首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review aims to present the different effects produced by a post-weaning intake limitation strategy on the growing rabbit, now largely used by French professional rabbit breeders. Although a quantitative feed restriction leads to slower growth, feed conversion (FC) is improved, particularly when the rabbits are again fed freely, as compensatory growth occurs. This better FC or the healthy rabbit is because of better digestion resulting from slower passage through the intestine, whereas the digestive physiology is slightly modified (morphometry of the intestinal mucosa, fermentation pattern, microbiota). Meat quality and carcass characteristics are not greatly affected by feed restriction, except for a lower dressing-out percentage. One of the main advantages of limiting post-weaning intake of the rabbit is to reduce the mortality and morbidity rate due to digestive disorders (particularly epizootic rabbit enteropathy syndrome). The consequences for animal welfare are debatable, as feed restriction probably leads to hunger, but it reduces the incidence of digestive troubles after weaning. However, the growing rabbit adapts very well to an intake limitation strategy, without any aggressive behaviour for congener. In conclusion, restriction strategies could improve profitability of rabbit breeding, but they should be adapted to any specific breeding situation, according to the national market, feed prices, etc.  相似文献   

2.
3.
The brown hare and the domestic rabbit are mid-sized herbivorous mammals and hindgut fermenters, though their digestive physiologies differ in some traits. The objective of this study was to estimate and compare the caecal microbial activity in hares and rabbits via an analysis of the following end-products of in vitro caecal fermentation: methane, total gas production, short chain fatty acids and ammonia concentration. Hare caecal methanogenesis occurred at a much lower level (0.25 mmol/kg for samples incubated without substrate and 0.22 mmol/kg for samples incubated with substrate) than that of the rabbit (15.49 and 11.73 mmol/kg, respectively) (P<0.001). The impact of the substrate’s presence on caecal methanogenesis was not significant, though its presence increased the total gas production during fermentation (P<0.001). Hare caecal microflora produced a lower short chain fatty acids concentration than did rabbit microorganisms (P<0.05). In unincubated hare samples, the short chain fatty acids concentration was 28.4 mmol/kg, whereas in unincubated rabbit samples, the short chain fatty acids concentration was 51.8 mmol/kg. The caecal fermentation pattern of the hare was characterised by higher propionate and isobutyrate molar proportions compared with those observed in rabbit caecum (P<0.01). No significant changes in the ammonia concentration in either rabbit or hare caecum were found. The results obtained indicate some differences in the activity of the microbial populations colonising the hare and rabbit caecum, particularly in regards to methanogenic Archaea.  相似文献   

4.
The functional adaptability of the digestive system to the level of feed intake was investigated in the young rabbits by comparing two groups of 12 litters each, weaned at 21 (W21) or 35 (W35) days of age. From 14 days onwards, rabbits were fed a pelleted feed (NDF: 332 g/kg, CP: 177 g/kg, starch: 98 g/kg, as-fed basis). Until 49 days of age, the profile of digestive enzymes was weekly determined in the small intestinal content and mucosa, as well as caecal fermentation traits and fibrolytic activities. In the W21 group, the solid feed intake was increased by 57% between 21 and 35 days (P < 0.01), while the daily body growth was lower from 21 till 42 days (-17%, P < 0.05) when compared with the W35 group. Activities of enzymes of pancreatic origin were only scarcely influenced by the weaning age. In the W21 group, amylase activity tended to be lower at 28 days of age (-36%, P = 0.064), and trypsin activity was decreased by 31% at 49 days of age (P < 0.01). Lipase activity was similar in both weaning groups. Duodenal and jejunal activities of maltase and aminopeptidase N (APN) were higher on day 28 in the W21 group as compared with the W35 group (×1.4 to ×2.4, respectively, P < 0.05). On day 35, duodenal APN activity was twice as higher in the W21 group than in the W35 group (P < 0.01). In caecum, major differences between both weaning groups were observed at 28 days of age with a decrease in ammonia concentration (-43%, P < 0.01) in W21 compared with W35 rabbits. Conversely, the acetate proportion was 5% higher in the W21 group (P < 0.01) on day 28. In conclusion, the digestive tract of early-weaned rabbits showed some adaptative properties in response to nutritional environment changes, but they were insufficient to maintain their growth rate.  相似文献   

5.
Digestion in insects is a multi-step process to afford nutritional requirements of biological activities. The process starts with nervous stimuli and continues with biochemical activities of digestive enzymes as well as several pumps to digest and absorb the obtained molecules. Carbohydrases, lipases and proteases are the three main digestive enzymes involved in digestion process. Lipases seem to be very important not only for digestive role but also for esteratic activity so that some experts consider lipases as the Class 3 of general esterases. Digestive lipases divided into different groups based on their biological roles namely triacylglycerol lipases, phospholipases and two types of phosphatases. Briefly, triacylglycerol lipases (TAG-lipases) are the hydrolysing enzymes that affect the outer esteric links of triacylglycerols in ingested food. Phospholipases including PLA2 and PLA1 remove phosphatide fatty acids attached to the Position 2 and Position 1. Finally, Alkaline and acid phosphatases are the enzymes that hydrolyse phosphomonoesters under alkaline or acid conditions, respectively. In this review, presence and physiological role of digestive TAG-lipases are explained and their possible importance will be discussed in insect.  相似文献   

6.
Having evolved as a grazing animal, a horse's digestive physiology is characterized by rapid gastric transit, a rapid but intense enzymatic digestion along the small intestine, and a long and intense microbial fermentation in the large intestine. The process of understanding and describing feed degradation mechanisms in the equine digestive system in general, and in the hindgut ecosystem in particular, is essential. Regardless of its importance for the nutritional status of the host, the significance of the cecum-colon ecosystem has not yet been fully understood, and few reports have focused deeply on the contribution of the hindgut microbial population to the nitrogen and energy requirements of the horse. Compared to ruminal activity, very little is known about hindgut ecosystem activity in the horse. Information concerning the metabolism of this microbial population and its requirements is lacking. The use of internal bacterial markers for quantifying microbial outflow in ruminants is widely reported. These techniques can be applied to cecum-colon microbial quantification, contributing to a better characterization of this ecosystem. It is likely wrong to believe that the optimization strategy in the hindgut is similar to what happens in the rumen - that is, to maximize microbial growth and, therefore, fermentation. If we consider the type of substrate that, in normal conditions, arrives in the hindgut, we can expect it to be nitrogen limiting, providing limited nitrogen-based substrates for microbial fermentation. In this review paper, we intend to gather existing information on the equine ecosystem and to provide future perspectives of research.  相似文献   

7.
The organogenesis of the digestive system was described in the Amazonian pimelodid catfish species Pseudoplatystoma punctifer from hatching (3.5 mm total length, TL) to 41 days post-fertilization (dpf) (58.1 mm TL) reared at 28°C. Newly hatched larvae showed a simple digestive tract, which appeared as a straight undifferentiated and unfolded tube lined by a single layer of columnar epithelial cells (future enterocytes). During the endogenous feeding period, comprised between 20 and 96 h post-fertilization (3.5 to 6.1 mm TL), the larval digestive system experienced a fast transformation with the almost complete development and differentiation of most of digestive organs (buccopahrynx, oesophagus, intestine, liver and exocrine pancreas). Yolk reserves were not completely depleted at the onset of exogenous feeding (4 dpf, 6.1 mm TL), and a period of mixed nutrition was observed up to 6 to 7 dpf (6.8 to 7.3 mm TL) when yolk was definitively exhausted. The stomach was the organ that latest achieved its complete differentiation, characterized by the development of abundant gastric glands in the fundic stomach between 10 and 15 dpf (10.9 to 15.8 mm TL) and the formation of the pyloric sphincter at the junction of the pyloric stomach and the anterior intestine at 15 dpf (15.8 mm TL). The above-mentioned morphological and histological features observed suggested the achievement of a digestive system characteristic of P. punctifer juveniles and adults. The ontogeny of the digestive system in P. punctifer followed the same general pattern as in most Siluriform species so far, although some species-specific differences in the timing of differentiation of several digestive structures were noted, which might be related to different reproductive guilds, egg and larval size or even different larval rearing practices. According to present findings on the histological development of the digestive system in P. punctifer, some recommendations regarding the rearing practices of this species are also provided in order to improve the actual larval rearing techniques of this fast-growing Neotropical catfish species.  相似文献   

8.
BACKGROUND AND AIMS: Digestive structures of carnivorous plants produce external digestive enzymes, and play the main role in absorption. In Lentibulariaceae, the ultrastructure of digestive hairs has been examined in some detail in Pinguicula and Utricularia, but the sessile digestive hairs of Genlisea have received very little attention so far. The aim of this study was to fill this gap by expanding their morphological, anatomical and histochemical characterization. METHODS: Several imaging techniques were used, including light, confocal and electron microscopy, to reveal the structure and function of the secretory hairs of Genlisea traps. This report demonstrates the application of cryo-SEM for fast imaging of whole, physically fixed plant secretory structures. KEY RESULTS AND CONCLUSION: The concentration of digestive hairs along vascular bundles in subgenus Genlisea is a primitive feature, indicating its basal position within the genus. Digestive hairs of Genlisea consist of three compartments with different ultrastructure and function. In subgenus Tayloria the terminal hair cells are transfer cells, but not in species of subgenus Genlisea. A digestive pool of viscous fluid occurs in Genlisea traps. In spite of their similar architecture, the digestive-absorptive hairs of Lentibulariaceae feature differences in morphology and ultrastructure.  相似文献   

9.
The digestive organs possibly involved in food absorption in Loligo vulgaris and L. forbesi are the caecum, the intestine, the digestive gland, and the digestive duct appendages. The histology and the fine structure showed that the ciliated organ, the caecal sac, and the intestine are lined with a ciliated epithelium. The ciliary rootlets are particularly well developed in the ciliated organ, apparently in relation to its function of particle collection. Mucous cells are present in the ciliated organ and the intestine. Histologically, the digestive gland appears rather different from that of other cephalopods. However, the fine structure of individual types of squid digestive cell is actually similar to that of comparable organs in other species, and the squid cells undergo the same stages of activity. Digestive cells have a brush border of microvilli, and numerous vacuoles, which sometimes contain “brown bodies.” However, no “boules” (conspicuous protein inclusions of digestive cells in other species) could be identified in their cytoplasm; instead only secretory granules are present. In the digestive duct appendages, numerous membrane infoldings associated with mitochondria are characteristic features of the epithelial cells in all cephalopods. Two unusual features were observed in Loligo: first, the large size of the lipid inclusions in the digestive gland, in the caecal sac, and in the digestive duct appendages; and second, the large number of conspicuous mitochondria with well-developed tubular cristae. When injected into the caecal sac, ferritin molecules can reach the digestive gland and the digestive duct appendages via the digestive ducts, and they are taken up by endocytosis in the digestive cells. Thus, it appears that the digestive gland of Loligo can act as an absorptive organ as it does in other cephalopods.  相似文献   

10.
1. The interaction between the density of ingesta and gravity observed in the digestive systems of ruminant herbivores should receive attention in other non‐ruminant herbivorous mammals. The resting postures adopted by non‐ruminants are of particular interest. 2. A new interpretation of established findings regarding the digestive tract of sloths illustrates that the interplay of posture, anatomy, the density of ingesta and gravity can provide a novel explanation of behavioural and morphological adaptations in herbivores, as the average particle size and dry‐matter content increases within their forestomach from its caudal towards its cranial portion. In sloths, this could be indicative of a stratification of ingesta occurring in the upright sitting posture adopted while resting, as opposed to their characteristic upside down posture when moving. 3. The sitting resting posture of sloths could therefore be an adaptation to exploit the tendency of the forestomach contents to stratify in order to pass larger, more difficult‐to‐digest particles faster from the fermentation chamber.  相似文献   

11.
This study investigates the histological organization and ploidy levels of the digestive gland cells in 29 species of marine, brackish water, and freshwater bivalves belonging to 5 subclasses. In all species studied, the digestive gland epithelium consists of two types of differentiated cells: digestive and basophilic. The nuclei of digestive cells contain the diploid quantity of DNA. Basophilic (secretory) cells often remain diploid also; however, in a number of species all or some of the cells showed an increase in the quantity of DNA per nucleus up to 4c. Tetraploidy of basophilic cells in several species of the subclass Anomalodesmata seems to be due to carnivory. In other species, no apparent correlation was found between selective polyploidy of basophilic cells and environmental conditions or biology traits of the bivalves. Additionally, there was no relationship between the occurrence of polyploid cells and the lifespan of the investigated species. In the bivalve mollusks, somatic polyploidy appears to be an adaptation; it is neither a tissue growth strategy nor a component of the cytodifferentiation program.  相似文献   

12.
The development of digestive organs and the establishment of gut microbiota in pullets play an important role throughout life. This study was conducted to investigate the effects of Bacillus subtilis (BS) on growth performance, intestinal function and gut microbiota in pullets from 0 to 6 weeks of age. Hy-line Brown laying hens (1-day-old, n = 504) were randomly allotted into four diets with a 2 × 2 factorial design: (1) basal diet group (control); (2) antibiotics group (AGP), the basal diet supplemented with 20 mg/kg Bacitracin Zinc and 4 mg/kg Colistin Sulphate; (3) BS group, the basal diet supplemented with 500 mg/kg BS and (4) mixed group, the basal diet supplemented with both AGP and BS. As a result, when BS was considered the main effect, BS addition (1) reduced the feed conversion ratio at 4 to 6 weeks (P < 0.05); (2) decreased duodenal and jejunal crypt depth at 3 weeks; (3) increased the villus height : crypt depth (V : C) ratio in the duodenum at 3 weeks and jejunal villus height at 6 weeks and (4) increased sucrase mRNA expression in the duodenum at 3 weeks as well as the jejunum at 6 weeks, and jejunal maltase and aminopeptidase expression at 3 weeks. When AGP was considered the main effect, AGP supplementation (1) increased the V : C ratio in the ileum at 3 weeks of age; (2) increased sucrase mRNA expression in the duodenum at 3 weeks as well as the ileum at 6 weeks, and increased maltase expression in the ileum. The BS × AGP interaction was observed to affect average daily feed intake at 4 to 6 weeks, and duodenal sucrase and jejunal maltase expression at 3 weeks. Furthermore, dietary BS or AGP addition improved caecal microbial diversity at 3 weeks, and a BS × AGP interaction was observed (P < 0.05) for the Shannon and Simpson indexes. At the genus level, the relative abundance of Lactobacillus was found to be higher in the mixed group at 3 weeks and in the BS group at 6 weeks. Moreover, Anaerostipes, Dehalobacterium and Oscillospira were also found to be dominant genera in pullets with dietary BS addition. In conclusion, BS could improve intestinal morphology and change digestive enzyme relative expression and caecum microbiota, thereby increasing the efficiency of nutrient utilization. Our findings suggested that BS might have more beneficial effects than AGP in the study, which would provide theoretical evidence and new insight into BS application in layer pullets.  相似文献   

13.
Changes occurring after feeding in the digestive enzyme activities of European eel were investigated to provide some insights into the digestive physiology of this fish. Total and specific proteases, amylase and lipase activities were measured using standard biochemical assays over a 24 h cycle in fed eels, compared to starved ones, under the same rearing conditions. In the gastrointestinal tract of fed eels quantitative changes started 4 h after feeding and continued later on; conversely, in starved eels enzyme activities remained unchanged over time. In fed eels, total and specific protease activities showed an overall increasing trend in the intestine, while in the stomach they progressively decreased to values 22–50% lower than those measured at the pre-feeding time; this behaviour probably reflected the progression of digesta along the intestinal tract. The prolonged secretory response of European eel to food ingestion proved its extended activity in the digestive process.  相似文献   

14.
Caecal digestive functions were compared in 22 species of East African herbivores. Comparisons were made between ruminant pseudo-ruminant, and non-ruminant herbivores to assess the relative in vitro fermentation rate and composition of caecal contents from these species observed in their natural habitat. Measurements were made of caecal fermentation rate, organic acid composition, osmolality, pH and dry matter content. The data were compared by foregut structure, feed preference and body weight of the herbivores.  相似文献   

15.
养殖动物消化道中含有大量的微生物,不仅参与动物对营养物质的消化和吸收,还对宿主生长发育及免疫起重要调节作用。动物消化道微生物组研究是目前国内外的热点领域,取得了一系列重要研究进展。深入了解养殖动物消化道微生物组的结构与功能,将为今后调控和应用消化道微生物、提高动物生产性能、改善动物胃肠道健康和实现绿色健康养殖奠定理论基础。本文以4种代表性养殖动物(牛、羊、猪和鸡)为主体,对组学视角下其消化道微生物群落结构、功能等研究进展进行总结和分析;并对未来研究方向进行展望。  相似文献   

16.
The endogenous gut microbiota affects the host in many ways. Prebiotics should favour beneficial intestinal microbes and thus improve host health. In this study, we investigated how a novel class of potential prebiotic long-chain arabinoxylans (LC-AX) and the well-established prebiotic inulin (IN) modulate the gut microbiota of humanized rats. Six weeks after axenic rats were inoculated with a human faecal microbiota, their colonic microbiota was similar to this inoculum (~ 70%), whereas their caecal microbiota was enriched with Verrucomicrobia and Firmicutes concomitant with lower abundance of Bacteroidetes. Moreover, different Bifidobacterium species colonized the lumen (B. adolescentis) and mucus (B. longum and B. bifidum). Both LC-AX and IN increased SCFA levels and induced a shift from acetate towards health-promoting propionate and butyrate respectively. By applying a high-resolution phylogenetic micro-array (HITChip) at the site of fermentation (caecum), IN and LC-AX were shown to stimulate bacterial groups with known butyrate-producers (Roseburia intestinalis, Eubacterium rectale, Anaerostipes caccae) and bifidobacteria (B. longum) respectively. Prebiotic administration also resulted in lower caecal abundances of the mucin-degrading Akkermansia muciniphila and potentially more mucin production by the host. Both factors might explain the increased caecal mucin levels for LC-AX (threefold) and IN (sixfold). These mucins were degraded along the colon, resulting in high faecal abundances of Akkermansia muciniphila for LC-AX and especially IN-treated rats. Finally, the microbial changes caused an adaptation period for the host with less weight gain, after which the host fine-tuned the interaction with this altered microbiota. Our results demonstrate that next to IN, LC-AX are promising prebiotic compounds by stimulating production of health-promoting metabolites by specific microbes in the proximal regions. Further, prebiotic supplementation shifted mucin degradation to distal regions, where mucin-degraders may produce beneficial metabolites (e.g. propionate by Akkermansia muciniphila), so that prebiotics may potentially improve gut health along the entire length of the intestine.  相似文献   

17.
This study describes the development of the rabbit caecum microbiota and its metabolic activities from the neonatal (day 2) until the subadult period (day 70). The caecal microbiota was analysed using 16S rRNA gene approaches coupled with capillary electrophoresis single-stranded conformation polymorphism (CE-SSCP) and qPCR. At day 2, rabbits harboured population levels up to 8.4, 7.2 and 7.4 log(10) copy number g(-1) full caecum of the total bacteria, Bacteroides-Prevotella and Firmicutes groups, respectively. These populations reached their maximum levels from day 14 for Firmicutes groups (10.8 log(10) copy number g(-1) caecal content) and day 21 (11.4 and 10.7 log(10) copy number g(-1) caecal content of the total bacteria and the Bacteroides-Prevotella group, respectively). The archaeal population could be detected only from day 7 onwards (5.5 log(10) copy number g(-1) full caecum) and reached its maximum level at day 35 (7.4 log(10) copy number g(-1) caecal content). Similarity analysis, diversity calculation and quantitative evaluation of the stability of bacterial community CE-SSCP profiles provided some evidence that the caecal microbiota develops progressively from a simple and unstable community after birth into a complex and climax community in subadult rabbits. Meanwhile, the microbial activity evolved with the progressive decrease of the propionate/butyrate ratio towards a rabbit-specific value <1.  相似文献   

18.
地衣芽胞杆菌在土壤等环境中普遍存在,体外研究显示该菌株的代谢产物可对致病菌的生长产生抑制作用。地衣芽胞杆菌活菌制剂进入肠道后可产生多种抗菌物质,并可通过生物夺氧作用改善肠道内环境,具有调节肠道微生态,改善消化道屏障功能,减轻炎症反应,增强免疫功能等作用,在肠道菌群失调相关疾病中应用前景广阔。地衣芽胞杆菌活菌制剂已广泛应用于腹泻疾病的治疗,并在炎症性肠病、某些肝病及幽门螺杆菌根除等治疗的研究中显示出其在改善肠道内环境,促进病情缓解的疗效。本文将对地衣芽胞杆菌活菌制剂及其消化系统疾病中的应用进行简要的叙述,并对该益生菌的研究方向做初步的探讨。  相似文献   

19.
At hatching, the oesophagus of haddock Melanogrammus aeglefinus lacks goblet cells, the intestine is a simple undifferentiated tube, the liver is present as a rounded mass caudal to the heart, and numerous zymogen granules are present in the pancreas. The first intestinal convolution appears at day 2, at the posterior end of the digestive tract. The oesophagus displays alcian blue and PAS positive mucus secreting cells on day 12, which become numerous by day 15. By day 18, epithelial cells of the posterior intestine show evidence of protein absorption in the form of supranuclear vacuoles. The swimbladder inflates in 50% of the larvae by day 22, although inflation rate is highly variable. By day 35, or 10 mm, a pyloric caecal ridge appears which separates the presumptive stomach, which is now showing evidence of gastric gland formation, from the intestine. This marks the beginning of digestive features characteristic of the juvenile stage.  相似文献   

20.
Two Rusitec fermentors were operated under identical conditions. One was seeded with an inoculum of rabbit caecal contents, and the other with bovine rumen contents. The fermentation substrate was rabbit feed that had been digested with amylase and pepsin. The substrate constituents (organic matter, OM and NDF) were lost in 48 h at a significantly higher rate in the presence of rumen inoculum (OM: +10%, NDF: +15%). The pHs of the 2 fermentors were similar at pH 6.6. The fermentors produced similar amounts of protein nitrogen per 24 h, after 6 d of adaptation. Volatile fatty acid production was slightly higher in the presence of rumen inoculum. The fermentor inoculated with rumen contents produced a higher percentage of propionic acid (25%) than of butyric acid (7%), while fermentation with rabbit caecal contents gave the opposite ratio (C3/C4 = 0.81). Consequently, only the rabbit caecal inoculum provided the fermentation profile characteristic of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号