首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylation of histone H3 lysine 9 (H3K9) is a key feature of silent chromatin and plays an important role in stabilizing the interaction of heterochromatin protein 1 (HP1) with chromatin. Genomes of metazoans such as the fruit fly Drosophila melanogaster generally encode three types of H3K9-specific SET domain methyltransferases that contribute to chromatin homeostasis during the life cycle of the organism. SU(VAR)3-9, dG9a, and dSETDB1 all function in the generation of wild-type H3K9 methylation levels in the Drosophila genome. Two of these enzymes, dSETDB1 and SU(VAR)3-9, govern heterochromatin formation in distinct but overlapping patterns across the genome. H3K9 methylation in the small, heterochromatic fourth chromosome of D. melanogaster is governed mainly by dSETDB1, whereas dSETDB1 and SU(VAR)3-9 function in concert to methylate H3K9 in the pericentric heterochromatin of all chromosomes, with dG9a having little impact in these domains, as shown by monitoring position effect variegation. To understand how these distinct heterochromatin compartments may be differentiated, we examined the developmental timing of dSETDB1 function using a knockdown strategy. dSETDB1 acts to maintain heterochromatin during metamorphosis, at a later stage in development than the reported action of SU(VAR)3-9. Surprisingly, depletion of both of these enzymes has less deleterious effect than depletion of one. These results imply that dSETDB1 acts as a heterochromatin maintenance factor that may be required for the persistence of earlier developmental events normally governed by SU(VAR)3-9. In addition, the genetic interactions between dSETDB1 and Su(var)3-9 mutations emphasize the importance of maintaining the activities of these histone methyltransferases in balance for normal genome function.  相似文献   

2.
Epigenetic indexing of chromatin domains by histone lysine methylation requires the balanced coordination of methyltransferase and demethylase activities. Here, we show that SU(VAR)3-3, the Drosophila homolog of the human LSD1 amine oxidase, demethylates H3K4me2 and H3K4me1 and facilitates subsequent H3K9 methylation by SU(VAR)3-9. Su(var)3-3 mutations suppress heterochromatic gene silencing, display elevated levels of H3K4me2, and prevent extension of H3K9me2 at pericentric heterochromatin. SU(VAR)3-3 colocalizes with H3K4me2 in interband regions and is abundant during embryogenesis and in syncytial blastoderm, where it appears concentrated at prospective heterochromatin during cycle 14. In embryos of Su(var)3-3/+ females, H3K4me2 accumulates in primordial germ cells, and the deregulated expansion of H3K4me2 antagonizes heterochromatic H3K9me2 in blastoderm cells. Our data indicate an early developmental function for the SU(VAR)3-3 demethylase in controlling euchromatic and heterochromatic domains and reveal a hierarchy in which SU(VAR)3-3-mediated removal of activating histone marks is a prerequisite for subsequent heterochromatin formation by H3K9 methylation.  相似文献   

3.
4.
5.
6.
SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing   总被引:1,自引:0,他引:1  
Schotta G  Ebert A  Reuter G 《Genetica》2003,117(2-3):149-158
This review summarizes genetic, molecular and biochemical studies of the SU(VAR)3-9 protein and the evidence for its key role in heterochromatin formation and heterochromatic gene silencing. The Su(var)3-9 locus was first identified as a dominant modifier of position-effect variegation (PEV) in Drosophila melanogaster. Together with Su(var)2-5 and Su(var)3-7, Su(var)3-9 belongs to the group of haplo-suppressor loci which show a triplo-dependent enhancer effect. All three genes encode heterochromatin-associated proteins. Su(var)3-9 is epistatic to the PEV modifier effects of Su(var)2-5 and Su(var)3-7, and it also dominates the effect of the Y chromosome on PEV. These genetic data support a central role of the SU(VAR)3-9 protein in heterochromatic gene silencing, one that is correlated with its activity as a histone H3-K9 methyltransferase (HMTase). In fact, SU(VAR)3-9 is the main chromocenter-specific HMTase of Drosophila. SU(VAR)3-9 and HP1, the product of Su(var)2-5, are main constituents of heterochromatin protein complexes and the interaction between these two proteins is interdependent. Functional analysis in fission yeast, Drosophila and mammals demonstrate that SU(VAR)3-9-dependent gene silencing processes are conserved in these organisms. This is also demonstrated by the rescue of Drosophila Su(var)3-9 mutant phenotypes with human SUV39H1 transgenes.  相似文献   

7.
8.
Su(var)3-9 is a dominant modifier of heterochromatin-induced gene silencing. Like its mammalian and Schizosaccharomyces pombe homologues, Su(var) 3-9 encodes a histone methyltransferase (HMTase), which selectively methylates histone H3 at lysine 9 (H3-K9). In Su(var)3-9 null mutants, H3-K9 methylation at chromocentre heterochromatin is strongly reduced, indicating that SU(VAR)3-9 is the major heterochromatin-specific HMTase in Drosophila. SU (VAR)3-9 interacts with the heterochromatin-associated HP1 protein and with another silencing factor, SU(VAR)3-7. Notably, SU(VAR)3-9-HP1 interaction is interdependent and governs distinct localization patterns of both proteins. In Su(var)3-9 null mutants, concentration of HP1 at the chromocentre is nearly lost without affecting HP1 accumulation at the fourth chromosome. By contrast, in HP1 null mutants SU(VAR)3-9 is no longer restricted at heterochromatin but broadly dispersed across the chromosomes. Despite this interdependence, Su(var)3-9 dominates the PEV modifier effects of HP1 and Su(var)3-7 and is also epistatic to the Y chromosome effect on PEV. Finally, the human SUV39H1 gene is able to partially rescue Su(var)3-9 silencing defects. Together, these data indicate a central role for the SU(VAR)3-9 HMTase in heterochromatin-induced gene silencing in Drosophila.  相似文献   

9.
10.
11.
In polytene chromosomes of Drosophila melanogaster, regions of pericentric heterochromatin coalesce to form a compact chromocenter and are highly underreplicated. Focusing on study of X chromosome heterochromatin, we demonstrate that loss of either SU(VAR)3-9 histone methyltransferase activity or HP1 protein differentially affects the compaction of different pericentric regions. Using a set of inversions breaking X chromosome heterochromatin in the background of the Su(var)3-9 mutations, we show that distal heterochromatin (blocks h26-h29) is the only one within the chromocenter to form a big "puff"-like structure. The "puffed" heterochromatin has not only unique morphology but also very special protein composition as well: (i) it does not bind proteins specific for active chromatin and should therefore be referred to as a pseudopuff and (ii) it strongly associates with heterochromatin-specific proteins SU(VAR)3-7 and SUUR, despite the fact that HP1 and HP2 are depleted particularly from this polytene structure. The pseudopuff completes replication earlier than when it is compacted as heterochromatin, and underreplication of some DNA sequences within the pseudopuff is strongly suppressed. So, we show that pericentric heterochromatin is heterogeneous in its requirement for SU(VAR)3-9 with respect to the establishment of the condensed state, time of replication, and DNA polytenization.  相似文献   

12.
We have investigated the distribution of three heterochromatic proteins [SUppressor of UnderReplication (SUUR), heterochromatin protein 1 (HP1), and SU(VAR)3–9] in chromosomes of nurse cells (NCs) and have compared the data obtained with the distribution of the same proteins in salivary gland (SG) chromosomes. In NC chromosomes, the SU(VAR)3–9 protein was found in pericentric heterochromatin and at 223 sites on euchromatic arms, while in SG chromosomes, it was mainly restricted to the chromocenter. In NC chromosomes, the HP1 and SUUR proteins bind to 331 and 256 sites, respectively, which are almost twice the number of sites in SG chromosomes. The distribution of the HP1 and SU(VAR)3–9 proteins depends on the SuUR gene. A mutation in this gene results in a dramatic decrease in the amount of SU(VAR)3–9 binding sites in autosomes. In the X chromosome, these sites are relocated in comparison to the SuUR +, and their total number only varies slightly. HP1 binding sites are redistributed in chromosomes of SuUR mutants, and their overall number did not change as considerably as SU(VAR)3–9. These data together point to an interaction of these three proteins in Drosophila NC chromosomes.Electronic Supplementary Material Supplementary material is available for this article at.  相似文献   

13.
Heterochromatin Protein 1 (HP1) is a structural component of silent chromatin at telomeres and centromeres. Euchromatic genes repositioned near heterochromatin by chromosomal rearrangements are typically silenced in an HP1-dependent manner. Silencing is thought to involve the spreading of heterochromatin proteins over the rearranged genes. HP1 associates with centric heterochromatin through an interaction with methylated lysine 9 of histone H3, a modification generated by SU(VAR)3-9. The current model for spreading of silent chromatin involves HP1-dependent recruitment of SU(VAR)3-9, resulting in the methylation of adjacent nucleosomes and association of HP1 along the chromatin fiber. To address mechanisms of silent chromatin formation and spreading, HP1 was fused to the DNA-binding domain of the E. coli lacI repressor and expressed in Drosophila melanogaster stocks carrying heat shock reporter genes positioned 1.9 and 3.7 kb downstream of lac operator repeats. Association of lacI-HP1 with the repeats resulted in silencing of both reporter genes and correlated with a closed chromatin structure consisting of regularly spaced nucleosomes, similar to that observed in centric heterochromatin. Chromatin immunoprecipitation experiments demonstrated that HP1 spread bi-directionally from the tethering site and associated with the silenced reporter transgenes. To examine mechanisms of spreading, the effects of a mutation in Su(var)3-9 were investigated. Silencing was minimally affected at 1.9 kb, but eliminated at 3.7 kb, suggesting that HP1-mediated silencing can operate in a SU(VAR)3-9-independent and -dependent manner.  相似文献   

14.
In Drosophila, SU(VAR)3-7 is an essential heterochromatin component. It is required for proper chromatin condensation, and changing its dose modifies position-effect variegation. Sumoylation is a post-translational modification shown to play a role in diverse biological processes. Here, we demonstrate that sumoylation is essential for proper heterochromatin function in Drosophila through modification of SU(VAR)3-7. Indeed, SU(VAR)3-7 is sumoylated at lysine K839; this modification is required for localization of SU(VAR)3-7 at pericentric heterochromatin, chromosome 4, and telomeres. In addition, sumoylation of SU(VAR)3-7 is a prerequisite for its ability to enhance position-effect variegation. Thus, these results show that the heterochromatic function of SU(VAR)3-7 depends on its own sumoylation, and unveil a role for sumoylation in Drosophila heterochromatin.  相似文献   

15.
F Cléard  M Delattre    P Spierer 《The EMBO journal》1997,16(17):5280-5288
An increase in the dose of the Su(var)3-7 locus of Drosophila melanogaster enhances the genomic silencing of position-effect variegation caused by centromeric heterochromatin. Here we show that the product of Su(var)3-7 is a nuclear protein which associates with pericentromeric heterochromatin at interphase, whether on diploid chromosomes from embryonic nuclei or on polytene chromosomes from larval salivary glands. The protein also associates with the partially heterochromatic chromosome 4. As these phenotypes and localizations resemble those described by others for the Su(var)2-5 locus and its heterochromatin-associated protein HP1, the presumed co-operation of the two proteins was tested further. The effect of the dose of Su(var)3-7 on silencing of a number of variegating rearrangements and insertions is strikingly similar to the effect of the dose of Su(var)2-5 reported by others. In addition, the two loci interact genetically, and the two proteins co-immunoprecipitate from nuclear extracts. The results suggest that SU(VAR)3-7 and HP1 co-operate in building the genomic silencing associated with heterochromatin.  相似文献   

16.
17.
Effects of tethering HP1 to euchromatic regions of the Drosophila genome   总被引:7,自引:0,他引:7  
Heterochromatin protein 1 (HP1) is a conserved non-histone chromosomal protein enriched in heterochromatin. On Drosophila polytene chromosomes, HP1 localizes to centric and telomeric regions, along the fourth chromosome, and to specific sites within euchromatin. HP1 associates with centric regions through an interaction with methylated lysine nine of histone H3, a modification generated by the histone methyltransferase SU(VAR)3-9. This association correlates with a closed chromatin configuration and silencing of euchromatic genes positioned near heterochromatin. To determine whether HP1 is sufficient to nucleate the formation of silent chromatin at non-centric locations, HP1 was tethered to sites within euchromatic regions of Drosophila chromosomes. At 25 out of 26 sites tested, tethered HP1 caused silencing of a nearby reporter gene. The site that did not support silencing was upstream of an active gene, suggesting that the local chromatin environment did not support the formation of silent chromatin. Silencing correlated with the formation of ectopic fibers between the site of tethered HP1 and other chromosomal sites, some containing HP1. The ability of HP1 to bring distant chromosomal sites into proximity with each other suggests a mechanism for chromatin packaging. Silencing was not dependent on SU(VAR)3-9 dosage, suggesting a bypass of the requirement for histone methylation.  相似文献   

18.
Swi6/HP1, an evolutionarily conserved protein, is critical for heterochromatin assembly in fission yeast and higher eukaryotes. In fission yeast, histone deacetylation by histone deacetylases is thought to be followed by H3-Lys-9 methylation by the histone methyltransferase Clr4/Suv39H1. H3-Lys-9-Me2 interacts with the chromodomain of Swi6/HP1. Swi6/HP1 is thought to act downstream of Clr4/Suv39, and further self-association of Swi6/HP1 is assumed to stabilize the heterochromatin structure. Here, we show that the self-association-defective mutant of Swi6 does not interact with Clr4. It not only fails to localize to heterochromatin loci but also interferes with heterochromatic localization of H3-Lys-9-Me2 (and thereby Clr4) and the endogenous Swi6 in a dominant negative manner. Thus, self-association of Swi6/HP1 helps in binding to and recruitment of Clr4 and thereby in establishment and maintenance of heterochromatin by a concerted rather than a sequential mechanism.  相似文献   

19.
Heterochromatin assembly and its associated phenotype, position effect variegation (PEV), provide an informative system to study chromatin structure and genome packaging. In the fruit fly Drosophila melanogaster, the Y chromosome is entirely heterochromatic in all cell types except the male germline; as such, Y chromosome dosage is a potent modifier of PEV. However, neither Y heterochromatin composition, nor its assembly, has been carefully studied. Here, we report the mapping and characterization of eight reporter lines that show male-specific PEV. In all eight cases, the reporter insertion sites lie in the telomeric transposon array (HeT-A and TART-B2 homologous repeats) of the Y chromosome short arm (Ys). Investigations of the impact on the PEV phenotype of mutations in known heterochromatin proteins (i.e., modifiers of PEV) show that this Ys telomeric region is a unique heterochromatin domain: it displays sensitivity to mutations in HP1a, EGG and SU(VAR)3-9, but no sensitivity to Su(z)2 mutations. It appears that the endo-siRNA pathway plays a major targeting role for this domain. Interestingly, an ectopic copy of 1360 is sufficient to induce a piRNA targeting mechanism to further enhance silencing of a reporter cytologically localized to the Ys telomere. These results demonstrate the diversity of heterochromatin domains, and the corresponding variation in potential targeting mechanisms.  相似文献   

20.
SU(VAR)3-9 like histone methyltransferases control heterochromatic domains in eukaryotes. In Arabidopsis, 10 SUVH genes encode SU(VAR)3-9 homologues where SUVH1, SUVH2 and SUVH4 (KRYPTONITE) represent distinct subgroups of SUVH genes. Loss of SUVH1 and SUVH4 causes weak reduction of heterochromatic histone H3K9 dimethylation, whereas in SUVH2 null plants mono- and dimethyl H3K9, mono- and dimethyl H3K27, and monomethyl H4K20, the histone methylation marks of Arabidopsis heterochromatin are significantly reduced. Like animal SU(VAR)3-9 proteins SUVH2 displays strong dosage-dependent effects. Loss of function suppresses, whereas overexpression enhances, gene silencing, causes ectopic heterochromatization and significant growth defects. Furthermore, modification of transgene silencing by SUVH2 is partially transmitted to the offspring plants. This epigenetic stability correlates with heritable changes in DNA methylation. Mutational dissection of SUVH2 indicates an implication of its N-terminus and YDG domain in directing DNA methylation to target sequences, a prerequisite for consecutive histone methylation. Gene silencing by SUVH2 depends on MET1 and DDM1, but not CMT3. In Arabidopsis, SUVH2 with its histone H3K9 and H4K20 methylation activity has a central role in heterochromatic gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号