leaf spot diseases of wheat which appeared to be novel and others that were previously identified by association analysis using Diversity Arrays Technology (DArT) and bi-parental mapping. In addition, several identified SNPs co-localized with genes that have been implicated in plant disease resistance. Future work could aim to select the putative novel loci and pyramid them in locally adapted wheat cultivars to develop broad-spectrum resistance to multiple leaf spot diseases of wheat via marker-assisted selection (MAS).  相似文献   

7.
桉树叶片光合色素含量高光谱估算模型   总被引:13,自引:1,他引:12  
色素在植物的生理生态过程中非常重要,利用高光谱数据,揭示光谱反射率上特征波段与光合色素含量间的关系将有助于理解光合色素光谱反射特征的规律,同时为利用高光谱遥感技术快速无损监测植物叶片光合色素提供了技术支持.利用野外采集的桉树叶片样本,在实验室内测定了叶片的高光谱反射率及对应的叶绿素、类胡萝卜素含量.利用光谱分析技术和统计学方法对光谱数据进行处理分析,提取了光谱特征参量,并建立叶绿素、类胡萝卜素含量与光谱特征参量间的估算模型.通过精度检验,研究结果表明以(SDr-SDb)/(SDr+SDb)为变量建立的指数模型估算效果最佳.  相似文献   

8.
Soybean white mold (SWM), caused by Sclerotinia sclerotiorum ((Lib.) W. Phillips), is currently considered to be the second most important cause of soybean yield loss due to disease. Research is needed to identify SWM‐resistant germplasm and gain a better understanding of the genetic and molecular basis of SWM resistance in soybean. Stem pigmentation after treatment with oxaloacetic acid is an effective indicator of resistance to SWM. A total of 128 recombinant inbred lines (RILs) derived from a cross of ‘Maple Arrow’ (partial resistant to SWM) and ‘Hefeng 25’ (susceptible) and 330 diverse soybean cultivars were screened for the soluble pigment concentration of their stems, which were treated with oxalic acid. Four quantitative trait loci (QTLs) underlying soluble pigment concentration were detected by linkage mapping of the RILs. Three hundred and thirty soybean cultivars were sequenced using the whole‐genome encompassing approach and 25 179 single‐nucleotide polymorphisms (SNPs) were detected for the fine mapping of SWM resistance genes by genome‐wide association studies. Three out of five SNP markers representing a linkage disequilibrium (LD) block and a single locus on chromosome 13 (Gm13) were significantly associated with the soluble pigment content of stems. Three more SNPs that represented three minor QTLs for the soluble pigment content of stems were identified on another three chromosomes by association mapping. A major locus with the largest effect on Gm13 was found both by linkage and association mapping. Four potential candidate genes involved in disease response or the anthocyanin biosynthesis pathway were identified at the locus near the significant SNPs (<60 kbp). The beneficial allele and candidate genes should be useful in soybean breeding for improving resistance to SWM.  相似文献   

9.
Hilker T  Gitelson A  Coops NC  Hall FG  Black TA 《Oecologia》2011,165(4):865-876
Imaging spectroscopy is a powerful technique for monitoring the biochemical constituents of vegetation and is critical for understanding the fluxes of carbon and water between the land surface and the atmosphere. However, spectral observations are subject to the sun–observer geometry and canopy structure which impose confounding effects on spectral estimates of leaf pigments. For instance, the sun–observer geometry influences the spectral brightness measured by the sensor. Likewise, when considering pigment distribution at the stand level scale, the pigment content observed from single view angles may not necessarily be representative of stand-level conditions as some constituents vary as a function of the degree of leaf illumination and are therefore not isotropic. As an alternative to mono-angle observations, multi-angular remote sensing can describe the anisotropy of surface reflectance and yield accurate information on canopy structure. These observations can also be used to describe the bi-directional reflectance distribution which then allows the modeling of reflectance independently of the observation geometry. In this paper, we demonstrate a method for estimating pigment contents of chlorophyll and carotenoids continuously over a year from tower-based, multi-angular spectro-radiometer observations. Estimates of chlorophyll and carotenoid content were derived at two flux-tower sites in western Canada. Pigment contents derived from inversion of a CR model (PROSAIL) compared well to those estimated using a semi-analytical approach (r 2 = 0.90 and r 2 = 0.69, P < 0.05 for both sites, respectively). Analysis of the seasonal dynamics indicated that net ecosystem productivity was strongly related to total canopy chlorophyll content at the deciduous site (r 2 = 0.70, P < 0.001), but not at the coniferous site. Similarly, spectral estimates of photosynthetic light-use efficiency showed strong seasonal patterns in the deciduous stand, but not in conifers. We conclude that multi-angular, spectral observations can play a key role in explaining seasonal dynamics of fluxes of carbon and water and provide a valuable addition to flux-tower-based networks.  相似文献   

10.
冠层反射率在森林植被类型精确解译、森林碳同化关键参数如叶面积指数(LAI)、叶绿素等遥感反演等方面具有重要意义.本研究以亚热带毛竹林、雷竹林和常绿落叶阔叶混交林3种典型森林类型为研究对象,通过耦合PROSPECT5和4SAIL模型模拟其冠层反射率时间序列.首先,对PROSPECT5和4SAIL模型参数进行敏感性分析,探讨模型参数对冠层反射率的影响;其次,利用实测反射率对不敏感参数进行优化,并确定其参数值;最后,耦合PROSPECT5和4SAIL模型模拟3种亚热带森林冠层反射率,并与MODIS反射率进行对比.结果表明:LAI对第1、2、3、5、7波段最敏感,各波段的总敏感指数分别为0.80、0.83、0.94、0.66、0.47;叶绿素含量对第4波段最敏感,总敏感指数为0.59;叶片含水量对第6波段的敏感性最大,总敏感性指数为0.54;叶子结构参数、类胡萝卜素、热点参数、干物质含量和土壤干湿比等参数对各个波段都不敏感或敏感性较小.优化后的PROSPECT5和4SAIL模型模拟得到的冠层反射率能够真实反映3种典型森林的季节性变化规律,通过与MODIS反射率对比分析发现,模拟冠层反射率和MODIS反射率之间具有较高的决定系数,分别为0.86、0.90、0.93,均方根误差(RMSE)也较小,分别为0.09、0.07、0.05,且模拟反射率能在一定程度上解决MODIS反射率数据冬季易受雨雪、混合像元影响等问题.  相似文献   

11.
Experimental approaches targeting carotenoid biosynthetic enzymes have successfully increased the seed β-carotene content of crops. However, linkage analysis of seed carotenoids in Arabidopsis thaliana recombinant inbred populations showed that only 21% of quantitative trait loci, including those for β-carotene, encode carotenoid biosynthetic enzymes in their intervals. Thus, numerous loci remain uncharacterized and underutilized in biofortification approaches. Linkage mapping and genome-wide association studies of Arabidopsis seed carotenoids identified CAROTENOID CLEAVAGE DIOXYGENASE4 (CCD4) as a major negative regulator of seed carotenoid content, especially β-carotene. Loss of CCD4 function did not affect carotenoid homeostasis during seed development but greatly reduced carotenoid degradation during seed desiccation, increasing β-carotene content 8.4-fold relative to the wild type. Allelic complementation of a ccd4 null mutant demonstrated that single-nucleotide polymorphisms and insertions and deletions at the locus affect dry seed carotenoid content, due at least partly to differences in CCD4 expression. CCD4 also plays a major role in carotenoid turnover during dark-induced leaf senescence, with β-carotene accumulation again most strongly affected in the ccd4 mutant. These results demonstrate that CCD4 plays a major role in β-carotene degradation in drying seeds and senescing leaves and suggest that CCD4 orthologs would be promising targets for stabilizing and increasing the level of provitamin A carotenoids in seeds of major food crops.  相似文献   

12.
烤烟冠层光谱参数与叶片叶绿素含量的相关分析   总被引:4,自引:0,他引:4  
为了明确烤烟冠层光谱参数与叶片叶绿素含量的相关性,测定了不同氮肥施用量条件下烤烟冠层光谱特征和烤烟鲜烟叶片叶绿素a(Chl-a)、叶绿素b(Chl-b)、类胡萝卜素(Cars)含量,并对光谱参数与叶绿素含量进行了相关分析和回归分析。结果表明:随着氮肥施用量增加,团棵期和旺长期鲜烟叶片的Chl-a、Chl-b和Cars含量均增加,可见光波段反射率降低、近红外波段反射率增加;而打顶期叶片的3种色素含量和光谱特征的变化规律不明显。可见光460~670nm范围内,460nm反射率与叶片叶绿素含量呈显著正相关,其他波段反射率与叶片叶绿素的含量呈显著负相关;近红外780~1260nm范围内,所有波段与叶片叶绿素含量的都呈显著正相关,1480nm反射率与叶片叶绿素含量呈显著负相关。反映Chl-a、Chl-b、Cars含量与光谱参数——比值植被指数(ratio vegetation index,RVI)定量关系的最佳回归方程分别为幂函数、幂函数和指数函数:Chl-a=0.250RVI(730,550)1.511,Chl-b=0.049RVI(730,550)1.841,Cars=0.0998e0.379RVI(730,550)。  相似文献   

13.
Carotenoids, some of which are provitamin A, have a range of diverse biological functions and actions, especially in relation to human health. For example, carotenoids are known to be crucial for normal vision and have been associated with reducing the risk of several degenerative diseases including cancer. The putative advantage of modifying and engineering the carotenoid biosynthetic pathways is obvious: to provide sources for the isolation of desired carotenoids or to generate food plants with increased carotenoid content. This article reviews the studies of carotenoid production in heterologous microorganisms and the engineering of crop plants using manipulated carotenoid biosynthesis.  相似文献   

14.
The pigment composition of leaves from a number of different plant species collected from field sites in the region of Sheffield, UK, have been compared using high-performance liquid chromatography. Expression of pigment content per unit leaf area was dominated by variation in the total leaf chlorophyll. Neither chlorophyll per unit area nor the chlorophyll a/b ratio were found to be correlated with the habitat from which the plants originated. When the amounts of different carotenoids were expressed relative to the total carotenoid pool, it was found that whilst neither total carotene (α- +β-carotene) nor neoxanthin correlated with ability to grow in shade, the leaf content of both lutein and the total xanthophyll cycle carotenoids (zeaxanthin, anther-axanthin and violaxanthin) did, with lutein content being high in shade species and xanthophyll cycle intermediates low. There was a strong negative correlation between the relative amounts of each of these groups of carotenoids. The ratio of lutein to xanthophyll cycle carotenoids was strongly correlated to an index of shade tolerance.  相似文献   

15.
研究了不同土壤水氮条件下水稻 (Oryzasativa) 冠层光谱反射特征和植株水分状况的量化关系。结果表明, 水稻冠层近红外光谱反射率随土壤含水量的降低而降低, 短波红外光谱反射率随土壤含水量的降低而升高。相同土壤水分条件下, 高氮水稻的冠层含水率高于低氮水稻的冠层含水率 ;同一水分条件下, 高氮处理的可见光区和短波红外波段光谱反射率低于低氮处理, 近红外波段光谱反射率高于低氮处理。发现拔节后比值植被指数 (R810 /R460 ) 与水稻叶片含水率和植株含水率呈极显著的线性相关, 模型的检验误差 (RootmeansquareError, RMSE) 分别为 0.93和 1.5 0。表明比值植被指数R810 /R460 可以较好地监测不同生育期水稻叶片和植株含水率。  相似文献   

16.
Ground-based remotely sensed reflectance spectra of hyperspectral resolution were monitored during the growing period of rice under various nitrogen application rates. It was found that reflectance spectrum of rice canopy changed in both wavelength and reflectance as the plants developed. Fifteen characteristic wavebands were identified from the apparent peaks and valleys of spectral reflectance curves, in accordance with the results of the first-order differentiation, measured over the growing season of rice. The bandwidths and center wavelengths of these characteristic wavebands were different among nitrogen treatments. The simplified features by connecting these 15 characteristic wavelengths may be considered as spectral signatures of rice canopy, but spectral signatures varied with developmental age and nitrogen application rates. Among these characteristic wavebands, the changes of the wavelength in band 11 showed a positive linear relationship with application rates of nitrogen fertilizer, while it was a negative linear relationship in band 5. Mean reflectance of wavelengths in bands 1, 2, 3, 5, 11, and 15 was significantly correlated with application rates. Reflectance of these six wavelengths changed nonlinearly after transplanting and could be used in combination to distinguish rice plants subjected to different nitrogen application rates. From the correlation analyses, there are a variety of correlation coefficients for spectral reflectance to leaf nitrogen content in the range of 350-2400 nm. Reflectance of most wavelengths exhibited an inverse correlation with leaf nitrogen content, with the largest negative value (r = -0.581) located at about 1376 nm. Changes in reflectance at 1376 nm to leaf nitrogen content during the growing period were closely related and were best fitted to a nonlinear function. This relationship may be used to estimate and to monitor nitrogen content of rice leaves during rice growth. Reflectance of red light minimum and near-infrared peak and leaf nitrogen content were correlated nonlinearly.  相似文献   

17.
小麦叶片氮素状况与光谱特性的相关性研究   总被引:45,自引:3,他引:45       下载免费PDF全文
 系统分析了不同时相下两个小麦(Triticum aestivium)品种叶片含氮量及叶片氮积累量与冠层光谱反射特征的关系。结果表明,随施氮水平的增加,小麦冠层在可见光区的反射率逐渐降低,而近红外波段的反射率逐渐升高。小麦叶片氮素状况与比值指数或归一化指数显著相关,两个品种表现极为一致,可以用一个指数方程来拟合。分阶段建模并没有提高模型的精度,因此可以建立一个适用于整个生育时期的通用氮素诊断方程。叶片含氮量同光谱指数在整个生育期内的关系要优于叶片氮积累量的,其中,与叶片含氮量关系最佳的指数为红波段(660 nm)和蓝波段(460 nm)的组合(R2>0.80);与叶片氮积累量关系最佳的光谱指数为中红外波段(1 220 nm)与红波段(660 nm)的组合(R2>0.62)。  相似文献   

18.
Large numbers of single nucleotide polymorphism (SNP) markers are now available for a number of crop species. However, the high-throughput methods for multiplexing SNP assays are untested in complex genomes, such as soybean, that have a high proportion of paralogous genes. The Illumina GoldenGate assay is capable of multiplexing from 96 to 1,536 SNPs in a single reaction over a 3-day period. We tested the GoldenGate assay in soybean to determine the success rate of converting verified SNPs into working assays. A custom 384-SNP GoldenGate assay was designed using SNPs that had been discovered through the resequencing of five diverse accessions that are the parents of three recombinant inbred line (RIL) mapping populations. The 384 SNPs that were selected for this custom assay were predicted to segregate in one or more of the RIL mapping populations. Allelic data were successfully generated for 89% of the SNP loci (342 of the 384) when it was used in the three RIL mapping populations, indicating that the complex nature of the soybean genome had little impact on conversion of the discovered SNPs into usable assays. In addition, 80% of the 342 mapped SNPs had a minor allele frequency >10% when this assay was used on a diverse sample of Asian landrace germplasm accessions. The high success rate of the GoldenGate assay makes this a useful technique for quickly creating high density genetic maps in species where SNP markers are rapidly becoming available. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval of a product to the exclusion of others that may be suitable.  相似文献   

19.
Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained, and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth genome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be readily extendable to other cereals.

Eleven genes were identified for grain carotenoids by integrating joint-linkage, genome-wide association, RNA-seq, pleiotropy, and epistasis analyses of the US maize nested association mapping panel.  相似文献   

20.
基于小波分析的大豆叶绿素a含量高光谱反演模型   总被引:5,自引:0,他引:5       下载免费PDF全文
 2003和2004年分别在长春市良种场和中国科学院海伦黑土生态实验站实测了大田耕作与水肥耦合作用下大豆(Glycine max)冠层高光谱反射率 与叶绿素a含量数据,对光谱反射率、微分光谱与叶绿素a含量进行了相关分析;采用归一化植被指数(Normalized diffe rence vegetation index, NDVI)、土壤调和植被指数(Soil-adjusted vegetation index, SAVI)、再归一植被指数(Renormalized difference vegetation index, RDVI)、第二修正比值植被指数(Modified second ratio index, MSRI)等建立了大豆叶绿素a反演模型;应用小波分析对采集的光谱反 射率数据进行了能量系数提取,并以小波能量系数作为自变量进行了单变量与多变量回归分析,对大豆叶绿素a进行了估算。研究结果表明,大 豆叶绿素a 与可见光光谱反射率相关性较好,并在红光波段取得最大值(R2>0.70),但在红边处,微分光谱与大豆叶绿素a的相关性较反射率好 得多,在其它波段则相反;由NDVI、SAVI、RDVI、MSRI等植被指数建立的估算模型可以提高大豆叶绿素a的估算精度(R2>0.75);小波能量系 数回归模型可以进一步提高大豆叶绿素a含量的估算水平,以一个特定小波能量系数作为自变量的回归模型,大豆叶绿素a回归决定系数R2高达 0.78;多变量回归分析结果表明,大豆叶绿素a实测值与预测值的线性回归决定系数R2均高达0.85。以上结果表明, 小波分析可以对高光谱进 行特征变量提取,并可在一定程度上提高大豆生理参数反演精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号