首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Infectious diseases and cancers are leading causes of death and pose major challenges to public health. The human peptidome encompasses millions of compounds that display an enormous structural and functional diversity and represents an excellent source for the discovery of endogenous agents with antimicrobial and/or anticancer activity. Here, we discuss how to exploit the human peptidome for novel antimicrobial and anticancer agents through the generation of peptide libraries from human body fluids and tissues and stepwise purification of bioactive compounds.  相似文献   

3.
4.
Sensitive and specific diagnosis and monitoring of disease progression are of prime importance to develop new therapies for Alzheimer's disease patients. Although the diagnostic accuracy, verified by pathological examination is high, it is currently not possible to diagnose Alzheimer's disease with a high degree of certainty until relatively late in the disease process. Here, we have undertaken a peptidome analysis of postmortem cerebrospinal fluid of neuropathologically confirmed Alzheimer's disease patients and non-demented controls using a combination of methods and technologies. This includes novel sample preparation based on the enrichment of endogenous, proteolytically derived peptides as well as peptides non-covalently bound to abundant proteins. We observed differences in peptide profiles associated with Alzheimer's disease in the endogenous peptide fraction and in the protein-bound peptide fraction. The discriminating peptides in the unbound peptide fraction were identified as VGF nerve growth factor inducible precursor, and complement C4 precursor, whereas the discriminating peptides in the protein-bound fraction were identified as VGF nerve growth factor inducible precursor, and alpha-2-HS-glycoprotein.  相似文献   

5.
Integrated analysis of the cerebrospinal fluid peptidome and proteome   总被引:1,自引:0,他引:1  
Cerebrospinal fluid (CSF) is the only body fluid in direct contact with the brain and thus is a potential source of biomarkers. Furthermore, CSF serves as a medium of endocrine signaling and contains a multitude of regulatory peptides. A combined study of the peptidome and proteome of CSF or any other body fluid has not been reported previously. We report confident identification in CSF of 563 peptide products derived from 91 precursor proteins as well as a high confidence CSF proteome of 798 proteins. For the CSF peptidome, we use high accuracy mass spectrometry (MS) for MS and MS/MS modes, allowing unambiguous identification of neuropeptides. Combination of the peptidome and proteome data suggests that enzymatic processing of membrane proteins causes release of their extracellular parts into CSF. The CSF proteome has only partial overlap with the plasma proteome, thus it is produced locally rather than deriving from plasma. Our work offers insights into CSF composition and origin.  相似文献   

6.
The presence and antimicrobial activity of antimicrobial peptides (AMPs) has been widely recognized as an evolutionary preserved part of the innate immune system. Based on evidence in animal models and humans, AMPs are now positioned as novel anti-infective agents. The current study aimed to evaluate the potential antimicrobial activity of ubiquicidin and small synthetic fragments thereof towards methicillin resistant Staphylococcus aureus (MRSA), as a high priority target for novel antibiotics. In vitro killing of MRSA by synthetic peptides derived from the alpha-helix or beta-sheet domains of the human cationic peptide ubiquicidin (UBI 1-59), allowed selection of AMPs for possible treatment of MRSA infections. The strongest antibacterial activity was observed for the entire peptide UBI 1-59 and for synthetic fragments comprising amino acids 31-38. The availability, chemical synthesis opportunities, and size of these small peptides, combined with their strong antimicrobial activity towards MRSA make these compounds promising candidates for antimicrobial therapy and detection of infections in man.  相似文献   

7.
Peptides have a role in the inflammatory response, tumor biology, and endocrine processes, presenting them as appealing biomarker candidates. However, peptide extraction efficacy for clinical profiling remains a pivotal technological challenge, as maximum coverage of the plasma peptidome is limited by a range of factors including the inherent complexity of human plasma and the lower concentration of peptides compared to abundant proteins. The aim of this study was to evaluate commonly employed peptide extraction methodologies in terms of total number of peptides detected and the mass range of peptides observed by MALDI. Despite showing coelution of proteins, solid-phase extraction (SPE) methods exhibited superior plasma peptide recovery than ultrafiltration, acetonitrile (ACN) precipitation, or size-exclusion chromatography methods under conditions employed in the study. Not surprisingly, in line with studies challenging the veracity of many peptide biomarker studies, the majority of identified peptides eluted from SPE methods corresponded to proteolytic truncations of the most abundant plasma proteins. The prefractionation of plasma with acetonitrile precipitation prior to SPE provided distinct ion signal profiles and is worthy of further study. In conclusion, this study favors the use of SPE in peptide extraction protocols for increased biomarker coverage and diversity from the plasma peptidome.  相似文献   

8.
Antimicrobial properties of peptides from Xenopus granular gland secretions   总被引:8,自引:0,他引:8  
E Soravia  G Martini  M Zasloff 《FEBS letters》1988,228(2):337-340
Previously, we described a family of novel broad spectrum antimicrobial peptides, magainins, from the skin of Xenopus laevis. In this report we show that at least two other Xenopus peptides, present in the skin and its secretions, PGLa and a peptide released from the xenopsin precursor, exhibit antimicrobial properties comparable to the magainins. The identification of these newer members provides insight into the structural diversity of vertebrate antimicrobial peptides.  相似文献   

9.
Peptides with antimicrobial properties are present in most if not all plant species. All plant antimicrobial peptides isolated so far contain even numbers of cysteines (4, 6, or 8), which are all pairwise connected by disulfide bridges, thus providing high stability to the peptides. Based on homologies at the primary structure level, plant antimicrobial peptides can be classified into distinct families including thionins, plant defensins, lipid transfer proteins, and he vein- and knottin-type antimicrobial peptides. Detailed three-dimensional structure information has been obtained for one or more members of these peptide families. All antimicrobial peptides studied thus far appear to exert their antimicrobial effect at the level of the plasma membrane of the target microorganism, but the different peptide types are likely to act via different mechanisms. Antimicrobial peptides can occur in all plant organs. In unstressed organs, antimicrobial peptides are usually most abundant in the outer cell layer lining the organ, which is consistent with a role for the antimicrobial peptides in constitutive host defense against microbial invaders attacking from the outside. Thionins are predominantly located intracellularly but are also found in the extracellular space, whereas most plant defensins and lipid transfer proteins are deposited exclusively in the extracellular space. In a number of plant species, a strong induction of genes expressing either thionins, plant defensins, or lipid transfer proteins has been observed on infection of the leaves by microbial pathogens. Hence, antimicrobial peptides can also take part in the inducible defense response of plants. Constitutive expression in transgenic plants of heterologous antimicrobial peptide genes has been achieved, which in some cases has led to enhanced resistance to particular microbial plant pathogens.  相似文献   

10.
11.
The skin secretion of the frog Xenopus laevis has been fractionated by reverse-phase HPLC and the most polar components studied by fast-atom-bombardment mass spectrometry (FAB/MS). Esterification of the hydrophilic peptides with methanol and ethanol was employed to improve the sensitivity of the technique. A number of small, highly acidic peptides have been identified, and alcoholysis of the peptide bonds within a number of these permitted their sequencing by FAB/MS. The sequences confirmed that they originate from acidic spacer regions found in the precursors to peptide hormones, such as caerulein, which have already been found in the secretion. In addition, acidic peptides derived from the spaces of the precursor to the antimicrobial peptides, PGS (or the magainins) have been isolated. The release of these from the preprotein cannot be fully accounted for by documented processing mechanisms, suggesting that a novel type of cleavage site has been identified.  相似文献   

12.
Advances in mass spectrometry and the availability of genomic databases made it possible to determine the peptidome or peptide content of a specific tissue. Peptidomics by nanoflow capillary liquid chromatography tandem mass spectrometry of an extract of 50 larval Drosophila brains, yielded 28 neuropeptides. Eight were entirely novel and encoded by five not yet annotated genes; only two genes had a homologue in the Anopheles gambiae genome. Seven of the eight peptides did not show relevant sequence homology to any known peptide. Therefore, no evidence towards the physiological role of these 'orphan' peptides was available. We identified one of the eight peptides, IPNamide, in an extract of the Drosophila adult brain as well. Next, specific antisera were raised to reveal the distribution pattern of IPNamide and other peptides from the same precursor, in larval and adult brains by means of whole-mount immunocytochemistry and confocal microscopy. IPNamide immunoreactivity is abundantly present in both stages and a striking similarity was found between the distribution patterns of IPNamide and TPAEDFMRFamide, a member of the FMRFamide peptide family. Based on this distribution pattern, IPNamide might be involved in phototransduction, in processing sensory stimuli, as well as in controlling the activity of the oesophagus.  相似文献   

13.
Scorpion venom peptides without disulfide bridges   总被引:1,自引:0,他引:1  
Zeng XC  Corzo G  Hahin R 《IUBMB life》2005,57(1):13-21
Several hundred disulfide-bridged neurotoxic peptides have been characterized from scorpion venom; however, only few scorpion venom peptides without disulfide bridges have been identified and characterized. These non-disulfide-bridged peptides (NDBPs) are a novel class of molecules because of their unique antimicrobial, immunological or cellular signaling activities. This review provides an overview of their structural simplicity, precursor processing, biological activities and evolution, and sheds insight into their potential clinical and agricultural applications. Based on their pharmacological activities and peptide size similarity, we have classified these peptides into six subfamilies.  相似文献   

14.
Mass spectrometric methods were applied to determine the peptidome of the brain and thoracic ganglion of the Jonah crab (Cancer borealis). Fractions obtained by high performance liquid chromatography were characterized using MALDI-TOF MS and ESI-Q-TOF MS/MS. In total, 28 peptides were identified within the molecular mass range 750-3000Da. Comparison of the molecular masses obtained with MALDI-TOF MS with the calculated molecular masses of known crustacean peptides revealed the presence of at least nine allatostatins, three orcokinin precursor derived peptides, namely FDAFTTGFGHS, [Ala(13)]-orcokinin, and [Val(13)]-orcokinin, and two kinins, a tachykinin-related peptide and four FMRFamide-related peptides. Eight other peptides were de novo sequenced by collision induced dissociation on the Q-TOF system and yielded AYNRSFLRFamide, PELDHVFLRFamide or EPLDHVFLRFamide, APQRNFLRFamide, LNPFLRFamide, DVRTPALRLRFamide, and LRNLRFamide, which belong to the FMRFamide related peptide family, as well as NFDEIDRSGFA and NFDEIDRSSFGFV, which display high sequence similarity to peptide sequences within the orcokinin precursor of Orconectes limosus. Our paper is the first (neuro)peptidomic analysis of the crustacean nervous system.  相似文献   

15.
Completion of the Caenorhabditis elegans genome sequencing project in 1998 has provided more insight into the complexity of nematode neuropeptide signaling. Several C. elegans neuropeptide precursor genes, coding for approximately 250 peptides, have been predicted from the genomic database. One can, however, not deduce whether all these peptides are actually expressed, nor is it possible to predict all post-translational modifications. Using two dimensional nanoscale liquid chromatography combined with tandem mass spectrometry and database mining, we analyzed a mixed stage C. elegans extract. This peptidomic setup yielded 21 peptides derived from formerly predicted neuropeptide-like protein (NLP) precursors and 28 predicted FMRFamide-related peptides. In addition, we were able to sequence 11 entirely novel peptides derived from nine peptide precursors that were not predicted or identified in any way previously. Some of the identified peptides display profound sequence similarities with neuropeptides from other invertebrates, indicating that these peptides have a long evolutionary history.  相似文献   

16.
Peptidomics techniques have allowed the identification of thousands of peptides that are derived from proteins in body fluids, despite the considerable challenges behind sample handling, MS‐based identification, data analysis, and integration with bioinformatics tools. Body fluids’ naturally occurring peptides are known to perform a variety of local and systemic functions; however, its knowledge is limited. Even so, the biological meaning that can be retrieved from peptidomics applied to the identification of disease markers and to the development of therapies using peptides has driven the progresses made in this field. In this review, a comparative analysis of body fluids’ peptidome data retrieved from databases and from scientific papers is performed to identify the biological processes modulated by naturally occurring peptides. This integrative analysis highlights several interesting facts, such as the small overlap between blood‐derived serum and plasma, which illustrates the impact of sample handling on these fluids peptidome. Urine is the body fluid with more naturally occurring peptides identified so far, most of which are derived from collagens. In saliva, the majority of peptides are originated from extracellular matrix proteins. Cerebrospinal fluid presents a high number of peptides derived from distinct proteins, mostly involved in the regulation of nervous system homeostasis. The lowest number of endogenous peptides was found in tears, most of which present antimicrobial activity. Collectively, data analysis highlights a peptidome signature for each body fluid, which comprehension will certainly help to improve disease management.  相似文献   

17.
Anti-infection peptidomics of amphibian skin   总被引:1,自引:0,他引:1  
Peptidomics and genomics analyses were used to study an anti-infection array of peptides of amphibian skin. 372 cDNA sequences of antimicrobial peptides were characterized from a single individual skin of the frog Odorrana grahami that encode 107 novel antimicrobial peptides. This contribution almost triples the number of currently reported amphibian antimicrobial peptides. The peptides could be organized into 30 divergent groups, including 24 novel groups. The diversity in peptide coding cDNA sequences is, to our knowledge, the most extreme yet described for any animal. The patterns of diversification suggest that point mutations as well as insertion, deletion, and "shuffling" of oligonucleotide sequences were responsible for the diversity. The diversity of antimicrobial peptides may have resulted from the diversity of microorganisms. These diverse peptides exhibited both diverse secondary structure and "host defense" properties. Such extreme antimicrobial peptide diversity in a single amphibian species is amazing. This has led us to reconsider the strong capability of innate immunity and molecular genetics of amphibian ecological diversification and doubt the general opinion that 20-30 different antimicrobial peptides can protect an animal because of the relatively wide specificity of the peptide antibiotics. The antimicrobial mechanisms of O. grahami peptides were investigated. They exerted their antimicrobial functions by various means, including forming lamellar mesosome-like structures, peeling off the cell walls, forming pores, and inducing DNA condensation. With respect to the development of antibiotics, these peptides provide potential new templates to explore further.  相似文献   

18.
Antimicrobial peptide diversity has been found in some amphibians. The diversity of antimicrobial peptides may have resulted from the diversity of microorganisms encountered by amphibians. Peptidomics and genomics analyses were used to study antimicrobial peptide diversity in the skin secretions of the torrent frog, Amolops jingdongensis. Thirty-one antimicrobial peptides belonging to nine groups were identified in the skin secretions of this frog. Among them, there are two novel antimicrobial groups (jingdongin-1 and -2) with unique structural motifs. The other seven groups belong to known antimicrobial peptide families, namely brevinin-1, brevinin-2, odorranain-F, esculentin-2, temporin, amolopin-3, and ranacyclin. Combined with previous reports, more than 13 antimicrobial peptide groups have been identified from the genus Amolops. Most of these antimicrobial peptide groups are also found in amphibians belonging to the genus Rana or Odorrana which suggests a possible evolutionary connection among Amolops, Rana, and Odorrana. Two novel antimicrobial groups (jingdongin-1 and -2) were synthesized and their antimicrobial activities were assayed. Some of them showed strong antimicrobial abilities against microorganisms including Gram-negative and -positive bacteria, and fungi. The extreme diversity of antimicrobial peptides in the Amolops amphibians was demonstrated. In addition, several novel peptide templates were provided for antimicrobial agent design.  相似文献   

19.
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell‐to‐cell communication over short distances, and also for long‐range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post‐translationally modified peptides. These peptides are derived from inactive pre‐pro‐peptides of approximately 70–120 amino acids. Multiple post‐translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.  相似文献   

20.
In addition to the numerous cathelicidin peptides that are associated with the antimicrobial activity exhibited by a crude extract from ovine blood, a further three peptides with antimicrobial activity have been identified. These were part of the precursor cathelin domain of cathelicidins, a large fragment of platelet factor 4 and a small peptide similar to signal peptide of the T-cell glycoprotein CD4 precursor. Fragments of proteins that are involved in protecting the host from infection may have a secondary purpose as antimicrobial agents once they have carried out their primary purpose and are cleaved the main protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号