首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences.  相似文献   

2.
3.
The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site.  相似文献   

4.
5.
7,8-Dihydro-8-oxoguanine (8-oxoG) is a major oxidative lesion found in DNA. The 8-oxoguanine DNA glycosylases (Ogg) responsible for the removal of 8-oxoG are divided into three families Ogg1, Ogg2 and AGOG. The Ogg2 members are devoid of the recognition loop used by Ogg1 to discriminate between 8-oxoG and guanine and it was unclear until recently how Ogg2 enzymes recognize the oxidized base. We present here the first crystallographic structure of an Ogg2 member, Methanocaldococcus janischii Ogg, in complex with a DNA duplex containing the 8-oxoG lesion. This structure highlights the crucial role of the C-terminal lysine, strictly conserved in Ogg2, in the recognition of 8-oxoG. The structure also reveals that Ogg2 undergoes a conformational change upon DNA binding similar to that observed in Ogg1 glycosylases. Furthermore, this work provides a structural rationale for the lack of opposite base specificity in this family of enzymes.  相似文献   

6.
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae.  相似文献   

7.
Elevated cellular oxidative stress and oxidative DNA damage are key contributors to impaired cardiac function in diabetes. During chronic inflammation, reactive oxygen species (ROS)-induced lipid peroxidation results in the formation of reactive aldehydes, foremost of which is 4-hydroxy-2-nonenal (4HNE). 4HNE forms covalent adducts with proteins, negatively impacting cellular protein function. During conditions of elevated oxidative stress, oxidative DNA damage such as modification by 8-hydroxydeoxyguanosine (8OHdG) is repaired by 8-oxoguanine glycosylase-1 (OGG-1). Based on these facts, we hypothesized that 4HNE forms adducts with OGG-1 inhibiting its activity, and thus, increases the levels of 8OHG in diabetic heart tissues. To test our hypothesis, we evaluated OGG-1 activity, 8OHG and 4HNE in the hearts of leptin receptor deficient db/db mice, a type-2 diabetic model. We also treated the recombinant OGG-1 with 4HNE to measure direct adduction. We found decreased OGG-1 activity (P > .05), increased 8OHG (P > .05) and increased 4HNE adducts (P > .05) along with low aldehyde dehydrogenase-2 activity (P > .05). The increased colocalization of OGG-1 and 4HNE in cardiomyocytes suggest 4HNE adduction on OGG-1. Furthermore, colocalization of 8OHG and OGG-1 with mitochondrial markers TOM 20 and aconitase, respectively, indicated significant levels of oxidatively-induced mtDNA damage and implicated a role for mitochondrial OGG-1 function. In vitro exposure of recombinant OGG-1 (rOGG-1) with increasing concentrations of 4HNE resulted in a concentration-dependent decrease in OGG-1 activity. Mass spectral analysis of trypsin digests of 4HNE-treated rOGG-1 identified 4HNE adducts on C28, C75, C163, H179, H237, C241, K249, H270, and H282. In silico molecular modeling of 4HNE-K249 OGG-1 and 4HNE-H270 OGG-1 mechanistically supported 4HNE-mediated enzymatic inhibition of OGG-1. In conclusion, these data support the hypothesis that inhibition of OGG-1 by direct modification by 4HNE contributes to decreased OGG-1 activity and increased 8OHG-modified DNA that are present in the diabetic heart.  相似文献   

8.

Background

Oxidative damage to the cell, including the formation of 8-oxoG, has been regarded as a significant factor in carcinogenesis and aging. An inbred prematurely aging rat strain (OXYS) is characterized by high sensitivity to oxidative stress, lipid peroxidation, protein oxidation, DNA rearrangements, and pathological conditions paralleling several human degenerative diseases including learning and memory deterioration.

Methods

We have used monoclonal antibodies against a common pre-mutagenic base lesion 8-oxoguanine (8-oxoG) and 8-oxoguanine DNA glycosylase (OGG1) in combination with indirect immunofluorescence microscopy and image analysis to follow the relative amounts and distribution of 8-oxoG and OGG1 in various cells of different brain regions from OXYS and control Wistar rats.

Results

It was shown that 8-oxoG increased with age in mature neurons, nestin- and glial fibrillary acidic protein (GFAP)-positive cells of hippocampus and frontal cortex in both strains of rats, with OXYS rats always displaying statistically significantly higher levels of oxidative DNA damage than Wistar rats. The relative content of 8-oxoG and OGG1 in nestin- and GFAP-positive cells was higher than in mature neurons in both Wistar and OXYS rats. However, there was no significant interstrain difference in the content of OGG1 for all types of cells and brain regions analyzed, and no difference in the relative content of 8-oxoG between different brain regions.

Conclusions

Oxidation of guanine may play an important role in the development of age-associated decrease in memory and learning capability of OXYS rats.

General significance

The findings are important for validation of the OXYS rat strain as a model of mammalian aging.  相似文献   

9.
Methods for studying breaks in DNA strands and their repair, originally developed for prokaryotes and cultured cell lines, have been applied to preparations from rat brain. The relative sensitivities of these methods, which include alkaline sucrose density gradient sedimentation, nucleoid sedimentation, and ADP-ribosyltransferase assay, are compared.  相似文献   

10.
轻微的DNA损伤可启动损伤修复途径,严重的DNA损伤则会启动细胞休眠或凋亡途径。PHF1是PcG蛋白家族中的重要组分,参与复杂的生物学过程,包括DNA损伤修复、细胞休眠或凋亡、组蛋白翻译后修饰和染色体重排。本文主要对PHF1的结构、参与的信号通路、翻译后修饰及生物学功能做小结和展望,为PHF1进一步研究提供理论基础。  相似文献   

11.
Sirtuins家族蛋白是一类依赖NAD的去乙酰化酶,属于第Ш类去乙酰化酶(HDACs),哺乳动物Sirtuins家族成员共有7个(SIRT1-7),其主要具有去乙酰化酶的活性,可以使多种蛋白发生去乙酰化,进而参与DNA的损伤修复、基因的转录调控、细胞凋亡、代谢及衰老等诸多生物进程。本文主要对Sirtuins家族在DNA损伤修复中的作用及其相关机制进行阐述。  相似文献   

12.
Dong L  Mi R  Glass RA  Barry JN  Cao W 《DNA Repair》2008,7(12):1962-1972
Thymine DNA glycosylases (TDG) in eukaryotic organisms are known for their double-stranded glycosylase activity on guanine/uracil (G/U) base pairs. Schizosaccharomyces pombe (Spo) TDG is a member of the MUG/TDG family that belongs to a uracil DNA glycosylase superfamily. This work investigates the DNA repair activity of Spo TDG on all four deaminated bases: xanthine (X) and oxanine (O) from guanine, hypoxanthine (I) from adenine, and uracil from cytosine. Unexpectedly, Spo TDG exhibits glycosylase activity on all deaminated bases in both double-stranded and single-stranded DNA in the descending order of X > I > U  O. In comparison, human TDG only excises deaminated bases from G/U and, to a much lower extent, A/U and G/I base pairs. Amino acid substitutions in motifs 1 and 2 of Spo TDG show a significant impact on deaminated base repair activity. The overall mutational effects are characterized by a loss of glycosylase activity on oxanine in all five mutants. L157I in motif 1 and G288M in motif 2 retain xanthine DNA glycosylase (XDG) activity but reduce excision of hypoxanthine and uracil, in particular in C/I, single-stranded hypoxanthine (ss-I), A/U, and single-stranded uracil (ss-U). A proline substitution at I289 in motif 2 causes a significant reduction in XDG activity and a loss of activity on C/I, ss-I, A/U, C/U, G/U, and ss-U. S291G only retains reduced activity on T/I and G/I base pairs. S163A can still excise hypoxanthine and uracil in mismatched base pairs but loses XDG activity, making it the closest mutant, functionally, to human TDG. The relationship among amino acid substitutions, binding affinity and base recognition is discussed.  相似文献   

13.
多种化学、物理及生物因素可诱发细胞DNA损伤,损伤后DNA损伤位点被相关损伤感受器识别,激活相应的修复通路进行DNA修复。越来越多的证据表明DNA甲基化状态、蛋白翻译后修饰、染色质重塑、miRNA等修饰方式参与了DNA的损伤修复。文章通过不同损伤修复通路中这些修饰的特点,阐述表观遗传学改变在DNA损伤修复发展过程中的作用机制。  相似文献   

14.
核纤层蛋白是一种存在于真核细胞核膜下的中间丝纤维蛋白,是细胞核中重要的骨架蛋白,对维持细胞核的结构和功能具有重要作用。其基因突变会引起一系列的遗传性疾病,称为核纤层蛋白病。这些疾病在细胞水平表现出氧化应激和DNA损伤的特征,提示核纤层蛋白在氧化应激和DNA损伤反应中具有重要作用。本文主要就A型核纤层蛋白在氧化应激、DNA损伤反应中的作用机制进行综述。  相似文献   

15.
An Q  Robins P  Lindahl T  Barnes DE 《The EMBO journal》2005,24(12):2205-2213
The most common genetic change in aerobic organisms is a C:G to T:A mutation. C --> T transitions can arise through spontaneous hydrolytic deamination of cytosine to give a miscoding uracil residue. This is also a frequent DNA lesion induced by oxidative damage, through exposure to agents such as ionizing radiation, or from endogenous sources that are implicated in the aetiology of degenerative diseases, ageing and cancer. The Ung and Smug1 enzymes excise uracil from DNA to effect repair in mammalian cells, and gene-targeted Ung(-/-) mice exhibit a moderate increase in genome-wide spontaneous mutagenesis. Here, we report that stable siRNA-mediated silencing of Smug1 in mouse embryo fibroblasts also generates a mutator phenotype. However, an additive 10-fold increase in spontaneous C:G to T:A transitions in cells deficient in both Smug1 and Ung demonstrates that these enzymes have distinct and nonredundant roles in suppressing C --> T mutability at non-CpG sites. Such cells are also hypersensitive to ionizing radiation, and reveal a role of Smug1 in the repair of lesions generated by oxidation of cytosine.  相似文献   

16.
The molecular genetics and bioenergetics of oxidative damage, fragmentation, and fragility of mitochondrial DNA in cellular apoptosis is reviewed in connection with the redox mechanism of ageing.  相似文献   

17.
MTH1 是一种 DNA 氧化损伤修复酶,主要负责“清理”核苷酸池中氧化损伤的脱氧核苷三磷酸(dNTPs),以防其掺入 DNA 复 制中而造成碱基错配。研究表明,MTH1 与肿瘤细胞的生存密切相关,而正常细胞的生长与存活则不依赖于 MTH1。所以,以 MTH1 为靶 点开展抗肿瘤新药研发,已逐渐受到人们的关注。抑制 MTH1,为肿瘤治疗开辟了一条新途经。简介 MTH1 的结构和功能及其与肿瘤的关联, 着重对近年来 MTH1 抑制剂的发现过程和研究进展作一综述,探究小分子 MTH1 抑制剂与 MTH1 蛋白的作用模式,为 MTH1 抑制剂的设 计提供思路。  相似文献   

18.
Treatment of cultured rat pancreatic islets of Langerhans with the combined cytokines interleukin-1β (IL-1β), interferon γ (IFN γ) and tumour necrosis factor α (TNF α) leads to DNA damage including strand breakage. We have investigated the nature of this damage and its repairability. When islets are further incubated for 4?h in fresh medium, the level of cytokine-induced strand breakage remains constant. If the nitric oxide synthase inhibitor NG-monomethyl-l-arginine (NMMA) is present during cytokine treatment, then strand breakage is prevented. If NMMA is added following, rather than during, the cytokine treatment and islets are incubated for 4?h, further nitric oxide synthesis is prevented and most cytokine-induced strand breaks are no longer seen. To investigate DNA repair following cytokine treatment, cells were transferred to fresh medium and incubated for 4?h in the presence of hydroxyurea (HU) and 1-β-d-arabinosyl cytosine (AraC), as inhibitors of strand rejoining. In the presence of these inhibitors there was an accumulation of strand breaks that would otherwise have been repaired. However, when further nitric oxide synthesis was inhibited by NMMA, significantly less additional strand breakage was seen in the presence of HU and AraC. We interpret this, as indicating that excision repair of previously induced base damage did not contribute significantly to strand breakage. Levels of oxidised purines, as indicated by formamidopyrimidine glycosylase (Fpg) sensitive sites, were not increased in cytokine-treated islets. We conclude that in these primary insulin-secreting cells: (a) the DNA damage induced by an 18?h cytokine treatment is prevented by an inhibitor of nitric oxide synthase, (b) much of the damage is in the form of apparent strand breaks rather than altered bases such as oxidised purines, (c) substantial repair is ongoing during the cytokine treatment and this repair is not inhibited in the presence of nitric oxide.  相似文献   

19.
20.
The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号