共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Jun-ichi Kato 《Critical reviews in biochemistry and molecular biology》2013,48(6):331-342
ABSTRACTThe bacterial chromosome is replicated once during the division cycle, a process ensured by the tight regulation of initiation at oriC. In prokaryotes, the initiator protein DnaA plays an essential role at the initiation step, and feedback control is critical in regulating initiation. Three systems have been identified that exert feedback control in Escherichia coli, all of which are necessary for tight strict regulation of the initiation step. In particular, the ATP-dependent control of DnaA activity is essential. A missing link in initiator activity regulation has been identified, facilitating analysis of the reaction mechanism. Furthermore, key components of this regulatory network have also been described. Because the eukaryotic initiator complex, ORC, is also regulated by ATP, the bacterial system provides an important model for understanding initiation in eukaryotes. This review summarizes recent studies on the regulation of initiator activity. 相似文献
4.
Flagellar mutants in Escherichia coli were obtained by selection for resistance to the flagellotropic phage chi. F elements covering various regions of the E. coli genome were then constructed, and, on the basis of the ability of these elements to restore flagellar function, the mutations were assigned to three regions of the E. coli chromosome. Region I is between trp and gal; region II is between uvrC and aroD; and region III is between his and uvrC. F elements carrying flagellar mutations were constructed. Stable merodiploid strains with a flagellar defect on the exogenote and another on the endogenote were then prepared. These merodiploids yielded information on the complementation behavior of mutations in a given region. Region III was shown to include at least six cistrons, A, B, C, D, E, and F. Region II was shown to include at least four cistrons, G, H, I, and J. Examination of the phenotypes of the mutants revealed that those with lesions in cistron E of region III produce "polyhooks" and lesions in cistron F of region III result in loss of ability to produce flagellin. Mutants with lesions in cistron J of region II were entirely paralyzed (mot) mutants. Genetic analysis of flagellar mutations in region III suggested that the mutations located in cistrons A, B, C, and E are closely linked and mutations in cistrons D and F are closely linked. 相似文献
5.
6.
7.
Flagellar cross-repolymerization among different Salmonella serotypes and Escherichia coli
下载免费PDF全文

Flagellar preparations from several serotypes of Salmonella and one strain of Escherichia coli were tested for their ability to cross-repolymerize. Repolymerization was found not to be dependent on the antigenic determinants of the flagella. 相似文献
8.
Positioning Flagellar Genes in Escherichia coli by Deletion Analysis 总被引:2,自引:10,他引:2
9.
Mutants of Escherichia coli lacking ubiquinone or heme have been tested for motility and found to be essentially immotile. The loss of motility is identified with the loss of flagellum synthesis. 相似文献
10.
11.
12.
Mayukh K. Sarkar Koushik Paul David F. Blair 《The Journal of biological chemistry》2010,285(1):675-684
Bacterial flagella contain a rotor-mounted protein complex termed the switch complex that functions in flagellar assembly, rotation, and clockwise/counterclockwise direction control. In Escherichia coli and Salmonella, the switch complex contains the proteins FliG, FliM, and FliN and corresponds structurally with the C-ring in the flagellar basal body. Certain features of subunit organization in the switch complex have been deduced previously, but details of subunit organization in the lower part of the C-ring and the molecular movements responsible for motor switching remain unclear. In this study, we use cross-linking, binding, and mutational experiments to examine subunit organization in the bottom of the C-ring and to probe movements that occur upon switching. The results show that FliN tetramers alternate with FliM C-terminal domains to form the bottom of the C-ring in an arrangement that closely reproduces the major features observed in electron microscopic reconstructions. When motors were switched to clockwise rotation by a repellent stimulus, cross-link yields were altered in a pattern indicating relative movement of FliN and FliMC. These results are discussed in the framework of a structurally grounded hypothesis for the switching mechanism. 相似文献
13.
Mapping of ochre suppressors in Escherichia coli 总被引:10,自引:0,他引:10
G Eggertsson 《Genetical research》1968,11(1):15-20
14.
Escherichia coli K12 contains two phosphofructokinases: phosphofructokinase 1, the most studied one, appears to behave as an allosteric enzyme, while phosphofructokinase 2 presents the features of a Michaelian enzyme. We show the present paper that, in fact, phosphofructokinase 2 also presents some regulatory properties in vitro: at high concentrations, ATP is an inhibitor of phosphofructokinase 2 and it provokes the tetramerization of the dimeric native enzyme. The binding of the two substrates to phosphofructokinase 2 is sequential and ordered as for phosphofructokinase 1, but in the former case fructose 6-phosphate is the first substrate to be bound and ADP the first product to be released. Each dimer of phosphofructokinase 2 binds two molecules of fructose 6-phosphate but only one molecule of the product fructose 1,6-phosphate. Although both phosphofructokinases of E. coli K12 present regulatory properties in vitro, the mechanism of regulation of the activity of the two enzymes is strikingly different. It can be asked whether or not these mechanisms operate in vivo. 相似文献
15.
Characterization of Escherichia coli Flagellar Mutants That are Insensitive to Catabolite Repression 总被引:10,自引:32,他引:10
下载免费PDF全文

In Escherichia coli, the synthesis of the flagellar organelle is sensitive to catabolite repression. Synthesis requires the presence of the cyclic adenosine monophosphate receptor protein (Crp) and 3',5'-cyclic adenosine monophosphate (cAMP); i.e., mutants that lack Crp or adenylcyclase (Cya) synthesize no flagella. We isolated and characterized a series of mutants (cfs) that restored flagella-forming ability in a Crp strain of E. coli. The mutations in these strains were transferred onto episomes and they were then introduced into a variety of other strains. The presence of the mutation resulted in flagella synthesis in Cya and Crp strains as well as in the wild type grown under conditions of catabolite repression. Deletion analysis and other genetic studies indicated that: (i) the cfs mutations had a dominant effect when they were in the transconfiguration in merodiploids: (ii) they occurred in or very close to the flaI gene: and (iii) their expression required the presence of an intact flaI gene adjacent to the cfs mutation. Biochemical studies showed that the synthesis of at least two flagellar polypeptides, the hook subunit and an amber fragment of flagellin, were absent in strains that carried a cya mutation. Their synthesis was depressed in strains grown under conditions of catabolite repression. The presence of the cfs mutation restored the specific synthesis of these two polypeptides. We suggest that the formation of the flaI gene product is the step in flagellar synthesis that is catabolite sensitive and requires cAMP. We propose a regulatory function for the product of the flaI gene. 相似文献
16.
No Zwaig Rosa Nagel de Zwaig Toms Istúriz Magda Wecksler 《Journal of bacteriology》1973,114(2):469-473
A spontaneously arising regulatory mutant of the gluconate system in Escherichia coli was isolated. This mutant became constitutive, probably in one step, for gluconate high-affinity transport, gluconokinase, and gluconate-6-P dehydrase. The mutation involved (gntR18) is cotransducible with asd. Pseudorevertants, derived from a mutant (M2) that shows a long lag for growth on gluconate mineral medium, were also isolated and characterized. They give constitutive levels of gluconokinase and gluconate-6-P dehydrase but lack high-affinity transport function. Genetic experiments performed with one of these pseudorevertants (M4) indicate that it carries a secondary mutation in the gntR gene. The M4 phenotype is thus the result of the interaction of expression of a constitutive mutation (gntR4) with the mutation of strain M2 (gntM2). 相似文献
17.
18.
19.
Zhang XY Goemaere EL Seddiki N Célia H Gavioli M Cascales E Lloubes R 《The Journal of biological chemistry》2011,286(13):11756-11764
The tolQRAB-pal operon is conserved in Gram-negative genomes. The TolQRA proteins of Escherichia coli form an inner membrane complex in which TolQR uses the proton-motive force to regulate TolA conformation and the in vivo interaction of TolA C-terminal region with the outer membrane Pal lipoprotein. The stoichiometry of the TolQ, TolR, and TolA has been estimated and suggests that 4-6 TolQ molecules are associated in the complex, thus involving interactions between the transmembrane helices (TMHs) of TolQ, TolR, and TolA. It has been proposed that an ion channel forms at the interface between two TolQ and one TolR TMHs involving the TolR-Asp(23), TolQ-Thr(145), and TolQ-Thr(178) residues. To define the organization of the three TMHs of TolQ, we constructed epitope-tagged versions of TolQ. Immunodetection of in vivo and in vitro chemically cross-linked TolQ proteins showed that TolQ exists as multimers in the complex. To understand how TolQ multimerizes, we initiated a cysteine-scanning study. Results of single and tandem cysteine substitution suggest a dynamic model of helix interactions in which the hairpin formed by the two last TMHs of TolQ change conformation, whereas the first TMH of TolQ forms intramolecular interactions. 相似文献
20.
Fan Bai Yong-Suk Che Nobunori Kami-ike Qi Ma Tohru Minamino Yoshiyuki Sowa Keiichi Namba 《Biophysical journal》2013,105(9):2123-2129
The dynamic switching of the bacterial flagellar motor regulates cell motility in bacterial chemotaxis. It has been reported under physiological conditions that the switching bias of the flagellar motor undergoes large temporal fluctuations, which reflects noise propagating in the chemotactic signaling network. On the other hand, nongenetic heterogeneity is also observed in flagellar motor switching, as a large group of switching motors show different switching bias and frequency under the same physiological condition. In this work, we present simultaneous measurement of groups of Escherichia coli flagellar motor switching and compare them to long time recording of single switching motors. Consistent with previous studies, we observed temporal fluctuations in switching bias in long time recording experiments. However, the variability in switching bias at the populational level showed much higher volatility than its temporal fluctuation. These results suggested stable individuality in E. coli motor switching. We speculate that uneven expression of key regulatory proteins with amplification by the ultrasensitive response of the motor can account for the observed populational heterogeneity and temporal fluctuations. 相似文献