首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We measured hydrolytic rates of four purified cellulases in small increments of temperature (10–50 °C) and substrate loads (0–100 g/liter) and analyzed the data by a steady state kinetic model that accounts for the processive mechanism. We used wild type cellobiohydrolases (Cel7A) from mesophilic Hypocrea jecorina and thermophilic Rasamsonia emersonii and two variants of these enzymes designed to elucidate the role of the carbohydrate binding module (CBM). We consistently found that the maximal rate increased strongly with temperature, whereas the affinity for the insoluble substrate decreased, and as a result, the effect of temperature depended strongly on the substrate load. Thus, temperature had little or no effect on the hydrolytic rate in dilute substrate suspensions, whereas strong temperature activation (Q10 values up to 2.6) was observed at saturating substrate loads. The CBM had a dual effect on the activity. On one hand, it diminished the tendency of heat-induced desorption, but on the other hand, it had a pronounced negative effect on the maximal rate, which was 2-fold larger in variants without CBM throughout the investigated temperature range. We conclude that although the CBM is beneficial for affinity it slows down the catalytic process. Cel7A from the thermophilic organism was moderately more activated by temperature than the mesophilic analog. This is in accord with general theories on enzyme temperature adaptation and possibly relevant information for the selection of technical cellulases.  相似文献   

3.
Thermostability is an important feature in industrial enzymes: it increases biocatalyst lifetime and enables reactions at higher temperatures, where faster rates and other advantages ultimately reduce the cost of biocatalysis. Here we report the thermostabilization of a chimeric fungal family 6 cellobiohydrolase (HJPlus) by directed evolution using random mutagenesis and recombination of beneficial mutations. Thermostable variant 3C6P has a half‐life of 280 min at 75°C and a T50 of 80.1°C, a ~15°C increase over the thermostable Cel6A from Humicola insolens (HiCel6A) and a ~20°C increase over that from Hypocrea jecorina (HjCel6A). Most of the mutations also stabilize the less‐stable HjCel6A, the wild‐type Cel6A closest in sequence to 3C6P. During a 60‐h Avicel hydrolysis, 3C6P released 2.4 times more cellobiose equivalents at its optimum temperature (Topt) of 75°C than HiCel6A at its Topt of 60°C. The total cellobiose equivalents released by HiCel6A at 60°C after 60 h is equivalent to the total released by 3C6P at 75°C after ~6 h, a 10‐fold reduction in hydrolysis time. A binary mixture of thermostable Cel6A and Cel7A hydrolyzes Avicel synergistically and released 1.8 times more cellobiose equivalents than the wild‐type mixture, both mixtures assessed at their respective Topt. Crystal structures of HJPlus and 3C6P, determined at 1.5 and 1.2 Å resolution, indicate that the stabilization comes from improved hydrophobic interactions and restricted loop conformations by introduced proline residues. Biotechnol. Bioeng. 2013; 110: 1874–1883. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
5.
6.
7.
Enzymes that degrade cellulose into glucose are one of the most expensive components of processes for converting cellulosic biomass to fuels and chemicals. Cellulase enzyme Cel7A is the most abundant enzyme naturally employed by fungi to depolymerize cellulose, and like other cellulases is inhibited by its product, cellobiose. There is thus great economic incentive for minimizing the detrimental effects of product inhibition on Cel7A. In this work, we experimentally generated 10 previously proposed site‐directed mutant Cel7A enzymes expected to have reduced cellobiose binding energies (the majority of mutations were to alanine). We then tested their resilience to cellobiose as well as their hydrolytic activities on microcrystalline cellulose. Although every mutation tested conferred reduced product inhibition (and abolished it for some), our results confirm a trade‐off between Cel7A tolerance to cellobiose and enzymatic activity: Reduced product inhibition was accompanied by lower overall enzymatic activity on crystalline cellulose for the mutants tested. The tempering effect of mutations on inhibition was nearly constant despite relatively large differences in activities of the mutants. Our work identifies an amino acid in the Cel7A product binding site of interest for further mutational studies, and highlights both the challenge and the opportunity of enzyme engineering toward improving product tolerance in Cel7A. Biotechnol. Bioeng. 2016;113: 330–338. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

8.
Cellobiohydrolase Cel48C from Paenibacillus sp. BP-23, an enzyme displaying limited activity on most cellulosic substrates, was assayed for activity in the presence of other bacterial endo- or exocellulases. Significant enhanced activity was observed when Cel48C was incubated in the presence of Paenibacillus sp. BP-23 endoglucanase Cel9B or Thermobifida fusca cellulases Cel6A and Cel6B, indicating that Cel48C acts synergistically with them. Maximum synergism rates on bacterial microcrystalline cellulose or filter paper were obtained with a mixture of Paenibacillus cellulases Cel9B and Cel48C, accompanied by T. fusca exocellulase Cel6B. Synergism was also observed in cell extracts from recombinant clone E. coli pUCel9-Cel48 expressing the two contiguous Paenibacillus cellulases Cel9B and Cel48C. The enhanced cellulolytic activity displayed by the cellulase mixtures assayed could be used as an efficient tool for biotechnological applications like pulp and paper manufacturing.  相似文献   

9.
There is a high level of conservation of tryptophans within the active site architecture of the cellulase family, whereas the function of the four tryptophans in the catalytic domain of Cel7A is unclear. By mutating four tryptophan residues in the catalytic domain of Cel7A from Penicillium piceum (PpCel7A), the binding affinity between PpCel7A and p-nitrophenol-d -cellobioside (pNPC) was reduced as determined by Michaelis–Menten constants, molecular dynamics simulations, and fluorescence spectroscopy. Furthermore, PpCel7A variants showed a reduced level of cellobiohydrolase (CBH) activity against cellulose analogs or natural cellulose. Therefore, it could be concluded four tryptophan residues in Cel7A played a critical role in substrate binding. Mutagenesis results indicated that the W390 stacking interactions at the −2 site played an essential role in facilitating substrate distortion to the −1 site. As soon as the function was altered, the mutation would inevitably affect the catalytic activity against the natural substrate. Interestingly, no clear relationship was found between the CBH activity of PpCel7A variants against pNPC and Avicel. p-Nitrophenol contains many electrophilic groups that may result in overestimation of the binding constant between tryptophan residues and pNPC in comparison with the natural substrate. Consequently, screening improved cellulase using cellulose analogs would divert attention from the target direction for lignocellulose biorefinery. Clarifying mechanism of catalytic diversity on the natural cellulose or cellulose analogs may give better insight into cellulase screening and selecting strategy.  相似文献   

10.
Interest in generating lignocellulosic biofuels through enzymatic hydrolysis continues to rise as nonrenewable fossil fuels are depleted. The high cost of producing cellulases, hydrolytic enzymes that cleave cellulose into fermentable sugars, currently hinders economically viable biofuel production. Here, we report the crystal structure of a prevalent endoglucanase in the biofuels industry, Cel5A from the filamentous fungus Hypocrea jecorina. The structure reveals a general fold resembling that of the closest homolog with a high-resolution structure, Cel5A from Thermoascus aurantiacus. Consistent with previously described endoglucanase structures, the H. jecorina Cel5A active site contains a primarily hydrophobic substrate binding groove and a series of hydrogen bond networks surrounding two catalytic glutamates. The reported structure, however, demonstrates stark differences between side-chain identity, loop regions, and the number of disulfides. Such structural information may aid efforts to improve the stability of this protein for industrial use while maintaining enzymatic activity through revealing nonessential and immutable regions.  相似文献   

11.
12.
The -amino group of the carbohydrate-binding module (CBM) from Phanerochaete chrysosporium cellulase Cel7D was covalently labelled with fluorescein isothiocyanate. The fluorescein-labelled CBM was characterised regarding substrate binding, showing specificity only to cellulose and not to mannan and xylan. Conjugation of fluorescein isothiocyanate to CBM did not affect its binding to cellulose. The labelled CBM was successfully used as a probe for detecting cellulose in lignocellulose material such as never dried spruce and birch wood as well as pulp fibres.  相似文献   

13.
14.
The apical domain of the chaperonin, GroEL, fused to the carbohydrate binding module type II, CBDCex, of Cellulomonas fimi, was expressed in Escherichia coli. The recombinant protein, soluble or from inclusion bodies, was directly purified and immobilized in microcrystalline cellulose particles or cellulose fabric membranes. Assisted refolding of rhodanese by the immobilized mini-chaperone showed a two-fold improvement as compared to a control. Using chromatographic refolding, 35% of rhodanese activity was recovered in only 5 min (mean residence time) as compared to 17% for spontaneous refolding. This mini-chaperone immobilized in cellulose could be a cost-efficient method to refold recombinant proteins expressed as inclusion bodies.  相似文献   

15.
The hydrolysis of cellulose by processive cellulases, such as exocellulase TrCel7A from Trichoderma reesei, is typically characterized by an initial burst of high activity followed by a slowdown, often leading to incomplete hydrolysis of the substrate. The origins of these limitations to cellulose hydrolysis are not yet fully understood. Here, we propose a new model for the initial phase of cellulose hydrolysis by processive cellulases, incorporating a bound but inactive enzyme state. The model, based on ordinary differential equations, accurately reproduces the activity burst and the subsequent slowdown of the cellulose hydrolysis and describes the experimental data equally well or better than the previously suggested model. We also derive steady-state expressions that can be used to describe the pseudo-steady state reached after the initial activity burst. Importantly, we show that the new model predicts the existence of an optimal enzyme-substrate affinity at which the pseudo-steady state hydrolysis rate is maximized. The model further allows the calculation of glucose production rate from the first cut in the processive run and reproduces the second activity burst commonly observed upon new enzyme addition. These results are expected to be applicable also to other processive enzymes.  相似文献   

16.
17.
Cellobiohydrolase from Melanocarpus albomyces (Cel7B) is a thermostable, single-module, cellulose-degrading enzyme. It has relatively low catalytic activity under normal temperatures, which allows structural studies of the binding of unmodified substrates to the native enzyme. In this study, we have determined the crystal structure of native Ma Cel7B free and in complex with three different cello-oligomers: cellobiose (Glc2), cellotriose (Glc3), and cellotetraose (Glc4), at high resolution (1.6–2.1 Å). In each case, four molecules were found in the asymmetric unit, which provided 12 different complex structures. The overall fold of the enzyme is characteristic of a glycoside hydrolase family 7 cellobiohydrolase, where the loops extending from the core β-sandwich structure form a long tunnel composed of multiple subsites for the binding of the glycosyl units of a cellulose chain. The catalytic residues at the reducing end of the tunnel are conserved, and the mechanism is expected to be retaining similarly to the other family 7 members. The oligosaccharides in different complex structures occupied different subsite sets, which partly overlapped and ranged from −5 to +2. In four cellotriose and one cellotetraose complex structures, the cello-oligosaccharide also spanned over the cleavage site (−1/+1). There were surprisingly large variations in the amino acid side chain conformations and in the positions of glycosyl units in the different cello-oligomer complexes, particularly at subsites near the catalytic site. However, in each complex structure, all glycosyl residues were in the chair (4C1) conformation. Implications in relation to the complex structures with respect to the reaction mechanism are discussed.  相似文献   

18.
刘刚  李云  张燕 《生物技术》2006,16(6):11-14
目的:建立红色荧光蛋白在里氏木霉中的表达方法,为深入研究里氏木霉中纤维素酶的合成机理打下基础。方法:采用PCR方法分离了里氏木霉纤维二糖水解酶Ⅰ(CBHI)的启动子(Pcbh1)和终止序列(Tcbh1),将这两个片段与红色荧光蛋白(DsRed)的基因连接,得到Pcbh1-DsRed-Tcbh1表达盒。用此表达盒和质粒pAN7—1对里氏木霉QM9414的原生质体进行共转化,并用含100μg/ml潮霉素B的选择性平板进行筛选。结果:经筛选得到20个抗性转化子,在乳糖的诱导下有5个转化子可以表达红色荧光蛋白。对插入片段进行了扩增和序列测定,结果表明DsRed通过同源重组整合到了转化子的基因组DNA上,并处于cbh1启动子的下游。结论:通过cbh1启动子可以实现红色荧光蛋白在里氏木霉细胞内的稳定表达。  相似文献   

19.
The family 2a carbohydrate-binding module (CBM), Cel5ACBM2a, from the C-terminus of Cel5A from Cellulomonas fimi, and Xyn10ACBM2a, the family 2a CBM from the C-terminus of Xyn10A from C. fimi, were compared as fusion partners for proteins produced in the methylotrophic yeast Pichia pastoris. Gene fusions of murine stem-cell factor (SCF) with both CBMs were expressed in P. pastoris. The secreted SCF-Xyn10ACBM2a polypeptides were highly glycosylated and bound poorly to cellulose. In contrast, fusion of SCF to Cel5ACBM2a, which lacks potential N-linked glycosylation sites, resulted in the production of polypeptides which bound tightly to cellulose. Cloning and expression of these CBM2a in P. pastoris without a fusion partner confirmed that N-linked glycosylation at several sites was responsible for the poor cellulose binding. The nonglycosylated CBMs produced in E. coli had very similar cellulose-binding properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号