首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method''s frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values. To address the issues arising from inter-laboratory comparisons, we devise a novel measure we term the Minimum Meaningful Difference (MMD), and demonstrate its application.  相似文献   

2.
Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.  相似文献   

3.
Photosynthetic carbon metabolism of a marine grass   总被引:5,自引:4,他引:5       下载免费PDF全文
The δ13C value of a tropical marine grass Thalassia testudinum is −9.04‰. This value is similar to the δ13C value of terrestrial tropical grasses. The δ13C values of the organic acid fraction, the amino acid fraction, the sugar fraction, malic acid, and glucose are: −11.2‰, −13.1‰, −10.1‰, −11.1‰, and −11.5‰, respectively. The δ13C values of malic acid and glucose of Thalassia are similar to the δ13C values of these intermediates in sorghum leaves and attest to the presence of the photosynthetic C4-dicarboxylic acid pathway in this marine grass. The inorganic HCO3 for the growth of the grass fluctuates between −6.7 to −2.7‰ during the day. If CO2 fixation in Thalassia is catalyzed by phosphoenolpyruvate carboxylase (which would result in a −3‰ fractionation between HCO3 and malic acid), the predicted δ13C value for Thalassia would be −9.7 to −5.7‰. This range is close to the observed range of −12.6 to −7.8‰ for Thalassia and agree with the operation of the C4-dicarboxylic acid pathway in this plant. The early products of the fixation of HCO3 in the leaf sections are malic acid and aspartic acid which are similar to the early products of CO2 fixation in C4 terrestrial plants.  相似文献   

4.
The anaerobic oxidation of methane (AOM) is a key process in the global methane cycle, and the majority of methane formed in marine sediments is oxidized in this way. Here we present results of an in vitro 13CH4 labeling study (δ13CH4, ~5,400‰) in which microorganisms that perform AOM in a microbial mat from the Black Sea were used. During 316 days of incubation, the 13C uptake into the mat biomass increased steadily, and there were remarkable differences for individual bacterial and archaeal lipid compounds. The greatest shifts were observed for bacterial fatty acids (e.g., hexadec-11-enoic acid [16:1Δ11]; difference between the δ13C at the start and the end of the experiment [Δδ13Cstart-end], ~160‰). In contrast, bacterial glycerol diethers exhibited only slight changes in δ13C (Δδ13Cstart-end, ~10‰). Differences were also found for individual archaeal lipids. Relatively high uptake of methane-derived carbon was observed for archaeol (Δδ13Cstart-end, ~25‰), a monounsaturated archaeol, and biphytanes, whereas for sn-2-hydroxyarchaeol there was considerably less change in the δ13C (Δδ13Cstart-end, ~2‰). Moreover, an increase in the uptake of 13C for compounds with a higher number of double bonds within a suite of polyunsaturated 2,6,10,15,19-pentamethyleicosenes indicated that in methanotrophic archaea there is a biosynthetic pathway similar to that proposed for methanogenic archaea. The presence of group-specific biomarkers (for ANME-1 and ANME-2 associations) and the observation that there were differences in 13C uptake into specific lipid compounds confirmed that multiple phylogenetically distinct microorganisms participate to various extents in biomass formation linked to AOM. However, the greater 13C uptake into the lipids of the sulfate-reducing bacteria (SRB) than into the lipids of archaea supports the hypothesis that there is autotrophic growth of SRB on small methane-derived carbon compounds supplied by the methane oxidizers.  相似文献   

5.
The δ PDB13C values have been determined for the cellular constituents and metabolic intermediates of autotrophically grown Chromatium vinosum. The isotopic composition of the HCO3- in the medium and the carbon isotopic composition of the bacterial cells change with the growth of the culture. The δ PDB13C value of the HCO3- in the media changes from an initial value of −6.6‰ to +8.1‰ after 10 days of bacterial growth and the δ PDB13C value of the bacterial cells change from −37.5‰ to −29.2‰ in the same period. The amount of carbon isotope fractionation during the synthesis of hexoses by the photoassimilation of CO2 has a range of −15.5‰ at time zero to −22.0‰ after 10 days. This range of fractionation compares to the range of carbon isotope fractionation for the synthesis of sugars from CO2 by ribulose 1,5-diphosphate carboxylase and the Calvin cycle.  相似文献   

6.
The δ13C values for seagrasses collected along the Texas Gulf Coast range from −10.9 to −11.4‰. These values are similar to the δ13C values of terrestrial C4 plants, but seagrasses lack bundle sheath cells which are important in determining the δ13C values of C4 plants. This work attempts to explain the reason the δ13C values of seagrasses resemble the δ13C values of C4 plants.  相似文献   

7.
Martin CE  Zee AK 《Plant physiology》1983,73(3):718-723
The potential for Crassulacean acid metabolism (CAM) was investigated in the sandstone outcrop succulent Talinum calycinum in central Kansas. Field studies revealed CAM-like diurnal acid fluctuations in these plants. These fluctuations persisted under all moisture and temperature regimes in the laboratory. Despite this CAM-like acid metabolism, simultaneous gravimetric determinations of day- and nighttime transpiration rates indicated the presence of a C3 gas exchange pattern. Subsequent analyses of diurnal CO2 and H2O exchange patterns under well-watered conditions and after 3, 5, and 7 days of drought confirmed these findings, though low rates of nocturnal CO2 uptake were observed on the fifth night after continuous drought. Finally, the δ13C/12C value of this succulent, −27.8‰, emphasizes the insignificance of any nocturnal CO2 uptake in the lifelong accumulation of carbon in this species. Thus, it is proposed that T. calycinum is a C3 plant with some CAM characteristics, including the ability to re-fix respiratory CO2 at night under all moisture regimes, potentially resulting in a conservation of carbon, and occasionally to fix atmospheric CO2 at night. These findings may prove to be common among rock outcrop succulents.  相似文献   

8.
Yakir D  Osmond B  Giles L 《Plant physiology》1991,97(3):1196-1198
The natural abundance of carbon and hydrogen isotopic composition, expressed as a δ13C value of plant dry matter and cellulose in the hypsophylls (husk leaves) of maize (Zea mays L.) was measured and compared with that of leaves and cobs. The δ13C values of outer hypsophylls were usually 2 to 3%‰ more negative than leaves or other tissues, and became more negative with increasing chlorophyll content, indicating significant local C3 pathway fixation of CO2 in the outer hypsophylls. The δD values indicated a significant part of hypsophyll cellulose was derived from heterotrophic sources (sucrose from C4 photosynthesis in other tissues). Isotopic mass balance calculations allowed quantitative estimation of these carbon sources and, in the samples examined, about 16% of hypsophyll cellulose was derived from local C3 photosynthesis, about 62% from local C4 photosynthesis, and about 22% from sucrose imported from other leaves.  相似文献   

9.
Methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs. CH4 is oxidized by methane oxidizing bacteria (MOB), and subsequently utilized by chironomid larvae, which may exhibit low δ13C values. This has been shown for chironomid larvae collected from lakes, streams and backwater pools. However, the relationship between CH4 concentrations and δ13C values of chironomid larvae for in-stream impoundments is unknown. CH4 concentrations were measured in eleven in-stream impoundments located in the Queich River catchment area, South-western Germany. Furthermore, the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae) were determined and correlated with CH4 concentrations. Chironomini larvae had lower mean δ13C values (−29.2 to −25.5 ‰), than Tanypodinae larvae (−26.9 to −25.3 ‰). No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p>0.05). Mean δ13C values of chironomid larvae (mean: −26.8‰, range: −29.2‰ to −25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: −28.4‰, range: −29.3‰ to −27.1‰) and tree leaf litter (mean: −29.8 ‰, range: −30.5‰ to −29.1‰). We suggest that CH4 concentration has limited influence on the benthic food web in stream impoundments.  相似文献   

10.
Developmental Control of CAM in Peperomia scandens   总被引:1,自引:0,他引:1       下载免费PDF全文
Experiments were conducted to examine the development of photosynthetic carbon metabolism in Peperomia scandens, a tropical epiphyte. Leaves were sampled during a 10-day period when they were between 30 to 165 days old. P. scandens exhibits a C3 to CAM-cycling to CAM shift during maturation with the magnitude of CAM increasing with age. Initially, during both day and night, no significant CO2 uptake or diurnal acid flux was evident. C3 gas exchange was detected at 41 days of age with a gradual shift towards CAM gas exchange maximized thereafter. An acidity flux of 130 to 150 microequivalents per gram fresh weight was evident by 41 days. Between 40 and 90 days, the leaves shifted their CO2 uptake pattern from a daytime to a nighttime peak. After 90 days, the leaves remained in CAM. The δ13C values became progressively less negative as the leaves matured. In the 30-day-old leaves, the δ13C value was −21.1% while in the 165-day-old leaves the δ13C value was −18.3%. The time-dependent shift from C3 to CAM-cycling to CAM in P. scandens does not appear to result from changes in water, light, or temperature regimes since these variables were constant for all leaves sampled.  相似文献   

11.
To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = −26.8‰; dung δ13C = −26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = −14.6‰; dung δ13C = −15.7‰). Fresh C3 and C4 sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of 13C-CO2 emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ13C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO2. The cumulative amounts of C respired from dung treated soils during 152 days were 7–8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO2 originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg−1 dry soil had been emitted as CO2 for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg−1 soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration.  相似文献   

12.
13.
The hydrothermal vents on the East Scotia Ridge are the first to be explored in the Antarctic and are dominated by large peltospiroid gastropods, stalked barnacles (Vulcanolepas sp.) and anomuran crabs (Kiwa sp.) but their food webs are unknown. Vent fluid and macroconsumer samples were collected at three vent sites (E2, E9N and E9S) at distances of tens of metres to hundreds of kilometres apart with contrasting vent fluid chemistries to describe trophic interactions and identify potential carbon fixation pathways using stable isotopes. δ13C of dissolved inorganic carbon from vent fluids ranged from −4.6‰ to 0.8‰ at E2 and from −4.4‰ to 1.5‰ at E9. The lowest macroconsumer δ13C was observed in peltospiroid gastropods (−30.0‰ to −31.1‰) and indicated carbon fixation via the Calvin-Benson-Bassham (CBB) cycle by endosymbiotic gamma-Proteobacteria. Highest δ13C occurred in Kiwa sp. (−19.0‰ to −10.5‰), similar to that of the epibionts sampled from their ventral setae. Kiwa sp. δ13C differed among sites, which were attributed to spatial differences in the epibiont community and the relative contribution of carbon fixed via the reductive tricarboxylic acid (rTCA) and CBB cycles assimilated by Kiwa sp. Site differences in carbon fixation pathways were traced into higher trophic levels e.g. a stichasterid asteroid that predates on Kiwa sp. Sponges and anemones at the periphery of E2 assimilated a proportion of epipelagic photosynthetic primary production but this was not observed at E9N. Differences in the δ13C and δ34S values of vent macroconsumers between E2 and E9 sites suggest the relative contributions of photosynthetic and chemoautotrophic carbon fixation (rTCA v CBB) entering the hydrothermal vent food webs vary between the sites.  相似文献   

14.
Acetogenic bacteria are able to grow autotrophically on hydrogen and carbon dioxide by using the acetyl coenzyme A (acetyl-CoA) pathway. Acetate is the end product of this reaction. In contrast to the fermentative route of acetate production, which shows almost no fractionation of carbon isotopes, the acetyl-CoA pathway has been reported to exhibit a preference for light carbon. In Acetobacterium woodii the isotope fractionation factor (ε) for 13C and 12C has previously been reported to be ε = −58.6‰. To investigate whether such a strong fractionation is a general feature of acetogenic bacteria, we measured the stable carbon isotope fractionation factor of 10 acetogenic strains grown on H2 and CO2. The average fractionation factor was εTIC = −57.2‰ for utilization of total inorganic carbon and εacetate = −54.6‰ for the production of acetate. The strongest fractionation was found for Sporomusa sphaeroidesTIC = −68.3‰), the lowest fractionation for Morella thermoaceticaTIC = −38.2‰). To investigate the reproducibility of our measurements, we determined the fractionation factor of 21 biological replicates of Thermoanaerobacter kivui. In general, our study confirmed the strong fractionation of stable carbon during chemolithotrophic acetate formation in acetogenic bacteria. However, the specific characteristics of the bacterial strain, as well as the cultural conditions, may have a moderate influence on the overall fractionation.  相似文献   

15.
Understanding the influences of climatic changes on water use efficiency (WUE) of Tibetan alpine meadows is important for predicting their long-term net primary productivity (NPP) because they are considered very sensitive to climate change. Here, we collected wool materials produced from 1962 to 2010 and investigated the long-term WUE of an alpine meadow in Tibet on basis of the carbon isotope values of vegetation (δ 13Cveg). The values of δ 13Cveg decreased by 1.34‰ during 1962–2010, similar to changes in δ 13C values of atmospheric CO2. Carbon isotope discrimination was highly variable and no trend was apparent in the past half century. Intrinsic water use efficiency (W i) increased by 18 μmol·mol–1 (approximately 23.5%) during 1962–2010 because the increase in the intercellular CO2 concentration (46 μmol·mol–1) was less than that in the atmospheric CO2 concentration (C a, 73 μmol·mol–1). In addition, W i increased significantly with increasing growing season temperature and C a. However, effective water use efficiency (W e) remained relatively stable, because of increasing vapor pressure deficit. C a, precipitation, and growing season temperature collectively explained 45% of the variation of W e. Our findings indicate that the W e of alpine meadows in the Tibetan Plateau remained relatively stable by physiological adjustment to elevated C a and growing season temperature. These findings improve our understanding and the capacity to predict NPP of these ecosystems under global change scenarios.  相似文献   

16.
Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure.  相似文献   

17.
The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH4 and CO2 assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO2 reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average δ13C carbon isotopic signature of −67.1‰, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (−66.4‰ ± 3.9 ‰ [mean ± standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (−72.9‰ ± 2.2 ‰; n = 7). Incorporation of 14C from radiolabeled CH4 or CO2 revealed one hot spot for methanotrophy and CO2 fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with 14CH4 or 14CO2 revealed that there was interconversion of CH4 and CO2. The level of CO2 reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis.  相似文献   

18.
Whelan T  Sackett WM 《Plant physiology》1973,51(6):1051-1054
The carbon atoms of glucose and malate in C4 plants are 2 to 3‰ enriched in 12C with respect to atmospheric CO2; whereas these intermediates in C3 plants are 15 to 18‰ enriched with 12C with respect to atmospheric CO2. The enzymatic synthesis of malate from phosphoenolpyruvate and bicarbonate in preparations of leaves of Sorghum bicolor, Haygrazer result in a carbon isotope fractionation of about 3‰. The enzymatic synthesis of phosphoglyceric acid from ribulose 1,5-diP and CO2 in these preparations (contaminated with carbonic anhydrase) at 24 C and 37 C result in a carbon isotope fractionation of 33.7‰ and 18.3‰, respectively. These data are consistent with the conclusion that the small enrichment of 12C in the carbon atoms of malate and glucose (with respect to atmospheric CO2) in leaves of Sorghum bicolor, Haygrazer occurs at the phosphoenolpyruvate carboxylase step.  相似文献   

19.
It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS).Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ∼−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future changes in substrate availability and climatic factors.  相似文献   

20.
Two categories of c/c ratios for higher plants   总被引:32,自引:1,他引:32       下载免费PDF全文
13C/12C ratios have been determined for plant tissue from 104 species representing 60 families. Higher plants fall into two categories, those with low δPDBI13C values (—24 to —34‰) and those with high δ 13C values (—6 to —19‰). Algae have δ 13C values of —12 to —23‰. Photosynthetic fractionation leading to such values is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号