首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutrophils infiltrate the site of infection and play critical roles in host defense, especially against extracellular bacteria. In the present study, we found a rapid and transient production of IL-17 after i.p. infection with Escherichia coli, preceding the influx of neutrophils. Neutralization of IL-17 resulted in a reduced infiltration of neutrophils and an impaired bacterial clearance. Ex vivo intracellular cytokine flow cytometric analysis revealed that gammadelta T cell population was the major source of IL-17. Mice depleted of gammadelta T cells by mAb treatment or mice genetically lacking Vdelta1 showed diminished IL-17 production and reduced neutrophil infiltration after E. coli infection, indicating an importance of Vdelta1(+) gammadelta T cells as the source of IL-17. It was further revealed that gammadelta T cells in the peritoneal cavity of naive mice produced IL-17 in response to IL-23, which was induced rapidly after E. coli infection in a TLR4 signaling-dependent manner. Thus, although gammadelta T cells are generally regarded as a part of early induced immune responses, which bridge innate and adaptive immune responses, our study demonstrated a novel role of gammadelta T cells as a first line of host defense controlling neutrophil-mediated innate immune responses.  相似文献   

2.
IL-17 is a newly discovered cytokine implicated in the regulation of hemopoiesis and inflammation. Because IL-17 production is restricted to activated T lymphocytes, the effects exerted by IL-17 may help one to understand the contribution of T cells to the inflammatory response. We investigated the role of IL-17 in leukocyte recruitment into the peritoneal cavity. Leukocyte infiltration in vivo was assessed in BALB/Cj mice. Effects of IL-17 on chemokine generation in vitro were examined in human peritoneal mesothelial cells (HPMC). Administration of IL-17 i.p. resulted in a selective recruitment of neutrophils into the peritoneum and increased levels of KC chemokine (murine homologue of human growth-related oncogene alpha (GROalpha). Pretreatment with anti-KC Ab significantly reduced the IL-17-driven neutrophil accumulation. Primary cultures of HPMC expressed IL-17 receptor mRNA. Exposure of HPMC to IL-17 led to a dose- and time-dependent induction of GROalpha mRNA and protein. Combination of IL-17 together with TNF-alpha resulted in an increased stability of GROalpha mRNA and synergistic release of GROalpha protein. Anti-IL-17 Ab blocked the effects of IL-17 in vitro and in vivo. IL-17 is capable of selectively recruiting neutrophils into the peritoneal cavity via the release of neutrophil-specific chemokines from the peritoneal mesothelium.  相似文献   

3.
Suppressors of cytokine signaling (SOCS) proteins are negative regulators of cytokine signaling by inhibiting the JAK-STAT signal transduction pathway, but their role in innate immunity remains to be investigated. In the present study, we demonstrate that overexpression of SOCS5 in T cells augments innate immunity during septic peritonitis induced by cecal ligation and puncture (CLP). Mice with a cell-specific overexpression of SOCS5 in T cells (SOCS5 transgenic (Tg)) were resistant to the lethality relative to the wild-type (WT) mice. This was most likely due to the enhanced innate immunity in SOCS5Tg mice, as bacterial burden in SOCS5Tg mice was significantly lower than WT mice. Accumulation of neutrophils and macrophages was augmented in SOCS5Tg mice, an event that was accompanied by increased peritoneal levels of IL-12, IFN-gamma, and TNF-alpha. In vitro bactericidal activities of macrophages and neutrophils were enhanced in SOCS5Tg mice. Both neutrophils and macrophages from WT mice adopted enhanced bacterial killing activity when cocultured with CD4+ T cells from SOCS5Tg mice, relative to CD4+ T cells from WT mice. Adoptive transfer of SOCS5Tg-CD4+ T cells into T- and B cell-deficient RAG-2(-/-) mice resulted in augmented leukocyte infiltration and increased peritoneal levels of IL-12, IFN-gamma, and TNF-alpha after CLP, as compared with the controls. Furthermore, CLP-induced bacterial burden in RAG-2(-/-) mice harboring SOCS5Tg-CD4+ T cells was significantly reduced relative to the controls. These findings provide evidence that intervention of SOCS5 expression in T cells affects innate immunity, which highlight a novel role of T cells during sepsis.  相似文献   

4.
The development of subunit vaccines requires the use of adjuvants that act by stimulating components of the innate immune response. Immune-stimulating complexes (ISCOMS) containing the saponin adjuvant Quil A are potential vaccine vectors that induce a wide range of Ag-specific responses in vivo encompassing both humoral and CD4 and CD8 cell-mediated immune responses. ISCOMS are active by both parenteral and mucosal routes, but the basis for their adjuvant properties is unknown. Here we have investigated the ability of ISCOMS to recruit and activate innate immune responses as measured in peritoneal exudate cells. The i.p. injection of ISCOMS induced intense local inflammation, with early recruitment of neutrophils and mast cells followed by macrophages, dendritic cells, and lymphocytes. Many of the recruited cells had phenotypic evidence of activation and secreted a number of inflammatory mediators, including nitric oxide, reactive oxygen intermediates, IL-1, IL-6, IL-12, and IFN-gamma. Of the factors that we investigated further only IL-12 appeared to be essential for the immunogenicity of ISCOMS, as IL-6- and inducible nitric oxide synthase knockout (KO) mice developed normal immune responses to OVA in ISCOMS, whereas these responses were markedly reduced in IL-12KO mice. The recruitment of peritoneal exudate cells following an injection of ISCOMS was impaired in IL-12KO mice, indicating a role for IL-12 in establishing the proinflammatory cascade. Thus, ISCOMS prime Ag-specific immune responses at least in part by activating IL-12-dependent aspects of the innate immune system.  相似文献   

5.
6.
The heterodimeric cytokine IL-23 consists of a private cytokine-like p19 subunit and a cytokine receptor-like subunit, p40, which is shared with IL-12. Previously reported IL-12p40-deficient mice have profound immune defects resulting from combined deficiency in both IL-12 and IL-23. To address the effects of specific IL-23 deficiency, we generated mice lacking p19 by gene targeting. These mice display no overt abnormalities but mount severely compromised T-dependent humoral immune responses. IL-23p19(-/-) mice produce strongly reduced levels of Ag-specific Igs of all isotypes, but mount normal T-independent B cell responses. In addition, delayed type hypersensitivity responses are strongly impaired in the absence of IL-23, indicating a defect at the level of memory T cells. T cells stimulated with IL-23-deficient APCs secrete significantly reduced amounts of the proinflammatory cytokine IL-17, and IL-23-deficient mice phenotypically resemble IL-17-deficient animals. Thus, IL-23 plays a critical role in T cell-dependent immune responses, and our data provide further support for the existence of an IL-23/IL-17 axis of communication between the adaptive and innate parts of the immune system.  相似文献   

7.
IL-12 is a potent inducer of IFN-gamma production and promotes a protective cell-mediated immune response after Mycobacterium tuberculosis infection. Recently, the IL-12-related cytokine IL-27 was discovered, and WSX-1 was identified as one component of the IL-27R complex. To determine the functional significance of IL-27/WSX-1 during tuberculosis, we analyzed the course of infection and the immune response in WSX-1-KO mice after aerosol infection with M. tuberculosis. In the absence of WSX-1, an increased production of the proinflammatory cytokines TNF and IL-12p40 resulted in elevated CD4+ T cell activation and IFN-gamma production, which enhanced macrophage effector functions and reduced bacterial loads. This is the first occasion of a selectively gene-deficient mouse strain showing higher levels of protective immunity against M. tuberculosis infection than wild-type mice. However, a concomitantly increased chronic inflammatory response also accelerated death of infected WSX-1-KO mice. In vitro, IL-27 induced STAT3 phosphorylation and inhibited TNF and IL-12 production in activated peritoneal macrophages, indicating a novel feedback mechanism by which IL-27 can modulate excessive inflammation. In conclusion, IL-27 both prevents optimal antimycobacterial protection and limits the pathological sequelae of chronic inflammation.  相似文献   

8.
WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27   总被引:32,自引:0,他引:32  
The recently discovered cytokine IL-27 belongs to the IL-6/IL-12 family of cytokines and induced proliferation of naive CD4(+) T cells and the generation of a Th1-type adaptive immune response. Although binding of IL-27 to the cytokine receptor WSX-1 was demonstrated, this interaction proved insufficient to mediate cellular effects. Hence, IL-27 was believed to form a heteromeric signaling receptor complex with WSX-1 and another, yet to be identified, cytokine receptor subunit. In this study, we describe that WSX-1 together with gp130 constitutes a functional signal-transducing receptor for IL-27. We show that neither of the two subunits itself is sufficient to mediate IL-27-induced signal transduction, but that the combination of both is required for this event. Expression analysis of WSX-1 and gp130 by quantitative PCR suggests that IL-27 might have a variety of cellular targets besides naive CD4(+) T cells: we demonstrate gene induction of a subset of inflammatory cytokines in primary human mast cells and monocytes in response to IL-27 stimulation. Thus, IL-27 not only contributes to the development of an adaptive immune response through its action on CD4(+) T cells, it also directly acts on cells of the innate immune system.  相似文献   

9.
IL-18 is a proinflammatory cytokine that enhances innate and specific Th1 immune responses. During microbial infections, IL-18 is produced by activated macrophages. IL-18 exerts its effects in synergy with IFN-alpha or IL-12 to induce IFN-gamma. Here we show that in human NK and T cells IFN-alpha and IL-12 strongly up-regulate mRNA expression of the IL-18R components, accessory protein-like (AcPL) and IL-1R-related protein (IL-1Rrp). In addition, IFN-alpha enhanced the expression of MyD88, an adaptor molecule involved in IL-18 signaling. Pretreatment of T cells with IFN-alpha or IL-12 enhanced IL-18-induced NF-kappaB activation and sensitized the cells to respond to lower concentrations of IL-18. AcPL and IL-1Rrp genes were strongly expressed in T cells polarized with IL-12, whereas in IL-4-polarized cells these genes were expressed at very low levels, indicating that AcPL and IL-1Rrp genes are preferentially expressed in Th1 cells. In conclusion, the results suggest that IFN-alpha and IL-12 enhance innate as well as Th1 immune response by inducing IL-18R expression.  相似文献   

10.
IL-27, a heterodimeric cytokine of IL-12 family, regulates both innate and adaptive immunity largely via Jak-Stat signaling. IL-27 can induce IFN-γ and inflammatory mediators from T lymphocytes and innate immune cells. IL-27 has unique anti-inflammatory properties via both Tr1 cells dependent and independent mechanisms. Here the role and biology of IL-27 in innate and adaptive immunity are summarized, with special interest with immunity against Mycobacterium tuberculosis.  相似文献   

11.
Interleukin 27 (IL-27) is an immunomodulatory cytokine with important roles in both the innate and adaptive immune systems. In the last five years, the addition of exogenous IL-27 to primary cell cultures has been demonstrated to decrease HIV-1 replication in a number of cell types including peripheral blood mononuclear cells (PBMCs), CD4+ T cells, macrophages and dendritic cells. These in vitro findings suggest that IL-27 may have therapeutic value in the setting of HIV-1 infection. In this review, we describe the current knowledge of the biology of IL-27, its effects primarily on HIV-1 replication but also in other viral infections and explore its potential role as a therapeutic cytokine for the treatment of patients with HIV-1 infection.  相似文献   

12.
We examined whether ultraviolet-B (UVB) irradiation (6 kJ/m2) alters cytokine production and other innate immune reactions by murine peritoneal macrophages and peripheral neutrophils. Along with these experiments, serum IgG levels were also assessed. In addition, using scanning electron microscopy (SEM) we observed macrophages that had been exposed to UVB in vitro. Results showed that UVB irradiation: (1) decreased IL-12 production while increasing IL-1alpha secretion from macrophages, but had no effect on IL-1alpha from neutrophils; (2) suppressed phagocytosis of macrophages but not of neutrophils; (3) diminished active oxygen production of macrophages but not of neutrophils; (4) had no effect on serum IgG levels; and (5) caused significant cell destruction of macrophages in vitro. These results suggested: (1) that UVB irradiation could induce characteristic suppression of innate immunity; (2) that innate cellular immunity was more susceptible to the effects of UVB irradiation than humoral immunity.  相似文献   

13.
The role of the immune system in preeclampsia   总被引:3,自引:0,他引:3  
Recent data demonstrate that an altered immune response may play a key role in the development of preeclampsia. Some epidemiological findings and animal models support this idea. In this article, we review the innate immune system and adaptive immune system in preeclampsia and discuss the pathophysiology of preeclampsia from an immunological viewpoint. The most characteristic immunological finding in preeclampsia is the activation of both the innate and adaptive immune system. Activated neutrophils, monocytes, and NK cells initiate inflammation which induce endothelial dysfunction, and activated T cells may support inadequate tolerance during pregnancy. The cytokine profile in preeclampsia shows that the production of type 1 cytokines, which induce inflammation, is dominant while the production of type 2 cytokines, which regulates inflammation, is suppressed. Furthermore, the immunoregulatory system is down-regulated in preeclampsia and persistent inflammation reduces regulatory T cell function. Therefore, systematical immunoactivation may be one cause of preeclampsia.  相似文献   

14.
15.
Helicobacter pylori persistently colonizes the human stomach. In this study, immune responses to H. pylori that occur in the early stages of infection were investigated. Within the first 2 days after orogastric infection of mice with H. pylori, there was a transient infiltration of macrophages and neutrophils into the glandular stomach. By day 10 postinfection, the numbers of macrophages and neutrophils decreased to baseline levels. By 3 weeks postinfection, an adaptive immune response was detected, marked by gastric infiltration of T lymphocytes, macrophages, and neutrophils, as well as increased numbers of H. pylori-specific T cells, macrophages, and dendritic cells in paragastric lymph nodes. Neutrophil-attracting and macrophage-attracting chemokines were expressed at higher levels in the stomachs of H. pylori-infected mice than in the stomachs of uninfected mice. Increased expression of TNFalpha and IFNgamma (Th1-type inflammatory cytokines) and IL-17 (a Th17-type cytokine) was detected in the stomachs of H. pylori-infected mice, but increased expression of IL-4 (a Th2-type cytokine) was not detected. These data indicate that a transient gastric inflammatory response to H. pylori occurs within the first few days after infection, before the priming of T cells and initiation of an adaptive immune response. It is speculated that inappropriate waning of the innate immune response during early stages of infection may be a factor that contributes to H. pylori persistence.  相似文献   

16.
Interleukin-25 (IL-25) is a cytokine associated with allergy and asthma that functions to promote type 2 immune responses at mucosal epithelial surfaces and serves to protect against helminth parasitic infections in the intestinal tract. This study identifies the IL-25 receptor, IL-17RB, as a key mediator of both innate and adaptive pulmonary type 2 immune responses. Allergen exposure upregulated IL-25 and induced type 2 cytokine production in a previously undescribed granulocytic population, termed type 2 myeloid (T2M) cells. Il17rb(-/-) mice showed reduced lung pathology after chronic allergen exposure and decreased type 2 cytokine production in T2M cells and CD4(+) T lymphocytes. Airway instillation of IL-25 induced IL-4 and IL-13 production in T2M cells, demonstrating their importance in eliciting T cell-independent inflammation. The adoptive transfer of T2M cells reconstituted IL-25-mediated responses in Il17rb(-/-) mice. High-dose dexamethasone treatment did not reduce the IL-25-induced T2M pulmonary response. Finally, a similar IL-4- and IL-13-producing granulocytic population was identified in peripheral blood of human subjects with asthma. These data establish IL-25 and its receptor IL-17RB as targets for innate and adaptive immune responses in chronic allergic airway disease and identify T2M cells as a new steroid-resistant cell population.  相似文献   

17.
Exposure to naturally occurring hydrocarbon oils is associated with the development of chronic inflammation and a wide spectrum of pathological findings in humans and animal models. The mechanism underlying the unremitting inflammatory response to hydrocarbons remains largely unclear. The medium-length alkane 2,6,10,14 tetramethylpentadecane (also known as pristane) is a hydrocarbon that potently elicits chronic peritonitis characterized by persistent infiltration of neutrophils and monocytes. In this study, we reveal the essential role of IL-1α in sustaining the chronic recruitment of neutrophils following 2,6,10,14 tetramethylpentadecane treatment. IL-1α and IL-1R signaling promote the migration of neutrophils to the peritoneal cavity in a CXCR2-dependent manner. This mechanism is at least partially dependent on the production of the neutrophil chemoattractant CXCL5. Moreover, although chronic infiltration of inflammatory monocytes is dependent on a different pathway requiring TLR-7, type I IFN receptor, and CCR2, the adaptor molecules MyD88, IL-1R-associated kinase (IRAK)-4, IRAK-1, and IRAK-2 are shared in regulating the recruitment of both monocytes and neutrophils. Taken together, our findings uncover an IL-1α-dependent mechanism of neutrophil recruitment in hydrocarbon-induced peritonitis and illustrate the interactions of innate immune pathways in chronic inflammation.  相似文献   

18.
IL-17 and IL-23 are known to be absolutely central to psoriasis pathogenesis because drugs targeting either cytokine are highly effective treatments for this disease. The efficacy of these drugs has been attributed to blocking the function of IL-17-producing T cells and their IL-23-induced expansion. However, we demonstrate that mast cells and neutrophils, not T cells, are the predominant cell types that contain IL-17 in human skin. IL-17(+) mast cells and neutrophils are found at higher densities than IL-17(+) T cells in psoriasis lesions and frequently release IL-17 in the process of forming specialized structures called extracellular traps. Furthermore, we find that IL-23 and IL-1β can induce mast cell extracellular trap formation and degranulation of human mast cells. Release of IL-17 from innate immune cells may be central to the pathogenesis of psoriasis, representing a fundamental mechanism by which the IL-23-IL-17 axis mediates host defense and autoimmunity.  相似文献   

19.
IL-17 is a cytokine implicated in the regulation of inflammation. We investigated the role of this cytokine in neutrophil recruitment using a model of LPS-induced lung inflammation in mice. In the bronchoalveolar lavage, LPS induced a first influx of neutrophils peaking at day 1, followed by a second wave, peaking at day 2. IL-17 levels were increased during the late phase neutrophilia (day 2), and this was concomitant with an increased number of T cells and macrophages, together with an increase of KC and macrophage-inflammatory protein-2 levels in the lung tissue. Intranasal treatment with a neutralizing murine anti-IL-17 Ab inhibited the late phase neutrophilia. In the bronchoalveolar lavage cells, IL-17 mRNA was detected at days 1, 2, and 3 postchallenge, with a strong expression at day 2. This expression was associated with CD4(+) and CD8(+) cells, but also with neutrophils. When challenged with LPS, despite the absence of T cells, SCID mice also developed a neutrophilic response associated with IL-17 production. In BALB/c mice, IL-15 mRNA, associated mainly with neutrophils, was evidenced 1 day after LPS challenge. In vitro, IL-15 was able to induce IL-17 release from purified spleen CD4(+) cells, but not spleen CD8(+) or airway neutrophils. We have shown that IL-17, produced mainly by CD4(+) cells, but also by neutrophils, plays a role in the mobilization of lung neutrophils following bacterial challenge. In addition, our results suggest that IL-15 could represent a physiological trigger that leads to IL-17 production following bacterial infection.  相似文献   

20.
IL-15: targeting CD8+ T cells for immunotherapy   总被引:1,自引:0,他引:1  
IL-15 is a pleiotropic cytokine that plays an important role in both the innate and adaptive immune system. IL-15 promotes the activation of neutrophils and macrophages, and is critical to DC function. In addition, IL-15 is essential to the development, homeostasis, function and survival of natural killer (NK) cells, NK T (NKT) cells and CD8+ T cells. Based on these properties, IL-15 has been proposed as a useful cytokine for immunotherapy. It is currently being investigated in settings of immune deficiency, for the in vitro expansion of T and NK cells, as well as an adjuvant for vaccines. In this paper, we will review the targeting of IL-15 for immunotherapy, with a particular emphasis on its effects on CD8+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号