首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few studies have examined exodermal development in relation to the formation of barriers to both radial oxygen loss (ROL) and solute penetration along growing roots. Here, we report on the structural development, chemical composition and functional properties of the exodermis in two diverse wetland grasses, Glyceria maxima and Phragmites australis. Anatomical features, development, the biochemical composition of exodermal suberin and the penetration of apoplastic tracers and oxygen were examined. Striking interspecific differences in exodermal structure, suberin composition and quantity per unit surface area, and developmental changes along the roots were recorded. Towards the root base, ROL and periodic acid (H(5)IO(6)) penetration were virtually stopped in P. australis; in G. maxima, a tight ROL barrier restricted but did not stop H(5)IO(6) penetration and the exodermis failed to stain with lipidic dyes. Cultivation in stagnant deep hypoxia conditions or oxygenated circulating solution affected the longitudinal pattern of ROL profiles in G. maxima but statistically significant changes in exodermal suberin composition or content were not detected. Interspecific differences in barrier performance were found to be related to hypodermal structure and probably to qualitative as well as quantitative variations in suberin composition and distribution within exodermal cell walls. Implications for root system function are discussed, and it is emphasized that sufficient spatial resolution to identify the effects of developmental changes along roots is crucial for realistic evaluation of exodermal barrier properties.  相似文献   

2.
Apoplastic transport barriers in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix) were isolated enzymatically. Following chemical degradation (monomerization, derivatization), the amounts of aliphatic and aromatic suberin monomers were analysed quantitatively by gas chromatography and mass spectrometry. In corn, suberin was determined for isolated endodermal (ECW) and rhizo-hypodermal (RHCW) cell walls. In rice, the strong lignification of the central cylinder (CC), did not allow the isolation of endodermal cell walls. Similarly, exodermal walls could not be separated from the rhizodermal and sclerenchyma cell layers. Suberin analyses of ECW and RHCW of rice, thus, refer to either the entire CC or to the entire outer part of the root (OPR), the latter lacking the inner cortical cell layer. In both species, aromatic suberin was mainly composed of coumaric and ferulic acids. Aliphatic suberin monomers released from rice and corn belonged to five substance classes: primary fatty acids, primary alcohols, diacids, omega-hydroxy fatty acids, and 2-hydroxy fatty acids, with omega-hydroxy fatty acids being the most prominent substance class. Qualitative composition of aliphatic suberin of rice was different from that of corn; (i) it was much less diverse, and (ii) besides monomers with chain lengths of C(16), a second maximum of C(28) was evident. In corn, C(24) monomers represented the most prominent class of chain lengths. When suberin quantities were related to surface areas of the respective tissues of interest (hypodermis and/or exodermis and endodermis), exodermal cell walls of rice contained, on average, six-times more aliphatic suberin than those of corn. In endodermal cell walls, amounts were 34 times greater in rice than in corn. Significantly higher amounts of suberin detected in the apoplastic barriers of rice corresponded with a substantially lower root hydraulic conductivity (Lp(r)) compared with corn, when water flow was driven by hydrostatic pressure gradients across the apoplast. As the OPR of rice is highly porous and permeable to water, it is argued that this holds true only for the endodermis. The results imply that some caution is required when discussing the role of suberin in terms of an efficient transport barrier for water. The simple view that only the quantity of suberin present is important, may not hold. A more detailed consideration of both the chemical nature of suberins and of the microstructure of deposits is required, i.e. how suberins impregnate wall pores.  相似文献   

3.
Meyer CJ  Peterson CA  Bernards MA 《Planta》2011,233(4):773-786
Iris germanica roots develop a multiseriate exodermis (MEX) in which all mature cells contain suberin lamellae. The location and lipophilic nature of the lamellae contribute to their function in restricting radial water and solute transport. The objective of the current work was to identify and quantify aliphatic suberin monomers, both soluble and insoluble, at specific stages of MEX development and under differing growth conditions, to better understand aliphatic suberin biosynthesis. Roots were grown submerged in hydroponic culture, wherein the maturation of up to three exodermal layers occurred over 21 days. In contrast, when roots were exposed to a humid air gap, MEX maturation was accelerated, occurring within 14 days. The soluble suberin fraction included fatty acids, alkanes, fatty alcohols, and ferulic acid, while the suberin poly(aliphatic) domain (SPAD) included fatty acids, α,ω-dioic acids, ω-OH fatty acids, and ferulic acid. In submerged roots, SPAD deposition increased with each layer, although the composition remained relatively constant, while the composition of soluble components shifted toward increasing alkanes in the innermost layers. Air gap exposure resulted in two significant shifts in suberin composition: nearly double the amount of SPAD monomers across all layers, and almost three times the alkane accumulation in the first layer. The localized and abundant deposition of C18:1 α,ω-dioic and ω-OH fatty acids, along with high accumulation of intercalated alkanes in the first mature exodermal layer of air gap-exposed roots indicate its importance for water retention under drought compared with underlying layers and with entire layers developing under water.  相似文献   

4.
Radial hydraulic conductivity along developing onion roots   总被引:24,自引:0,他引:24  
Although most studies have shown that water uptake varies along the length of a developing root, there is no consistent correlation of this pattern with root anatomy. In the present study, water movement into three zones of onion roots was measured by a series of mini-potometers. Uptake was least in the youngest zone (mean hydraulic conductivity, Lpr = 1.5 x 10(-7) +/- 0.34 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots) in which the endodermis had developed only Casparian bands and the exodermis was immature. Uptake was significantly greater in the middle zone (Lpr = 2.4 x 10(-7) +/- 0.43 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots) which had a mature exodermis with both Casparian bands and suberin lamellae, and continued at this level in the oldest zone in which the endodermis had also developed suberin lamellae (Lpr = 2.8 x 10(-7) +/- 0.30 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots). Measurements of the hydraulic conductivities of individual cells (Lp) in the outer cortex using a cell pressure probe indicated that this parameter was uniform in all three zones tested (Lp = 1.3 x 10(-6) +/- 0.01 x 10(-6) m MPa-1 s-1; +/- SE, n = 60 cells). Lp of the youngest zone was lowered by mercuric chloride treatment, indicating the involvement of mercury-sensitive water channels (aquaporins). Water flow in the older two root zones measured by mini-potometers was also inhibited by mercuric chloride, despite the demonstrated impermeability of their exodermal layers to this substance. Thus, water channels in the epidermis and/or exodermis of the older regions were especially significant for water flow. The results of this and previous studies are discussed in terms of two models. The first, which describes maize root with an immature exodermis, is the 'uniform resistance model' where hydraulic resistances are evenly distributed across the root cylinder. The second, which describes the onion root with a mature exodermis, is the 'non-uniform resistance model' where resistances can be variable and are concentrated in a certain layer(s) on the radial path.  相似文献   

5.

Background and Aims

Silicon (Si) has been shown to ameliorate the negative influence of cadmium (Cd) on plant growth and development. However, the mechanism of this phenomenon is not fully understood. Here we describe the effect of Si on growth, and uptake and subcellular distribution of Cd in maize plants in relation to the development of root tissues.

Methods

Young maize plants (Zea mays) were cultivated for 10 d hydroponically with 5 or 50 µm Cd and/or 5 mm Si. Growth parameters and the concentrations of Cd and Si were determined in root and shoot by atomic absorption spectrometry or inductively coupled plasma mass spectroscopy. The development of apoplasmic barriers (Casparian bands and suberin lamellae) and vascular tissues in roots were analysed, and the influence of Si on apoplasmic and symplasmic distribution of 109Cd applied at 34 nm was investigated between root and shoot.

Key Results

Si stimulated the growth of young maize plants exposed to Cd and influenced the development of Casparian bands and suberin lamellae as well as vascular tissues in root. Si did not affect the distribution of apoplasmic and symplasmic Cd in maize roots, but considerably decreased symplasmic and increased apoplasmic concentration of Cd in maize shoots.

Conclusions

Differences in Cd uptake of roots and shoots are probably related to the development of apoplasmic barriers and maturation of vascular tissues in roots. Alleviation of Cd toxicity by Si might be attributed to enhanced binding of Cd to the apoplasmic fraction in maize shoots.  相似文献   

6.
Hypoxia can stimulate the development of a suberized exodermis in aquatic plants; however, its influence on this aspect of terrestrial root development is sparsely documented. To determine the effects of hypoxia on maize (Zea mays cv. Seneca Horizon) roots, seedlings were grown in vermiculite (VERM), aerated hydroponics (AER), stagnant hydroponics with agar (STAG), or aerated hydroponics with agar (AERAG). The endo- and exodermis were examined for wall modifications. Lateral root emergence and aerenchyma formation were documented qualitatively. The endodermal Casparian band formation was unaffected by treatment. Endodermal and exodermal suberin lamella formation was earliest and most extensive in VERM. Suberization, especially in the exodermis of aerated treatments, was depressed in all hydroponic media. In comparison with AER, STAG exodermal lamellae were increased, but endodermal lamellae were decreased. Since the suberized exodermis forms a barrier to radial oxygen loss from roots to the medium, its stimulation in STAG roots (which also developed extensive aerenchyma) would help retain oxygen in the root. The reduction of endodermal lamellae should facilitate oxygen diffusion into the stele. Clearly, the response to environmental conditions is variable within individual cortical cell layers. Additionally, the observed patterns of lamellae, aerenchyma and lateral root development indicate a tight radial co-ordination of root development.  相似文献   

7.
When the basal zones of 4-d-old hydroponically grown maize ( Zea mays L. cv. Seneca Horizon) roots were exposed to moist air for 2 d, the development of both endodermis and exodermis was affected. In the endodermis, Casparian bands enlarged and more cells developed suberin lamellae. The most striking effect was seen in the exodermis. In submerged controls, only 4% of the cells had Casparian bands, whereas in root regions exposed to air, 93% developed these structures. Similarly, in submerged roots 11% of the exodermal cells had either developing or mature suberin lamellae compared with 92% in the air-treated region. The majority of epidermal cells remained alive in the zone exposed to air. Some cell death had occurred earlier in the experiment when the seedlings were transferred from vermiculite to hydroponic culture. The precise stimulus(i) associated with the air treatment which led to accelerated development in both endodermis and exodermis is as yet unknown.  相似文献   

8.

Background and Aims

Many wetland species form aerenchyma and a barrier to radial O2 loss (ROL) in roots. These features enhance internal O2 diffusion to the root apex. Barrier formation in rice is induced by growth in stagnant solution, but knowledge of the dynamics of barrier induction and early anatomical changes was lacking.

Methods

ROL barrier induction in short and long roots of rice (Oryza sativa L. ‘Nipponbare’) was assessed using cylindrical root-sleeving O2 electrodes and methylene blue indicator dye for O2 leakage. Aerenchyma formation was also monitored in root cross-sections. Microstructure of hypodermal/exodermal layers was observed by transmission electron microscopy (TEM).

Key Results

In stagnant medium, barrier to ROL formation commenced in long adventitious roots within a few hours and the barrier was well formed within 24 h. By contrast, barrier formation took longer than 48 h in short roots. The timing of enhancement of aerenchyma formation was the same in short and long roots. Comparison of ROL data and subsequent methylene blue staining determined the apparent ROL threshold for the dye method, and the dye method confirmed that barrier induction was faster for long roots than for short roots. Barrier formation might be related to deposition of new electron-dense materials in the cell walls at the peripheral side of the exodermis. Histochemical staining indicated suberin depositions were enhanced prior to increases in lignin.

Conclusions

As root length affected formation of the barrier to ROL, but not aerenchyma, these two acclimations are differentially regulated in roots of rice. Moreover, ROL barrier induction occurred before histochemically detectable changes in putative suberin and lignin deposits could be seen, whereas TEM showed deposition of new electron-dense materials in exodermal cell walls, so structural changes required for barrier functioning appear to be more subtle than previously described.  相似文献   

9.
The objective of this study was to assess the effect of different Cd and Si concentrations on the maize plants. The following Cd and/or Si treatments were used: 5 Cd; 10 Cd; 100 Cd; 5 Cd + 0.08 Si; 10 Cd + 0.08 Si; 100 Cd + 5 Si treatments (Cd concentration in μM, Si concentration in mM). The plant growth, photosynthetic pigments content, antioxidant enzymes activities (POX, SOD, CAT), Cd and Si accumulation, translocation and cell wall deposition of the maize plants was observed. Changes in the endodermal cell walls development and late metaxylem elements lignification due to Cd and/or Si treatment were also evaluated. The negative effect of Cd (5 and 10 μM) on the growth parameters was alleviated by Si at 0.08 mM. The positive effect of Si was not observed at higher Cd and Si concentrations. This indicates that the alleviating effect of Si on Cd toxicity depends on the Cd and Si concentrations. Plants responded to Cd toxicity by an increase of antioxidant enzyme activity. Silicon addition in Cd + Si treatment stimulated an increase in the activity of antioxidant enzymes in comparison with the Cd treatment. Chlorophyll and carotenoid content in the Cd treated plants was not significantly affected by Si. The young maize plants retained much more Cd in their roots as they translocated into the shoots. 5 Cd + 0.08 Si and 10 Cd + 0.08 Si treatments correlated with an increase in Cd concentration in the roots and shoots, and in the cell walls. Silicon caused a slight decrease of the Cd translocation into the shoots in 5 Cd + 0.08 Si and 10 Cd + 0.08 Si treatments. Negative correlation between the root Cd cell wall deposition and Cd translocation was observed. Cadmium and/or Si altered root anatomy. Cadmium enhanced suberin lamellae development and late metaxylem lignification; silicon in Cd + Si treatments accelerated suberin lamellae deposition and enhanced the tertiary endodermal cell walls formation in comparison with Cd treatments. Negative correlation between the endodermal cell walls development and Cd translocation was observed.  相似文献   

10.
Rice is an important crop that is very sensitive to salinity. However, some varieties differ greatly in this feature, making investigations of salinity tolerance mechanisms possible. The cultivar Pokkali is salinity tolerant and is known to have more extensive hydrophobic barriers in its roots than does IR20, a more sensitive cultivar. These barriers located in the root endodermis and exodermis prevent the direct entry of external fluid into the stele. However, it is known that in the case of rice, these barriers are bypassed by most of the Na(+) that enters the shoot. Exposing plants to a moderate stress of 100 mM NaCl resulted in deposition of additional hydrophobic aliphatic suberin in both cultivars. The present study demonstrated that Pokkali roots have a lower permeability to water (measured using a pressure chamber) than those of IR20. Conditioning plants with 100 mM NaCl effectively reduced Na(+) accumulation in the shoot and improved survival of the plants when they were subsequently subjected to a lethal stress of 200 mM NaCl. The Na(+) accumulated during the conditioning period was rapidly released when the plants were returned to the control medium. It has been suggested that the location of the bypass flow is around young lateral roots, the early development of which disrupts the continuity of the endodermal and exodermal Casparian bands. However, in the present study, the observed increase in lateral root densities during stress in both cultivars did not correlate with bypass flow. Overall the data suggest that in rice roots Na(+) bypass flow is reduced by the deposition of apoplastic barriers, leading to improved plant survival under salt stress.  相似文献   

11.
Melchior W  Steudle E 《Plant physiology》1993,101(4):1305-1315
The hydraulic architecture of developing onion (Allium cepa L. cv Calypso) roots grown hydroponically was determined by measuring axial and radial hydraulic conductivities (equal to inverse of specific hydraulic resistances). In the roots, Casparian bands and suberin lamellae develop in the endodermis and exodermis (equal to hypodermis). Using the root pressure probe, changes of hydraulic conductivities along the developing roots were analyzed with high resolution. Axial hydraulic conductivity (Lx) was also calculated from stained cross-sections according to Poiseuille's law. Near the base and the tip of the roots, measured and calculated Lx values were similar. However, at distances between 200 and 300 mm from the apex, measured values of Lx were smaller by more than 1 order of magnitude than those calculated, probably because of remaining cross walls between xylem vessel members. During development of root xylem, Lx increased by 3 orders of magnitude. In the apical 30 mm (tip region), axial resistance limited water transport, whereas in basal parts radial resistances (low radial hydraulic conductivity, Lpr) controlled the uptake. Because of the high axial hydraulic resistance in the tip region, this zone appeared to be "hydraulically isolated" from the rest of the root. Changes of the Lpr of the roots were determined by measuring the hydraulic conductance of roots of different length and referring these data to unit surface area. At distances between 30 and 150 mm from the root tip, Lpr was fairly constant (1.4 x 10-7 m s-1 MPa-1). In more basal root zones, Lpr was considerably smaller and varied between roots. The low contribution of basal zones to the overall water uptake indicated an influence of the exodermal Casparian bands and/or suberin lamellae in the endodermis or exodermis, which develop at distances larger than 50 to 60 mm from the root tip.  相似文献   

12.
植物对硅的吸收转运机制研究进展   总被引:2,自引:0,他引:2  
硅(Si)能缓解生物与非生物胁迫对植物的毒害作用,Si的吸收转运是由Si转运蛋白介导的.最近,多个Si转运蛋白(Lsi)基因相继在水稻、大麦和玉米中被克隆出来,并在Si的吸收转运机制方面取得了很大进展.水稻OsLsi在根组织中呈极性分布,OsLsi1定位在根外皮层和内皮层凯氏带细胞外侧质膜,负责将外部溶液中的单硅酸转运到皮层细胞内.OsLsi2定位在凯氏带细胞内侧质膜,在外皮层中负责将Si输出到通气组织质外体中,在内皮层与OsLsi1协同作用将Si转运到中柱中.导管中的Si通过蒸腾流转运到地上部,再由定位在叶鞘和叶片木质部薄壁细胞靠近导管一侧的OsLsi6负责木质部Si的卸载和分配.在大麦和玉米中,ZmLsi1/HvLsi1定位在根表皮和皮层细胞外侧质膜负责Si的吸收,然后Si通过共质体途径被转运到内皮层凯氏带细胞中,再由ZmLsi2/HvLsi2输出转运到中柱中.ZmLsi6在细胞中的定位和活性与OsLsi6相似,推测其可能具有类似的功能,但大麦Lsi6至今未见报道.所以,Si转运机制仍需要进一步研究.  相似文献   

13.
P. Olesen 《Protoplasma》1978,94(3-4):325-340
Summary InHoya roots most exodermal cells are elongated and a band of suberin lamellae is formed in all their walls early in development; later on carbohydrate tertiary wall layers are deposited inside the suberin lamellae. Some exodermal cells which are restricted to root hair-bearing areas are short and unsuberized but their outer tangential wall is conspicuously thickened. Combined evidence from light microscopy and transmission and scanning electron microscopy reveals the bulk of this cap-formed thickening as a mosaic structure with two different components forming an extensive labyrinth. Irregular masses of a lignified, amorphous substance are separated by radially oriented, tortuous channels containing a very dense, granular-fibrillar material. The innermost wall layer is fibrillar and shows a texture and density similar to the material in the separating channels. The cap contains prominent pits with plasmodesmatal connections between short cells and the epidermis. In mature and non-functional short cells a band of suberin lamellae and eventually tertiary wall layers are deposited.A hypothesis as to the function of the short cells is based on the assumption that the cap functions through differential shrinkage of two components forming the labyrinthine structure. This would ensure a very effective closing of the translocating pathway upon desiccation and shrinkage and a consequent swelling and re-opening upon rehydration. The regulatory function of such mechanism is discussed.  相似文献   

14.
The exodermis: a variable apoplastic barrier.   总被引:29,自引:0,他引:29  
The exodermis (hypodermis with Casparian bands) of plant roots represents a barrier of variable resistance to the radial flow of both water and solutes and may contribute substantially to the overall resistance. The variability is a result largely of changes in structure and anatomy of developing roots. The extent and rate at which apoplastic exodermal barriers (Casparian bands and suberin lamellae) are laid down in radial transverse and tangential walls depends on the response to conditions in a given habitat such as drought, anoxia, salinity, heavy metal or nutrient stresses. As Casparian bands and suberin lamellae form in the exodermis, the permeability to water and solutes is differentially reduced. Apoplastic barriers do not function in an all-or-none fashion. Rather, they exhibit a selectivity pattern which is useful for the plant and provides an adaptive mechanism under given circumstances. This is demonstrated for the apoplastic passage of water which appears to have an unusually high mobility, ions, the apoplastic tracer PTS, and the stress hormone ABA. Results of permeation properties of apoplastic barriers are related to their chemical composition. Depending on the growth regime (e.g. stresses applied) barriers contain aliphatic and aromatic suberin and lignin in different amounts and proportion. It is concluded that, by regulating the extent of apoplastic barriers and their chemical composition, plants can effectively regulate the uptake or loss of water and solutes. Compared with the uptake by root membranes (symplastic and transcellular pathways), which is under metabolic control, this appears to be an additional or compensatory strategy of plants to acquire water and solutes.  相似文献   

15.
The hydraulic conductivity of roots (Lpr) of 6- to 8-d-old maize seedlings has been related to the chemical composition of apoplastic transport barriers in the endodermis and hypodermis (exodermis), and to the hydraulic conductivity of root cortical cells. Roots were cultivated in two different ways. When grown in aeroponic culture, they developed an exodermis (Casparian band in the hypodermal layer), which was missing in roots from hydroponics. The development of Casparian bands and suberin lamellae was observed by staining with berberin-aniline-blue and Sudan-III. The compositions of suberin and lignin were analyzed quantitatively and qualitatively after depolymerization (BF3/methanol-transesterification, thioacidolysis) using gas chromatography/mass spectrometry. Root Lpr was measured using the root pressure probe, and the hydraulic conductivity of cortical cells (Lp) using the cell pressure probe. Roots from the two cultivation methods differed significantly in (i) the Lpr evaluated from hydrostatic relaxations (factor of 1.5), and (ii) the amounts of lignin and aliphatic suberin in the hypodermal layer of the apical root zone. Aliphatic suberin is thought to be the major reason for the hydrophobic properties of apoplastic barriers and for their relatively low permeability to water. No differences were found in the amounts of suberin in the hypodermal layers of basal root zones and in the endodermal layer. In order to verify that changes in root Lpr were not caused by changes in hydraulic conductivity at the membrane level, cell Lp was measured as well. No differences were found in the Lp values of cells from roots cultivated by the two different methods. It was concluded that changes in the hydraulic conductivity of the apoplastic rather than of the cell-to-cell path were causing the observed changes in root Lpr. Received: 17 March 1999 / Accepted: 22 June 1999  相似文献   

16.
17.
Water loss from roots back into drying soil is a problem ofpractical importance in plants growing under conditions of verylow substrate water potential, such as dry or saline areas.Root exodermis is relatively impermeable and has been suggestedto play a protective role against water loss. The relative waterretention ability was compared in root segments from exodermal(maize, onion, sunflower, Rhodes grass and sorghum) and non-exodermalspecies (Pisum sativum,Vicia fabaand wheat). Apical and basalsegments from exodermal roots, with different degrees of exodermisdevelopment, were also compared, as were segments from sorghumroots in which the exodermis thickness had been modified bysubjecting the plants to a 30 d water stress treatment. Waterretention was significantly higher in segments from exodermalroots. In each root, water loss was higher in apical than inbasal segments, regardless of the presence of exodermis. Insorghum, prolonged drought treatment increased exodermis thickeningin nodal roots, however, no differences in rates of water losswere observed in segments obtained from control and droughtedplants. Soil sheaths formed around roots of Rhodes grass growingin very dry soil with the epidermis adhering tightly to thesheath. In plants growing in the field, soil sheaths may bemore effective than the exodermis in preventing root water loss.Copyright1999 Annals of Botany Company. Root, exodermis, rhizosheaths, water loss.  相似文献   

18.
Soybean (Glycine max L. Merr.) is a versatile and important agronomic crop grown worldwide. Each year millions of dollars of potential yield revenues are lost due to a root rot disease caused by the oomycete Phytophthora sojae (Kaufmann & Gerdemann). Since the root is the primary site of infection by this organism, we undertook an examination of the physicochemical barriers in soybean root, namely, the suberized walls of the epidermis and endodermis, to establish whether or not preformed suberin (i.e. naturally present in noninfected plants) could have a role in partial resistance to P. sojae. Herein we describe the anatomical distribution and chemical composition of soybean root suberin as well as its relationship to partial resistance to P. sojae. Soybean roots contain a state I endodermis (Casparian bands only) within the first 80 mm of the root tip, and a state II endodermis (Casparian bands and some cells with suberin lamellae) in more proximal regions. A state III endodermis (with thick, cellulosic, tertiary walls) was not present within the 200-mm-long roots examined. An exodermis was also absent, but some walls of the epidermal and neighboring cortical cells were suberized. Chemically, soybean root suberin resembles a typical suberin, and consists of waxes, fatty acids, omega-hydroxy acids, alpha,omega-diacids, primary alcohols, and guaiacyl- and syringyl-substituted phenolics. Total suberin analysis of isolated soybean epidermis/outer cortex and endodermis tissues demonstrated (1) significantly higher amounts in the endodermis compared to the epidermis/outer cortex, (2) increased amounts in the endodermis as the root matured from state I to state II, (3) increased amounts in the epidermis/outer cortex along the axis of the root, and (4) significantly higher amounts in tissues isolated from a cultivar ('Conrad') with a high degree of partial resistance to P. sojae compared with a susceptible line (OX760-6). This latter correlation was extended by an analysis of nine independent and 32 recombinant inbred lines (derived from a 'Conrad' x OX760-6 cross) ranging in partial resistance to P. sojae: Strong negative correlations (-0.89 and -0.72, respectively) were observed between the amount of the aliphatic component of root suberin and plant mortality in P. sojae-infested fields.  相似文献   

19.
Summary Onion (Allium cepa L. cv. Ebeneezer) roots from vermiculite culture were examined with transmission electron microscopy to detect the plasmodesmata in all tissues. In young root regions, plasmodesmata linked all living cells together in all directions. In old zones, the plasmodesmatal connections of the endodermis to its neighbor tissues were not interrupted by later suberin lamella and cellulosic wall deposition. Moreover, plasmodesmata in the fully mature endodermis usually exhibited a large central cavity. In the exodermis, however, upon deposition of suberin lamellae in long cells, all plasmodesmata that initially linked them to their adjacent cells were severed. Afterwards, the long cells lost the capability of forming wound pit callose and their protoplasts began to degenerate. The mature exodermal layer was symplastically bridged to its neighbors only by the short (passage) cells that lacked suberin lamellae. Compared to the long cells, the short cells not only had thicker cytoplasm surrounding their central vacuoles but also a higher density of mitochondria and rough endoplasmic reticulum, consistent with an active involvement in the transport processes of the root. The above results were obtained by an improved, extended transmission electron microscopy procedure devised to analyze plasmodesmata in cells with suberin lamellae. By prefixing root tissues in glutaraldehyde and acrolein, all cells were well preserved. Postfixation was carried out in osmium tetroxide at a low concentration (0.5%). Following dehydration in acetone and transfer to propylene oxide, infiltration with Spurr's resin was accomplished by incubating samples in the accelerator-free mixture for 4 days, then infiltrating samples in the accelerator-amended mixture for additional 4 days.Abbreviations IE immature exodermis - ME mature exodermis - TBO toluidine blue O - TEM transmission electron microscopy  相似文献   

20.

Background and Aims

Most studies of exodermal structure and function have involved species with a uniseriate exodermis. To extend this work, the development and apoplastic permeability of Iris germanica roots with a multiseriate exodermis (MEX) were investigated. The effects of different growth conditions on MEX maturation were also tested. In addition, the exodermises of eight Iris species were observed to determine if their mature anatomy correlated with habitat.

Methods

Plants were grown in soil, hydroponics (with and without a humid air gap) or aeroponics. Roots were sectioned and stained with various dyes to detect MEX development from the root apical meristem, Casparian bands, suberin lamellae and tertiary wall thickenings. Apoplastic permeability was tested using dye (berberine) and ionic (ferric) tracers.

Key Results

The root apical meristem was open and MEX development non-uniform. In soil-grown roots, the exodermis started maturing (i.e. Casparian bands and suberin lamellae were deposited) 10 mm from the tip, and two layers had matured by 70 mm. In both hydro- and aeroponically grown roots, exodermal maturation was delayed. However, in areas of roots exposed to an air gap in the hydroponic system, MEX maturation was accelerated. In contrast, maturation of the endodermis was not influenced by the growth conditions. The mature MEX had an atypical Casparian band that was continuous around the root circumference. The MEX prevented the influx and efflux of berberine, but had variable resistance to ferric ions due to their toxic effects. Iris species living in well-drained soils developed a MEX, but species in water-saturated substrates had a uniseriate exodermis and aerenchyma.

Conclusions

MEX maturation was influenced by the roots'' growth medium. The MEX matures very close to the root tip in soil, but much further from the tip in hydro- and aeroponic culture. The air gap accelerated maturation of the second exodermal layer. In Iris, the type of exodermis was correlated with natural habitat suggesting that a MEX may be advantageous for drought tolerance.Key words: Iris germanica, roots, culture conditions, development, anatomy, apoplastic tracers, multiseriate exodermis, endodermis, root apical meristem  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号