首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.

Background

Cardiopulmonary bypass (CPB) may induce systemic inflammation and vascular dysfunction. Sphingosine 1-phosphate (S1P) modulates various vascular and immune responses. Here we explored whether agonists of the S1P receptors, FTY720 and SEW2871 improve vascular reactivity after CPB in the rat.

Methods

Experiments were done in male Wistar rats (total n = 127). Anesthesia was induced by isoflurane (2.5–3%) and maintained by fentanyl and midazolam during CPB. After catheterization of the left femoral artery, carotid artery and the right atrium, normothermic extracorporeal circulation was instituted for 60 minutes. In the first part of the study animals were euthanized after either 1 hour, 1 day, 2 or 5 days of the recovery period. In second part of the study animals were euthanized after 1 day of postoperative period. We evaluated the contractile response to phenylephrine (mesenteric arteries) or to serotonin (coronary artery) and vasodilatory response to acethylcholine (both arteries).

Results

Contractile responses to phenylephrine were reduced at 1 day recovery after CPB and Sham as compared to healthy control animals (Emax, mN: 7.9±1.9, 6.5±1.5, and 11.3±1.3, respectively). Mainly FTY720, but not SEW2871, caused lymphopenia in both Sham and CPB groups. In coronary and mesenteric arteries, both FTY720 and SEW2871 normalized serotonin and phenylephrine-mediated vascular reactivity after CPB (p<0.05) and FTY720 increased relaxation to acetylcholine as compared with untreated rats that underwent CPB.

Conclusion

Pretreatment with FTY720 or SEW2871 preserves vascular function in mesenteric and coronary artery after CPB. Therefore, pharmacological activation of S1P1 receptors may provide a promising therapeutic intervention to prevent CPB-related vascular dysfunction in patients.  相似文献   

2.
Sphingosine 1-phosphate subtype 1 (S1P(1)) receptor agonists alter lymphocyte trafficking and endothelial barrier integrity in vivo. Among these is the potent, non-selective agonist, FTY720-P, whose mechanism of action has been suggested to correlate with S1P(1) down-regulation. Discovery of the in vivo active S1P(1)-selective agonist, SEW2871, has broadened our understanding of minimal requirements for S1P(1) function while highlighting differences regarding agonist effect on S1P(1) fate, because SEW2871 does not degrade S1P(1). To further understand the mechanism of agonist-induced S1P(1) down-regulation, we compared signaling and fate of human S1P(1)-green fluorescent protein (GFP) in stable 293 cells, using AFD-R, a chiral analog of FTY720-P, SEW2871, and S1P. Although all agonists acutely internalized S1P(1) to late endosomal vesicles and activated GTPgammaS(35) binding and pERK to similar maxima, only AFD-R led to significant S1P(1) down-regulation, as shown by GFP immunoprecipitation studies. Down-regulation was time- and concentration-dependent, was partially blocked by proteasomal inhibition and reversed by chloroquine and an antagonist to S1P(1). All agonists induced a receptor-associated increase in ubiquitination, with AFD-R inducing 3-fold more accumulation than S1P and being 3-4 logs more potent than SEW2871. The formation of AFD-R-receptor ubiquitin complex was inhibited by antagonist and chloroquine and was enhanced by proteasomal inhibition. Identification of proteins by PAGE liquid chromatography-tandem mass spectrometry in cells treated with AFD-R confirmed the co-migration of ubiquitin peptides with those of S1P(1) and GFP, relative to vehicle alone. These data suggest that the hierarchy of ubiquitin recruitment to S1P(1) (AFD-R > S1P > SEW2871) correlates with the efficiency of lysosomal receptor degradation and reflects intrinsic differences between agonists.  相似文献   

3.
Synthetic sphingosine 1-phosphate receptor 1 modulators constitute a new class of drugs for the treatment of autoimmune diseases. Sphingosine 1-phosphate (S1P) signaling, however, is also involved in the development of fibrosis. Using normal human lung fibroblasts, we investigated the induction of fibrotic responses by the S1P receptor (S1PR) agonists S1P, FTY720-P, ponesimod, and SEW2871 and compared them with the responses induced by the known fibrotic mediator TGF-β1. In contrast to TGF-β1, S1PR agonists did not induce expression of the myofibroblast marker α-smooth muscle actin. However, TGF-β1, S1P, and FTY720-P caused robust stimulation of extracellular matrix (ECM) synthesis and increased pro-fibrotic marker gene expression including connective tissue growth factor. Ponesimod showed limited and SEW2871 showed no pro-fibrotic potential in these readouts. Analysis of pro-fibrotic signaling pathways showed that in contrast to TGF-β1, S1PR agonists did not activate Smad2/3 signaling but rather activated PI3K/Akt and ERK1/2 signaling to induce ECM synthesis. The strong induction of ECM synthesis by the nonselective agonists S1P and FTY720-P was due to the stimulation of S1P2 and S1P3 receptors, whereas the weaker induction of ECM synthesis at high concentrations of ponesimod was due to a low potency activation of S1P3 receptors. Finally, in normal human lung fibroblast-derived myofibroblasts that were generated by TGF-β1 pretreatment, S1P and FTY720-P were effective stimulators of ECM synthesis, whereas ponesimod was inactive, because of the down-regulation of S1P3R expression in myofibroblasts. These data demonstrate that S1PR agonists are pro-fibrotic via S1P2R and S1P3R stimulation using Smad-independent pathways.  相似文献   

4.
A functional sphingosine-1-phosphate (S1P) receptor antagonist specifically inhibited the egress of activated allospecific T cells from draining popliteal lymph nodes in alloantigen-sensitised mice. The level of S1P receptor 1 (S1PR1) mRNA was similarly reduced 1 and 3 days after mitogenic activation of T cells. However, the response of these cells to the S1PR1-specific agonist SEW2871 was only reduced on the first day after T cell activation with normal receptor-mediated Akt-phosphorylation restored by day 3. Longitudinal analysis of CD69 expression showed that almost all T cells expressed this antigen on days 1 and 3 after activation. However, the absolute level of cell-surface expression of CD69 peaked on undivided T cells and was then halved by each of the first 3 cycles of mitosis. CD69-specific small interfering RNA (siRNA) reduced the maximal level of CD69 expression by undivided, mitogen-stimulated T cells. These cells retained their capacity to phosphorylate Akt in response to stimulation with SEW2871. These data show that S1P receptors are involved in controlling the egress of activated T cells from lymph nodes, and that S1PR1 function is regulated by the level of T cell surface CD69. They suggest a potential for augmentation of this process to deplete alloreactive effector cells after organ transplantation.  相似文献   

5.
Sphingosine-1-phosphate (S1P) is a ubiquitous, lipophilic cellular mediator that acts in part by activation of G-protein-coupled receptor. Modulation of S1P signaling is an emerging pharmacotherapeutic target for immunomodulatory drugs. Although multiple S1P receptor types exist in the CNS, little is known about their function. Here, we report that S1P stimulated G-protein activity in the CNS, and results from [35S]GTPγS autoradiography using the S1P1-selective agonist SEW2871 and the S1P1/3-selective antagonist VPC44116 show that in several regions a majority of this activity is mediated by S1P1 receptors. S1P receptor activation inhibited glutamatergic neurotransmission as determined by electrophysiological recordings in cortical neurons in vitro , and this effect was mimicked by SEW2871 and inhibited by VPC44116. Moreover, central administration of S1P produced in vivo effects resembling the actions of cannabinoids, including thermal antinociception, hypothermia, catalepsy and hypolocomotion, but these actions were independent of CB1 receptors. At least one of the central effects of S1P, thermal antinociception, is also at least partly S1P1 receptor mediated because it was produced by SEW2871 and attenuated by VPC44116. These results indicate that CNS S1P receptors are part of a physiologically relevant and widespread neuromodulatory system, and that the S1P1 receptor contributes to S1P-mediated antinociception.  相似文献   

6.
Coordinated migration and progesterone production by granulosa cells is critical to the development of the corpus luteum, but the underlying mechanisms remain obscure. Sphingosine 1-phosphate (S1P), which is associated with follicular fluid high-density lipoprotein (FF-HDL), was previously shown to regulate ovarian angiogenesis. We herein examined the effects of S1P and FF-HDL on the function of granulosa lutein cells. Both FF-HDL and S1P induced migration of primary human granulosa lutein cells (hGCs) and the granulosa lutein cell line HGL5. In addition, FF-HDL but not S1P promoted progesterone synthesis, and neither of the two compounds stimulated proliferation of granulosa lutein cells. Polymerase chain reaction and Western blot experiments demonstrated the expression of S1P receptor type 1 (S1PR1), S1PR2, S1PR3, and S1PR5 but not S1PR4 in hGCs and HGL5 cells. The FF-HDL- and S1P-induced granulosa lutein cell migration was emulated by FTY720, an agonist of S1PR1, S1PR3, S1PR4, and S1PR5, and by VPC24191, an agonist of S1PR1 and S1PR3, but not by SEW2871 and phytosphingosine 1-phosphate, agonists of S1PR1 and S1PR4, respectively. In addition, blockade of S1PR3 with CAY1044, suramine, or pertussis toxin inhibited hGC and HGL5 cell migration toward FF-HDL or S1P, while blockade of S1PR1 and S1PR2 with W146 and JTE013, respectively, had no effect. Both FF-HDL and S1P triggered activation of small G-protein RAC1 and actin polymerization in granulosa cells, and RAC1 inhibition with Clostridium difficile toxin B or NSC23766 abolished FF-HDL- and S1P-induced migration. The FF-HDL-associated S1P promotes granulosa lutein cell migration via S1PR3 and RAC1 activation. This may represent a novel mechanism contributing to the development of the corpus luteum.  相似文献   

7.

Objective

The aim of this study was to evaluate whether the distribution pattern of early ischemic changes in the initial MRI allows a practical method for estimating leptomeningeal collateralization in acute ischemic stroke (AIS).

Methods

Seventy-four patients with AIS underwent MRI followed by conventional angiogram and mechanical thrombectomy. Diffusion restriction in Diffusion weighted imaging (DWI) and correlated T2-hyperintensity of the infarct were retrospectively analyzed and subdivided in accordance with Alberta Stroke Program Early CT score (ASPECTS). Patients were angiographically graded in collateralization groups according to the method of Higashida, and dichotomized in 2 groups: 29 subjects with collateralization grade 3 or 4 (well-collateralized group) and 45 subjects with grade 1 or 2 (poorly-collateralized group). Individual ASPECTS areas were compared among the groups.

Results

Means for overall DWI-ASPECTS were 6.34 vs. 4.51 (well vs. poorly collateralized groups respectively), and for T2-ASPECTS 9.34 vs 8.96. A significant difference between groups was found for DWI-ASPECTS (p<0.001), but not for T2-ASPECTS (p = 0.088). Regarding the individual areas, only insula, M1-M4 and M6 showed significantly fewer infarctions in the well-collateralized group (p-values <0.001 to 0.015). 89% of patients in the well-collateralized group showed 0–2 infarctions in these six areas (44.8% with 0 infarctions), while 59.9% patients of the poor-collateralized group showed 3–6 infarctions.

Conclusion

Patients with poor leptomeningeal collateralization show more infarcts on the initial MRI, particularly in the ASPECTS areas M1 to M4, M6 and insula. Therefore DWI abnormalities in these areas may be a surrogate marker for poor leptomeningeal collaterals and may be useful for estimation of the collateral status in routine clinical evaluation.  相似文献   

8.
Liu X  Yue S  Li C  Yang L  You H  Li L 《Journal of cellular physiology》2011,226(9):2370-2377
The biological roles of sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs) have been broadly investigated. However, at present pathophysiological roles of S1P/S1PRs axis in liver fibrosis are not well defined. Here, we investigated the functions of S1P/S1PRs axis in human hepatic stellate cells (HSC) line, LX-2 cells. We found that S1PR types 1, 2 and 3 (S1PR1-3) are clearly detected in LX-2 cells, as determined by RT-PCR, Western blot and immunocytochemistry analysis. S1P exerted a powerful migratory action on LX-2 cells, as determined in Boyden chambers, and stimulated fibrogenic activity of LX-2 cells, as demonstrated by increase of expression of smooth muscle α-actin, procollagen α1(I) and α1(III) and total hydroxyproline content. Moreover, the effects of S1P were mimicked by S1PR1 agonist SEW2871, and abrogated by W146 (S1PR1 antagonist) and/or silencing S1PR1, three expression with small interfering RNA, suggesting the main roles of S1PR1 and 3. However, studies with S1PR2 antagonist JTE-013 and silencing S1PR2 expression indicated that S1PR2 negatively regulated S1P-induced cell migration. Interestingly, exogenously added S1P induced significant up-regulation of sphingosine kinase-1 and the synthesis of additional S1P, and expression of S1PR1,3, but not S1PR2. In conclusion, our data have identified an additional function regulated by S1P/S1PR1,3 axis involving migration and fibrogenic activation of HSCs. These results suggest that selective modulation of S1PR activity may represent a new antifibrotic strategy.  相似文献   

9.
Sevoflurane, a common used inhaled anaesthetic, induces neuronal apoptosis in preclinical studies and correlates with functional neurological impairment. We investigated whether FTY720, a known sphingosine-1 phosphate (S1P) receptor agonist, could exert neuroprotective effect against sevoflurane-induced neurotoxicity. Neuroprotective effect of FTY720 was evaluated in vitro in hippocampal neuronal cells from neonatal rats and in vivo in rat pups. In vitro cell apoptosis was determined by flow cytometry after exposure to 3 % sevoflurane for different period of time, or after 6-h exposure to sevoflurane with the presence of FTY720, SEW2871 (selective S1P1 receptor agonist) or combination of FTY720 and VPC23019 (S1P antagonist). Western blot analysis was performed with hippocampal tissue from rat pups exposed to 3 % sevoflurane for 6 h with or without pre-treatment with FTY720 injection. Neurological function tests were also performed with rat pups exposed to 3 % sevoflurane for 6 h with or without pre-treatment with FTY720 injection. FTY720, at nanomolar concentration, significantly prevents sevoflurane-induced neuronal apoptosis. SEW2871 showed similar neuroprotective effect to FTY720, whereas VPC23019 abrogated the neuroprotective effect of FTY720 when given together. Western blots results demonstrated that FTY710 significantly preserved the level of phosphorylated ERK1/2, Bcl-2 and Bax. Although anaesthetic treatment did not affect general health and emotional status, sevoflurane-induced cognitive impairment in rat models. Administration of FTY720 at 1 mg/kg significantly attenuated sevoflurane-induced neurocognitive impairment. Although further studies are needed to evaluate the feasibility of clinical usage of FTY720 as neuroprotective agent, the study provides preclinical experimental evidence for the efficacy of FTY720 against sevoflurane-induced developmental neurotoxicity.  相似文献   

10.

Introduction

We previously reported that alveolar macrophages from patients with chronic obstructive pulmonary disease (COPD) are defective in their ability to phagocytose apoptotic cells, with a similar defect in response to cigarette smoke. The exact mechanisms for this defect are unknown. Sphingolipids including ceramide, sphingosine and sphingosine-1-phosphate (S1P) are involved in diverse cellular processes and we hypothesised that a comprehensive analysis of this system in alveolar macrophages in COPD may help to delineate the reasons for defective phagocytic function.

Methods

We compared mRNA expression of sphingosine kinases (SPHK1/2), S1P receptors (S1PR1-5) and S1P-degrading enzymes (SGPP1, SGPP2, SGPL1) in bronchoalveolar lavage-derived alveolar macrophages from 10 healthy controls, 7 healthy smokers and 20 COPD patients (10 current- and 10 ex-smokers) using Real-Time PCR. Phagocytosis of apoptotic cells was investigated using flow cytometry. Functional associations were assessed between sphingosine signalling system components and alveolar macrophage phagocytic ability in COPD. To elucidate functional effects of increased S1PR5 on macrophage phagocytic ability, we performed the phagocytosis assay in the presence of varying concentrations of suramin, an antagonist of S1PR3 and S1PR5. The effects of cigarette smoking on the S1P system were investigated using a THP-1 macrophage cell line model.

Results

We found significant increases in SPHK1/2 (3.4- and 2.1-fold increases respectively), S1PR2 and 5 (4.3- and 14.6-fold increases respectively), and SGPL1 (4.5-fold increase) in COPD vs. controls. S1PR5 and SGPL1 expression was unaffected by smoking status, suggesting a COPD “disease effect” rather than smoke effect per se. Significant associations were noted between S1PR5 and both lung function and phagocytosis. Cigarette smoke extract significantly increased mRNA expression of SPHK1, SPHK2, S1PR2 and S1PR5 by THP-1 macrophages, confirming the results in patient-derived macrophages. Antagonising SIPR5 significantly improved phagocytosis.

Conclusion

Our results suggest a potential link between the S1P signalling system and defective macrophage phagocytic function in COPD and advise therapeutic targets.  相似文献   

11.

Background

Repetitive administration of medication or contrast agents is frequently performed in mice. The introduction of vascular access mini-ports (VAMP) for mice allows long-term vascular catheterization, hereby eliminating the need for repeated vessel puncture. With catheter occlusion being the most commonly reported complication of chronic jugular vein catheterization, we tested whether digital subtraction angiography (DSA) can be utilized to evaluate VAMP patency in mice.

Methods

Twenty-three mice underwent catheterization of the jugular vein and subcutaneous implantation of a VAMP. The VAMP was flushed every second day with 50 μL of heparinized saline solution (25 IU/ml). DSA was performed during injection of 100 μL of an iodine based contrast agent using an industrial X-ray inspection system intraoperatively, as well as 7±2 and 14±2 days post implantation.

Results

DSA allowed localization of catheter tip position, to rule out dislocation, kinking or occlusion of a microcatheter, and to evaluate parent vessel patency. In addition, we observed different ante- and retrograde collateral flow patterns in case of jugular vein occlusion. More exactly, 30% of animals showed parent vessel occlusion after 7±2 days in our setting. At this time point, nevertheless, all VAMPs verified intravascular contrast administration. After 14±2 days, intravascular contrast injection was verified in 70% of the implanted VAMPs, whereas at this point of time 5 animals had died or were sacrificed and in 2 mice parent vessel occlusion hampered intravascular contrast injection. Notably, no occlusion of the catheter itself was observed.

Conclusion

From our observations we conclude DSA to be a fast and valuable minimally invasive tool for investigation of catheter and parent vessel patency and for anatomical studies of collateral blood flow in animals as small as mice.  相似文献   

12.
Activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) has a neuro-protective effect on ischemic and hemorrhagic stroke. However, the underlying mechanism is not completely understood. We hypothesized that α-7 nAchR agonist protects brain injury after ischemic stroke through reduction of pro-inflammatory macrophages (M1) and oxidative stress. C57BL/6 mice were treated with PHA568487 (PHA, α-7 nAchR agonist), methyllycaconitine (MLA, nAchR antagonist), or saline immediately and 24 hours after permanent occlusion of the distal middle cerebral artery (pMCAO). Behavior test, lesion volume, CD68+, M1 (CD11b+/Iba1+) and M2 (CD206/Iba1+) microglia/macrophages, and phosphorylated p65 component of NF-kB in microglia/macrophages were quantified using histological stained sections. The expression of M1 and M2 marker genes, anti-oxidant genes and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were quantified using real-time RT-PCR. Compared to the saline-treated mice, PHA mice had fewer behavior deficits 3 and 7 days after pMCAO, and smaller lesion volume, fewer CD68+ and M1 macrophages, and more M2 macrophages 3 and 14 days after pMCAO, whereas MLA''s effects were mostly the opposite in several analyses. PHA increased anti-oxidant genes and NADPH oxidase expression associated with decreased phosphorylation of NF-kB p65 in microglia/macrophages. Thus, reduction of inflammatory response and oxidative stress play roles in α-7 nAchR neuro-protective effect.  相似文献   

13.
MethodsAdult Sprague–Dawley rats were administrated with different dosages of Scu by oral gavage for 7 days and underwent permanent middle cerebral artery occlusion (pMCAO). Blood pressure was measured 7 days after Scu administration and 24 h after pMCAO surgery by using a noninvasive tail cuff method. Cerebral blood flow (CBF) was determined by Laser Doppler perfusion monitor and the neuronal dysfunction was evaluated by analysis of neurological deficits before being sacrificed at 24 h after pMCAO. Histopathological change, cell apoptosis and infarct area were respectively determined by hematoxylin–eosin staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis and 2,3,5-triphenyltetrazolium chloride staining. Tissue angiotensin II (Ang II) and ACE activity were detected by enzyme-linked immunosorbent assays. The expression levels of ACE, Ang II type 1 receptor (AT1R), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were measured by Western blot and real-time PCR. ACE inhibitory activity of Scu in vitro was detected by the photometric determination.ResultsScu treatment dose-dependently decreased neurological deficit score, infarct area, cell apoptosis and morphological changes induced by pMCAO, which were associated with reductions of ACE and AT1R expression and the levels of Ang II, TNF-α, IL-6, and IL-1β in ischemic brains. Scu has a potent ACE inhibiting activity.ConclusionScu protects brain from acute ischemic injury probably through its inhibitory effect on the ACE/Ang II/AT1 axis, CBF preservation and proinflammation inhibition.  相似文献   

14.
Dendritic cells (DCs) and lymphocytes are known to show a migratory response to the phospholipid mediator, sphingosine 1-phosphate (S1P). However, it is unclear whether the same S1P receptor subtype mediates the migration of lymphocytes and DCs toward S1P. In this study, we investigated the involvement of S1P receptor subtypes in S1P-induced migration of CD4 T cells and bone marrow-derived DCs in mice. A potent S1P receptor agonist, the (S)-enantiomer of FTY720-phosphate [(S)-FTY720-P], at 0.1 nM or higher and a selective S1P receptor type 1 (S1P(1)) agonist, SEW2871, at 0.1 muM or higher induced a dose-dependent down-regulation of S1P(1). The pretreatment with these compounds resulted in a significant inhibition of mouse CD4 T cell migration toward S1P. Thus, it is revealed that CD4 T cell migration toward S1P is highly dependent on S1P(1). Mature DCs, when compared with CD4 T cells or immature DCs, expressed a relatively higher level of S1P(3) mRNA. S1P at 10-1000 nM induced a marked migration and significantly enhanced the endocytosis of FITC-dextran in mature but not immature DCs. Pretreatment with (S)-FTY720-P at 0.1 microM or higher resulted in a significant inhibition of S1P-induced migration and endocytosis in mature DCs, whereas SEW2871 up to 100 microM did not show any clear effect. Moreover, we found that S1P-induced migration and endocytosis were at an extremely low level in mature DCs prepared from S1P(3)-knockout mice. These results indicate that S1P regulates migration and endocytosis of murine mature DCs via S1P(3) but not S1P(1).  相似文献   

15.

Purpose

Surgical patients are at high risk for developing infectious complications and postoperative delirium. Prolonged infections and delirium result in worse outcome. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and influenza vaccination are known to increase HLA-DR on monocytes and improve immune reactivity. This study aimed to investigate whether GM-CSF or vaccination reverses monocyte deactivation. Secondary aims were whether it decreases infection and delirium days after esophageal or pancreatic resection over time.

Methods

In this prospective, randomized, placebo-controlled, double-blind, double dummy trial setting on an interdisciplinary ICU of a university hospital 61 patients with immunosuppression (monocytic HLA-DR [mHLA-DR] <10,000 monoclonal antibodies [mAb] per cell) on the first day after esophageal or pancreatic resection were treated with either GM-CSF (250 μg/m2/d), influenza vaccination (Mutagrip 0.5 ml/d) or placebo for a maximum of 3 consecutive days if mHLA-DR remained below 10,000 mAb per cell. HLA-DR on monocytes was measured daily until day 5 after surgery. Infections and delirium were followed up for 9 days after surgery. Primary outcome was HLA-DR on monocytes, and secondary outcomes were duration of infection and delirium.

Results

mHLA-DR was significantly increased compared to placebo (p < 0.001) and influenza vaccination (p < 0.001) on the second postoperative day. Compared with placebo, GM-CSF-treated patients revealed shorter duration of infection (p < 0.001); the duration of delirium was increased after vaccination (p = 0.003).

Conclusion

Treatment with GM-CSF in patients with postoperative immune suppression was safe and effective in restoring monocytic immune competence. Furthermore, therapy with GM-CSF reduced duration of infection in immune compromised patients. However, influenza vaccination increased duration of delirium after major surgery.

Trial Registration

www.controlled-trials.com ISRCTN27114642  相似文献   

16.

Background

Interferon-α (IFN) induces complete cytogenetic remission (CCR) in 20–25% CML patients and in a small minority of patients; CCR persists after IFN is stopped. IFN induces CCR in part by increasing cytotoxic T lymphocytes (CTL) specific for PR1, the HLA-A2-restricted 9-mer peptide from proteinase 3 and neutrophil elastase, but it is unknown how CCR persists after IFN is stopped.

Principal Findings

We reasoned that PR1-CTL persist and mediate CML-specific immunity in patients that maintain CCR after IFN withdrawal. We found that PR1-CTL were increased in peripheral blood of 7/7 HLA-A2+ patients during unmaintained CCR from 3 to 88 months after IFN withdrawal, as compared to no detectable PR1-CTL in 2/2 IFN-treated CML patients not in CCR. Unprimed PR1-CTL secreted IFNγ and were predominantly CD45RA±CD28+CCR7+CD57-, consistent with functional naïve and central memory (CM) T cells. Similarly, following stimulation, proliferation occurred predominantly in CM PR1-CTL, consistent with long-term immunity sustained by self-renewing CM T cells. PR1-CTL were functionally anergic in one patient 6 months prior to cytogenetic relapse at 26 months after IFN withdrawal, and in three relapsed patients PR1-CTL were undetectable but re-emerged 3–6 months after starting imatinib.

Conclusion

These data support the hypothesis that IFN elicits CML-specific CM CTL that may contribute to continuous CCR after IFN withdrawal and suggest a role for T cell immune therapy with or without tyrosine kinase inhibitors as a strategy to prolong CR in CML.  相似文献   

17.
Adult mouse ventricular myocytes express S1P(1), S1P(2), and S1P(3) receptors. S1P activates Akt and ERK in adult mouse ventricular myocytes through a pertussis toxin-sensitive (G(i/o)-mediated) pathway. Akt and ERK activation by S1P are reduced approximately 30% in S1P(3) and 60% in S1P(2) receptor knock-out myocytes. With combined S1P(2,3) receptor deletion, activation of Akt is abolished and ERK activation is reduced by nearly 90%. Thus the S1P(1) receptor, while present in S1P(2,3) receptor knock-out myocytes, is unable to mediate Akt or ERK activation. In contrast, S1P induces pertussis toxin-sensitive inhibition of isoproterenol-stimulated cAMP accumulation in both WT and S1P(2,3) receptor knock-out myocytes demonstrating that the S1P(1) receptor can functionally couple to G(i). An S1P(1) receptor selective agonist, SEW2871, also decreased cAMP accumulation but failed to activate ERK or Akt. To determine whether localization of the S1P(1) receptor mediates this signaling specificity, methyl-beta-cyclodextrin (MbetaCD) treatment was used to disrupt caveolae. The S1P(1) receptor was concentrated in caveolar fractions, and associated with caveolin-3 and this localization was disrupted by MbetaCD. S1P-mediated activation of ERK or Akt was not diminished but inhibition of cAMP accumulation by S1P and SEW2871 was abolished by MbetaCD treatment. S1P inhibits the positive inotropic response to isoproterenol and this response is also mediated through the S1P(1) receptor and lost following caveolar disruption. Thus localization of S1P(1) receptors to caveolae is required for the ability of this receptor to inhibit adenylyl cyclase and contractility but compromises receptor coupling to Akt and ERK.  相似文献   

18.
HDL carries biologically active lipids such as sphingosine-1-phosphate (S1P) and stimulates a variety of cell signaling pathways in diverse cell types, which may contribute to its ability to protect against atherosclerosis. HDL and sphingosine-1-phosphate receptor agonists, FTY720 and SEW2871 triggered macrophage migration. HDL-, but not FTY720-stimulated migration was inhibited by an antibody against the HDL receptor, SR-BI, and an inhibitor of SR-BI mediated lipid transfer. HDL and FTY720-stimulated migration was also inhibited in macrophages lacking either SR-BI or PDZK1, an adaptor protein that binds to SR-BI''s C-terminal cytoplasmic tail. Migration in response to HDL and S1P receptor agonists was inhibited by treatment of macrophages with sphingosine-1-phosphate receptor type 1 (S1PR1) antagonists and by pertussis toxin. S1PR1 activates signaling pathways including PI3K-Akt, PKC, p38 MAPK, ERK1/2 and Rho kinases. Using selective inhibitors or macrophages from gene targeted mice, we demonstrated the involvement of each of these pathways in HDL-dependent macrophage migration. These data suggest that HDL stimulates the migration of macrophages in a manner that requires the activities of the HDL receptor SR-BI as well as S1PR1 activity.  相似文献   

19.

Background & Aims

Although in cirrhosis with portal hypertension levels of the vasoconstrictor angiotensin II are increased, this is accompanied by increased production of angiotensin (Ang)-(1–7), the endogenous ligand of the Mas receptor (MasR), which blunts hepatic fibrosis and decreases hepatic vascular resistance. Therefore, we investigated the effects of the non-peptidic Ang-(1–7) agonist, AVE0991, in experimental cirrhosis.

Methods

Cirrhosis was induced by bile duct ligation (BDL) or carbon tetrachloride (CCl4) intoxication. The coloured microsphere technique assessed portal and systemic hemodynamic effects of AVE0991 in vivo. Hepatic expression of eNOS, p-eNOS, iNOS, JAK2, ROCK and p-Moesin were analyzed by western blots. Activities of ACE and ACE2 were investigated fluorometrically. Moreover, fibrosis was assessed in BDL rats receiving AVE0991.

Results

In vivo, AVE0991 decreased portal pressure (PP) in both rat models of cirrhosis. Importantly, systemic effects were not observed. The hepatic effects of AVE0991 were based on upregulation of vasodilating pathways involving p-eNOS and iNOS, as well as by downregulation of the vasoconstrictive pathways (ROCK, p-Moesin). Short-term treatment with AVE0991 decreased the activity of ACE2, long-term treatment did not affect hepatic fibrosis in BDL rats.

Conclusions

The non-peptidic agonist of Ang-(1–7), AVE0991, decreases portal pressure without influencing systemic pressure. Thus, although it does not inhibit fibrosis, AVE0991 may represent a promising new therapeutic strategy for lowering portal pressure.  相似文献   

20.

Purpose

To assess whether T1 relaxation time of tumors may be used to assess response to bevacizumab anti-angiogenic therapy. Procedures: 12 female nude mice bearing subcutaneous SKOV3ip1-LC ovarian tumors were administered bevacizumab (6.25ug/g, n=6) or PBS (control, n=6) therapy twice a week for two weeks. T1 maps of tumors were generated before, two days, and 2 weeks after initiating therapy. Tumor weight was assessed by MR and at necropsy. Histology for microvessel density, proliferation, and apoptosis was performed.

Results

Bevacizumab treatment resulted in tumor growth inhibition (p<0.04, n=6), confirming therapeutic efficacy. Tumor T1 relaxation times increased in bevacizumab treated mice 2 days and 2 weeks after initiating therapy (p<.05, n=6). Microvessel density decreased 59% and cell proliferation (Ki67+) decreased 50% in the bevacizumab treatment group (p<.001, n=6), but not apoptosis.

Conclusions

Findings suggest that increased tumor T1 relaxation time is associated with response to bevacizumab therapy in ovarian cancer model and might serve as an early indicator of response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号