首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine the pattern of energy metabolites net flux across the portal-drained viscera (PDV) and total splanchnic tissues (TSP) in mature sheep fed varying levels of lucerne hay cubes. Four Suffolk mature sheep (61.4 ± 3.6 kg BW) surgically fitted with multi-catheters were fed four levels of dry matter intake (DMI) of lucerne hay cubes ranging from 0.4- to 1.6-fold the metabolizable energy (ME) requirements for maintenance. Six sets of blood samples were simultaneously collected from arterial and venous catheters at 30-min intervals. With increasing DMI, apparent total tract digestibility increased linearly and quadratically for dry matter (P < 0.05), quadratically (P < 0.05) with a linear tendency (P < 0.1) for organic matter and tended to increase quadratically (P < 0.1) for NDF. PDV release of volatile fatty acids (VFA) and β-hydroxybutyric acid was relatively low at 0.4 M and then linearly increased (P < 0.05) with increasing DMI. Net PDV flux of non-esterified fatty acids showed curvilinear decrease from 0.4 to 1.2 M and then increased at 1.6 M. The respective proportions of each VFA appearing in the portal blood differed (P < 0.05) with DMI and this difference was more obvious from 0.4 to 0.8 M than from 0.8 to 1.6 M. Heat production, as a percentage of ME intake (MEI), decreased linearly (P < 0.05) with increasing DMI accounting for 37%, 21%, 16% and 13% for PDV and 62%, 49%, 33% and 27% for TSP at 0.4, 0.8, 1.2 and 1.6 M, respectively. As a proportion of MEI, total energy recovery including heat production, decreased linearly with increasing DMI (P < 0.05) accounting for 113%, 83%, 62% and 57% for PDV and 140%, 129%, 86% and 83% for TSP at 0.4, 0.8, 1.2 and 1.6 M, respectively. Regression analysis revealed a linear response between MEI (MJ/day per kg BW) and total energy release (MJ/day per kg BW) across the PDV and TSP, respectively. However, respective contributions of energy metabolites to net energy release across the PDV and TSP were highly variable among treatments and did not follow the same pattern of changes in DMI.  相似文献   

2.
Glucagon-like peptide-2 (GLP-2) increases small intestinal mass and blood flow in ruminant calves, but its impact on nutrient metabolism across the portal-drained viscera (PDV) and liver is unknown. Eight Holstein calves with catheters in the carotid artery, mesenteric vein, portal vein and hepatic vein were paired by age and randomly assigned to control (0.5% bovine serum albumin in saline; n = 4) or GLP-2 (100 μg/kg BW per day bovine GLP-2 in bovine serum albumin; n = 4). Treatments were administered subcutaneously every 12 h for 10 days. Blood flow was measured on days 0 and 10 and included 3 periods: baseline (saline infusion), treatment (infusion of bovine serum albumin or 3.76 μg/kg BW per h GLP-2) and recovery (saline infusion). Arterial concentrations and net PDV, hepatic and total splanchnic fluxes of glucose, lactate, glutamate, glutamine, β-hydroxybutyrate and urea-N were measured on days 0 and 10. Arterial concentrations and net fluxes of all amino acids and glucose metabolism using continuous intravenous infusion of [U13-C]glucose were measured on day 10 only. A 1-h infusion of GLP-2 increased blood flow in the portal and hepatic veins when administered to calves not previously exposed to exogenous GLP-2, but after a 10-day administration of GLP-2 the blood flow response to the 1-h GLP-2 infusion was substantially attenuated. The 1-h GLP-2 infusion also did not appreciably alter nutrient fluxes on either day 0 or 10. In contrast, long-term GLP-2 administration reduced arterial concentrations and net PDV flux of many essential and non-essential amino acids. Despite the significant alterations in amino acid metabolism, glucose irreversible loss and utilization by PDV and non-PDV tissues were not affected by GLP-2. Fluxes of amino acids across the PDV were generally reduced by GLP-2, potentially by increased small intestinal epithelial growth and thus energy and amino acid requirements of this tissue. Increased PDV extraction of glutamine and alterations in PDV metabolism of arginine, ornithine and citrulline support the concept that GLP-2 influences intestine-specific amino acid metabolism. Alterations in amino acid metabolism but unchanged glucose metabolism suggests that the growth effects induced by GLP-2 in ruminants increase reliance on amino acids preferentially over glucose. Thus, GLP-2 increases PDV utilization of amino acids, but not glucose, concurrent with stimulated growth of the small intestinal epithelium in post-absorptive ruminant calves.  相似文献   

3.
In current nutrition requirements of swine, although the protein diets are formulated based on the ileal digestibility of protein and amino acid (AA), there is a difference in nitrogen utilisation among various protein diets, which might be related to the AA release kinetics. To evaluate the relationship between AA release kinetics of feed proteins and nitrogen balance in finishing pigs, pigs were fed diets based on casein (CAS) or corn gluten meal (CGM) at normal or low-protein concentrations, and the AA release patterns were assessed. A 2 × 2 full factorial experimental design was used. 24 pigs (Duroc × Landrace × Yorkshire) with an initial weight of 67.0 ± 1.8 kg were randomly assigned to consume a normal-protein casein-based diet (N.CAS, 10% CP), normal-protein corn gluten meal-based diet (N.CGM, 10% CP), low-protein casein-based diet (L.CAS, 8.5% CP), or low-protein corn gluten meal-based diet (L.CGM, 8.5% CP) for 14 days (n = 6 per group; pigs housed and fed separately). The low-protein diets were associated with a more rapid release of AAs in the early stages of gastric digestion than the normal-protein diets. The N.CAS and L.CAS diets were associated with a peak AA release at approximately 4 h during trypsin digestion, whereas N.CGM and L.CGM were at approximately 16 h. The N.CAS diet was associated with the least dispersed release curves and lowest synchronisation indexes, implying that it was associated with the best AA release synchronism, whereas the L.CGM diet was on the contrary. The nitrogen intake (NI), faecal nitrogen, urine nitrogen (UN), total nitrogen, net protein utilisation and apparent biological value (ABV) of protein of pigs fed the L.CAS or L.CGM diets were lower than those fed the N.CAS or N.CGM diets (P < 0.05). Notably, there was a difference in NI (P < 0.05) and trends with respect to UN and ABV (0.05 < P < 0.1), but no differences in retained nitrogen or apparent nitrogen digestibility between pigs fed the N.CAS or L.CAS diets and those fed the N.CGM or L.CGM diets. Pigs fed the N.CAS or N.CGM diets had higher serum concentrations of UN than pigs fed the L.CAS or L.CGM diets (P < 0.05), but there were no differences in serum total protein, albumin, triglyceride, glucose, alanine transaminase, or aspartate aminotransferase between the groups. In addition, there was an interaction between protein level and protein source on serum globulin (P < 0.05). Therefore, the diet with a better AA release synchronism can improve protein utilisation efficiency in finishing pigs and to reduce environmental pollution.  相似文献   

4.
A method was developed to measure metabolic fluxes across either portally-drained viscera (PDV) and liver or kidney and hindquarter (HQ) in anesthetized mice. The method includes a primed-constant infusion of ketamine-medetomidine anaesthesia to stabilize the mice for the surgical procedures. For measurement of metabolic fluxes across PDV and liver, blood sampling catheters were inserted in the carotid artery, portal vein and hepatic vein and infusion catheters in the jugular vein and mesenteric vein. For measurement of metabolic flux across kidney and HQ, blood sampling catheters were inserted in the carotid artery, renal vein and caval vein and infusion catheters in the jugular vein and abdominal aorta. 14C-PAH was infused to enable plasma flow measurement using an indicator dilution method. In addition, we developed a blood sampling procedure without waste of blood. We measured plasma flow and metabolic fluxes across PDV, liver, kidney and HQ. Mean plasma flow in post-absorptive mice was: PDV: 0.9+/-0.2, liver: 1.2+/-0.3, kidney: 1.0+/-0.1, HQ: 1.1+/-0.3 ml/10 g body weight (b.w.)/min. Significant glutamine release by the HQ and uptake of glutamine by the kidney and PDV was observed. In PDV, citrulline is produced from glutamine and is in turn used by the kidney for the production of arginine. In conclusion, the described model enables measurement of metabolic fluxes across PDV, liver, kidney and HQ in mice. The availability of such a small animal model allows the potential for measuring metabolic parameters in transgenic and knockout mice, and therefore may lead to an important refinement in metabolic research.  相似文献   

5.
Livestock grazing plays a significant role in maintaining grasslands and promoting animal production globally. To understand the livestock performance in sown pasture (SP) vs native pasture (NP) is important to ensure more effective grassland-livestock interactions with minimal environmental impact. A 2 (treatment) * 2 (period) Latin Square design experiment was conducted with 10 growing Hu sheep ♂ × thin-tailed Han sheep ♀ rams grazed perennially SP vs NP in an inland arid region of China. The objectives were to evaluate the effects of grazing management on nutrient digestibility, nitrogen (N) and energy utilisation and methane (CH4) emission. The N intake, N retained and energy intake (gross energy (GE), and digestible and metabolisable energy) of sheep grazing in SP were significantly increased compared with those grazing in NP. There were significant linear relationships between DM intake (DMI) (g/kg BW or g/kg BW0.75) or CH4 (g/kg BW or g/kg BW0.75) emissions and forage nutrient and GE concentrations within each grassland type. The linear regression analysis indicated that forage CP or ether extract concentration was a good predictor for DMI (g/kg BW or g/kg BW0.75) (R2 = 0.756 or 0.752), and CH4 emission could be predicted using forage nutrient and GE concentrations (R2 = 0.381–0.503). These results suggest that DMI and CH4 emissions per unit metabolic BW were accurately predicted by multiple-factor combinations of forage nutrients, including ether extract and CP paired with GE. The present output could provide useful information for the development of sustainable sheep grazing systems in the inland arid regions of the world.  相似文献   

6.
《Small Ruminant Research》2008,76(2-3):217-225
Data regarding the influence of maturity within the vegetative stage of tropical grasses on forage quality are limited and conflicting. The change in chemical composition of rice grass (Echinochloa sp.) hay harvested at 32, 46, 72 and 90 days of regrowth, and its effect on intake, digestibility, ruminal fermentation, rumen microbial protein synthesis (Experiment 1) and splanchnic oxygen uptake (Experiment 2) by lambs was evaluated. Except intake of indigestible neutral detergent fibre (NDF) which was similar for all treatments, intake of all hay components and the apparent digestibility of dry matter, organic matter (OM), NDF, N, as well as OM and N true digestibility, N retention and rumen microbial protein synthesis decreased linearly (P < 0.05) with increased regrowth age. Rumen fluid pH, ammonia N and peptide concentrations were similar for all treatments while sugars and amino acid concentrations decreased linearly with increased regrowth age of rice grass (P < 0.05). Passage rate of particles through reticulum-rumen (PRrr) was quadratically related (P < 0.05) to regrowth age. The highest PRrr and, consequently, the lowest retention time in the reticulum-rumen were obtained at 72 days of regrowth. There was a quadratic effect (P < 0.05) on net portal-drained viscera (PDV) flux of oxygen and heat production, while OM intake, portal blood flow and heat production as proportion of digestible energy (DE) intake were not affected by the increased regrowth age of rice grass. The highest means of oxygen uptake and heat production by PDV tissues were in 72 days treatment. In the whole splanchnic metabolism assay neither hay intake nor blood flow, oxygen uptake or heat production were affected by forage regrowth age. In conclusion, the nutritive value of rice grass hay decreased as regrowth age increased from 32 to 90 days due to decrease both OM intake and digestibility.  相似文献   

7.
The present study was conducted to evaluate whether bodyweight and the micronisation of dietary fibre affect the endogenous nitrogen and amino acid losses (ENL and EAAL) in pigs. The effect of the micronising process was tested by providing pigs with 90 g DM x kg(-1) BW0.75 of a N-free diet supplemented with isolated pea inner fibres, presented in native or micronised form and with a water-holding capacity of 12 and 4 g water g(-1) DM, respectively. ENL and EAAL were measured on pigs weighing 24, 62 and 105 kg. In all cases, daily ENL increased linearly (P < 0.05) with BW, for the majority of the AA and total N. As BW increased, daily ENL, total EAAL and the majority of EAAL increased linearly independently of micronisation (P < 0.05). When expressed per kg DMI, total EAAL and the majority of each EAA decreased curvilinearly and reached nadir at around 100 kg BW. For ENL expressed per kg DMI, micronisation resulted in a curvilinear decrease with increasing BW, as compared to a linear decrease for pigs fed the native pea fibre diet (non-micronised). Micronisation of pea inner fibres did not decrease ENL or EAAL daily, except for proline. When the losses were expressed as g x k(-1)g DMI, micronisation did not decrease ENL but decreased (P < 0.05) endogenous losses for a majority of AA as well as for total AA. The results suggest that small pigs excrete more endogenous N per kg DMI than large pigs and that pea fibre micronisation reduces EAAL but not ENL when expressed per kg DMI.  相似文献   

8.
In nutrition studies, para-aminohippuric acid (PAH) is a marker frequently used to measure blood flow in pigs, which is essential for estimating portal-drained viscera (PDV) flux of nutrients. The aim of this study was to evaluate the PAH analytical method by means of qualimetric statistical procedures to estimate the matrix effect and the accuracy and limits of quantitation of the method. Net PDV flux of nutrients was determined in five multi-catheterized pigs using water, plasma or commercial serum as standard matrix. A proportional systematic error due to matrix effect was found for plasma and serum. Mean recovery was 99.4%, and intra- and inter-day precision of the method was 2.4% and 3.8% relative standard deviation, respectively. The limit of quantification was 0.22 mg PAH/l. Use of water for the PAH standard curves underestimated portal blood flow compared with PAH standards prepared with plasma or commercial serum (706, 954 and 927 ml/min; P<0.05, respectively). Consequently, PDV O2 consumption, glucose and amino acids fluxes were underestimated by 33% (P<0.001). In conclusion, our results stress the importance of using plasma from pigs not infused with PAH or alternatively commercial pig serum to prepare PAH standards to determine blood flow in pigs to avoid underestimation of blood flow.  相似文献   

9.
Urine patches deposited in pasture by grazing animals are sites of reactive nitrogen (N) loss to the environment due to high concentrations of N exceeding pasture uptake requirements. In order to upscale N losses from the urine patch, several urination parameters are required, including where, when and how often urination events occur as well as the volume and chemical composition. There are limited data available in this respect, especially for sheep. Here, we seek to address this knowledge gap by using non-invasive sensor-based technology (accelerometers) on ewes grazing in situ, using a Boolean algorithm to detect urination events in the accelerometer signal. We conducted an initial study with penned Welsh Mountain ewes (n = 5), with accelerometers attached to the hind, to derive urine flow rate and to determine whether urine volume could be estimated from ewe squat time. Then accelerometers attached to the hind of Welsh Mountain ewes (n = 30 at each site) were used to investigate the frequency of sheep urination events (n = 35 946) whilst grazing two extensively managed upland pastures (semi-improved and unimproved) across two seasons (spring and autumn) at each site (35–40 days each). Sheep urinated at a frequency of 10.2 ± 0.2 and 8.1 ± 0.3 times per day in the spring and autumn, respectively, while grazing the semi-improved pasture. Urination frequency was greater (19.0 ± 0.4 and 15.3 ± 0.3 times per day in the spring and autumn, respectively) in the unimproved pasture. Ewe squat duration could be reliably used to predict the volume of urine deposited per event and was thus used to estimate mean daily urine production volumes. Sheep urinated at a rate of 16.6 mL/s and, across the entire dataset, sheep squatted for an average of 9.62 ± 0.03 s per squatting event, producing an estimated average individual urine event volume of 159 ± 1 mL (n = 35 946 events), ranging between 17 and 745 mL (for squat durations of 1 to 45 s). The estimated mean daily urine volume was 2.15 ± 0.04 L (n = 2 669 days) across the entire dataset. The data will be useful for modelling studies estimating N losses (e.g. ammonia (NH3) volatilisation, nitrous oxide (N2O) emission via nitrification and denitrification and nitrate (NO3) leaching) from urine patches.  相似文献   

10.
The objectives of this study were to compare the effects of post-ruminal and intravenous infusions of wheat starch or glucose (CHO) or a mixture of amino acids (AA) on milk protein yield, nitrogen (N) utilisation, plasma metabolites and mammary extraction rate of dairy cows in late lactation. Eight cow, ruminally fistulated, was assigned to two 4 × 4 Latin squares during 14-day periods, where the last 7 days were for infusions. Infusions were: (1) starch in the abomasum (SP), (2) glucose in the blood (GB), (3) AA in the abomasum (AP), and (4) AA in the blood (AB). The experiment started 165 ± 4 days (mean ± s.e.) post partum (milk yield 22.5 ± 1.1 kg) Daily amounts of nutrients infused were 257, 283, 233, and 260 g for SP, GB, AP and AB, respectively. The cows were fed a basal diet consisting of a concentrate mixture and grass silage (55:45 on a dry-matter (DM) basis), where total dry-matter intake (DMI) was 13.3 kg/day. Milk production was affected by site of infusion within substrate, whereas infusion substrates within infusion site (CHO or AA) were of minor importance. Responses to intravenous infusions (GB or AB) were similar to those in early lactation, but more pronounced. Compared with SP infusion, GB infusion increased ( P < 0.05) milk yield, energy-corrected milk (ECM), protein and lactose yield by 1.4 and 0.9 kg, 38 and 59 g, respectively. The AB infusion had 1.4 and 1.3 kg, 51, 52 and 50 g higher ( P < 0.05) milk yield, ECM, protein, fat and lactose yields than the AP infusion, respectively. N balance data indicated higher losses of metabolic faecal nitrogen (MFN) by abomasal than by intravenous infusions, but the catabolism of AA was lower than in early lactation indicated by no difference ( P < 0.05) in urinary N excretion between treatments. Intravenous AA infusion increased plasma glucose and insulin above that of intravenous glucose infusion. The treatment effects on plasma insulin concentrations were higher in late than in early lactation, suggesting a higher sensitivity in late lactation even at similar negative energy balance. Compared with the SP infusion, GB infusion showed lower ( P < 0.05) concentrations of essential AA (EAA) and branched-chain AA (BCAA) resulting in a higher AA utilisation because of a higher milk protein production. AP infusion increased ( P < 0.05) plasma non-essential AA concentration compared with AB infusion, but infusion site of AA had no effect ( P>0.05) on plasma EAA or BCAA. It is concluded that it is the nutrient supply and not the lactation stage per se that is important for the response in milk production. Nevertheless, stage of lactation affects the N metabolism and the response in plasma hormone concentrations even when cows are in negative energy balance in both lactation stages.  相似文献   

11.
Recent studies indicate extensive catabolism of amino acids (AA) by the portal-drained viscera (PDV) of pigs and humans. Because of ethical concerns over invasive surgical procedures on infants or adults, in vivo investigations are often performed with the pig which is both an agriculturally important livestock species and a widely used animal model for nutritional and physiological studies in humans. Here, we described a new technique for implanting chronic catheters into the portal vein, ileal mesenteric vein, and carotid artery to study AA metabolism in the PDV of young pigs. This method allowed for the reduction of surgery time by 1 h and measurements of the entry of dietary AA into the portal circulation. Using such an approach, we found that dietary supplementation with 100 mg/kg chitosan (a prebiotic and a polysaccharide not digested by animal cells) reduced oxygen consumption, as well as the net absorption of dietary AA into the portal vein, thereby enhancing their bioavailability for extraintestinal tissues. In contrast, opposite results were obtained with dietary supplementation of 12% pea-hull (containing 95% of fermentable nonstarch polysaccharide). Thus, this improved technique is useful to quantify in vivo absorption and metabolism of dietary AA in young pigs.  相似文献   

12.
Our aim was to characterize the postprandial total and dietary N fluxes in the portal drained viscera (PDV) and whole body after administration of a single meal in young pigs. Seven 4-wk-old piglets, implanted with a portal flow probe and portal, arterial and venous catheters, received a primed constant [(18)O]urea intravenous infusion and were studied for 8 h after a bolus mixed meal ingestion (46 mmol N/kg body wt) intrinsically labeled with (15)N to trace dietary N fluxes. The real cecal digestibility of the formula was 94.3% (SD 1.8). PDV output of dietary N was found principally in the pool of circulating protein (51% of the measured dietary N PDV output), in the free alpha-amino N pool (44%), and to a lesser extent in ammonia (5%). Dietary N release in alpha-amino N and ammonia mainly occurred during the first 3 h. Total and exogenous postprandial urea productions were 5.8 and 2.0 mmol N/kg body wt, respectively. At the end of the postprandial period, losses of dietary N amounted to 10.3% of the dose: 5.7% through ileal losses and 4.6% by deamination and transfer to urea. Net postprandial retention of dietary N was 90.4% (SD 1.3), of which 20% was found in splanchnic zone (small intestine 10%, liver 5%, and plasma protein 3%) and 42% in peripheral zone (muscle 31%, skin 6%). In conclusion, our results show a high efficiency of dietary N utilization for muscular uptake and anabolic utilization. However, the results obtained point out the necessity to further explore the form of dietary N released into the portal blood.  相似文献   

13.
Strategies for optimizing nitrogen use by ruminants   总被引:2,自引:0,他引:2  
The efficiency of N utilization in ruminants is typically low (around 25%) and highly variable (10% to 40%) compared with the higher efficiency of other production animals. The low efficiency has implications for the production performance and environment. Many efforts have been devoted to improving the efficiency of N utilization in ruminants, and while major improvements in our understanding of N requirements and metabolism have been achieved, the overall efficiency remains low. In general, maximal efficiency of N utilization will only occur at the expense of some losses in production performance. However, optimal production and N utilization may be achieved through the understanding of the key mechanisms involved in the control of N metabolism. Key factors in the rumen include the efficiency of N capture in the rumen (grams of bacterial N per grams of rumen available N) and the modification of protein degradation. Traditionally, protein degradation has been modulated by modifying the feed (physical and chemical treatments). Modifying the rumen microflora involved in peptide degradation and amino acid deamination offers an alternative approach that needs to be addressed. Current evidence indicates that in typical feeding conditions there is limited net recycling of N into the rumen (blood urea-N uptake minus ammonia-N absorption), but understanding the factors controlling urea transport across the rumen wall may reverse the balance to take advantage of the recycling capabilities of ruminants. Finally, there is considerable metabolism of amino acids (AA) in the portal-drained viscera (PDV) and liver. However, most of this process occurs through the uptake of AA from the arterial blood and not during the 'absorptive' process. Therefore, AA are available to the peripheral circulation and to the mammary gland before being used by PDV and the liver. In these conditions, the mammary gland plays a key role in determining the efficiency of N utilization because the PDV and liver will use AA in excess of those required by the mammary gland. Protein synthesis in the mammary gland appears to be tightly regulated by local and systemic signals. The understanding of factors regulating AA supply and absorption in the mammary gland, and the synthesis of milk protein should allow the formulation of diets that increase total AA uptake by the mammary gland and thus reduce AA utilization by PDV and the liver. A better understanding of these key processes should allow the development of strategies to improve the efficiency of N utilization in ruminants.  相似文献   

14.
Lysine is usually taken up in excess by the mammary gland (MG) relative to milk protein output, allowing for mammary synthesis of non-essential (NE) amino acids (AA) from Lys-N. It is unclear whether this NEAA synthesis from Lys is obligate or whether more efficient use of Lys can be made under limiting conditions. Six multi-catheterized dairy cows received a basal diet low in protein plus an abomasal infusion of AA (560 g/day) with or without Lys (50.3 g/day), in a crossover design with 7-day periods. On day 7, all cows received a 7.5-h jugular infusion of [2-15N]lysine. Six blood samples were collected from arterial, portal, hepatic and mammary vessels at 45 min intervals. In addition, cows were milked at 6 and 7 h with the milk casein plus arterial and mammary plasma collected at 7 h analyzed for AA enrichment. Milk protein concentration and casein yield tended (P < 0.10) to decrease with Lys deletion, while Lys secretion in milk protein was lowered (P < 0.05). The addition of Lys in the AA mixture increased the net portal absorption of Lys by the amount infused, suggesting limited oxidation of this extra supply by the gut. Net liver flux of Lys was unaltered by treatment and, therefore, net splanchnic release of Lys reflected closely the amounts absorbed. For both treatments, however, post-liver supply was greater than mammary uptake, which exceeded milk output. Nonetheless, while Lys deletion decreased mammary uptake by 10.1 mmol/h, Lys in milk protein secretion was reduced by only 3.9 mmol/h. On a net basis, there was no evidence of the additional uptake of any other measured AA during the Lys deletion. The mammary uptake to output ratio of Lys decreased from 1.37 to 1.12, but still showed an excess with Lys deletion. The total amount of 15N in milk protein did not change with treatment but the distribution into AA was altered. In conditions that simulated normal feeding (Lys infused), 83% of the 15N was present as Lys, with Glx, Asx, Ser and Ala harvesting, respectively, 6.8%, 2.4%, 2.1% and 1.0%. With Lys depletion, N-transfers from Lys to other AA within the MG were still present, but rates were considerably lower. This would suggest that part, at least, of Lys catabolism in the MG is either needed or cannot be prevented completely, even at low supply of Lys. Such catabolism will provide N to support the synthesis of NEAA.  相似文献   

15.
This study investigated the effect of forage type (grass or red clover) and harvesting time (primary growth or regrowth) of silage on energy and N utilisation by sheep fed at maintenance level. Specifically, the assumption of constant loss of energy of digestible organic matter from energy losses in urine and CH4 applied in evaluation of silage metabolisable energy (ME) was investigated. Urinary excretion of high-energy phenolic compounds related to solubilisation of lignin was assumed to affect urinary energy (UE) losses from sheep fed highly digestible grass silage (GS). A total of 25 primary growth and regrowth silages of timothy (Phleum pratense) and meadow fescue (Festuca pratensis) grass mixtures and red clover (Trifolium pratense) samples collected in digestibility trials with sheep, including faecal and urine samples, were used for energy and N determinations. Urinary concentration of monophenolic compounds and CH4 emissions in vitro were also analysed. Daily faecal N output, CH4 yield (MJ/kg DM intake), proportion of CH4 energy in digestible energy (DE) and proportion of UE in DE were greater (P ≤ 0.03) in sheep fed red clover silage (RCS) than GS. Furthermore, less (P = 0.01) energy was lost as UE of DE in sheep fed primary growth GS compared with the other treatments. The relationship between UE and silage N intake or urinary N output for both silage types (i.e. grass v. red clover) was strong, but the fit of the regressions was better for GS than RCS. The CH4/DE ratio decreased (P < 0.05) and the UE/DE ratio increased (P < 0.05) with increasing organic matter digestibility in RCS. These relationships were not significant (P < 0.05) for the GS diets. The regression coefficient was higher (P < 0.05) for GS than RCS when regressing ME concentration on digestible organic matter. The results of this study imply that ME/DE ratio is not constant across first-cut GS of different maturities. The ME production response may be smaller from highly digestible first-cut GS but could not be clearly related to urinary excretion of monophenols derived from solubilisation of lignin. Furthermore, energy lost in urine was not clearly defined for RCS and was much more predictable for GS from silage N concentration.  相似文献   

16.
This study was conducted to evaluate the effects of the dietary ratio of ruminal degraded protein (RDP) to ruminal undegraded protein (RUP) and the dry matter intake (DMI) on the intestinal flows of endogenous nitrogen (N) and amino acids (AA) in goats. The experiment was designed as a 4 × 4 Latin square using four ruminally, duodenally and ileally cannulated goats. The treatments were arranged in a 2 × 2 factorial design; two ratios of RDP to RUP (65:35 and 45:55, RDP1 and RDP2, respectively) and two levels at 95% and 75% of voluntary feed intake (DMI1 and DMI2, respectively) were fed to the goats. There were no significant differences in the N intake, duodenal flow of total N, undegraded feed N, microbial N, endogenous N or ileal flow of endogenous N, but the duodenal and ileal flow of endogenous N numerically decreased by approximately 22% and 9%, respectively, when the feed intake changed from DMI1 (0.63 kg/d) to DMI2 (0.50 kg/d). The dietary ratio of RDP to RUP had significant effects (p < 0.05) on the ileal flows of endogenous leucine, phenylalanine and cysteine. The present results implied that the duodenal flows of endogenous N and AA decreased when the dietary RDP to RUP ratio and DMI decreased, and the flow of endogenous AA at the ileum also decreased when the DMI decreased but increased with decreasing RDP to RUP ratios.  相似文献   

17.
While both the quantity and quality of food ingested are potent regulators of whole body protein metabolism in ruminants, little data are available on responses across a wide range of intakes. The current study examined the responses in whole body protein flux (PrF) to such intake changes and compared these with the responses across the hind-quarters (in a companion study). Six growing sheep (6-8 months, 30-35 kg) received each of four intakes of dried grass pellets (0.5, 1.0, 1.5 and 2.5 times maintenance energy; M) for a minimum of 7 days. At each intake, a mixture of U-13C amino-acids (AA) was infused intravenously for 10 h. Arterial plasma and blood were obtained over the last 4 h of infusion and the concentrations and the enrichments of thirteen 13C labelled AA were determined. The absolute values for plasma Irreversible Loss Rate (ILR) but also converted PrF varied between the AA. PrF values were lower for histidine, methionine, aspartate, glycine and proline (range 68 to 174 g x d(-1) at 1.5 M) than for isoleucine, leucine, valine and glutamate (range 275 to 400 g x d(-1) at 1.5 M). These discrepancies may be explained by (1) the differential AA removal by the splanchnic tissues, (2) the de novo synthesis of the non-essential AA, (3) the transfer of AA from the erythrocytes or plasma to the tissues. The first two assumptions require further investigation whereas recent work has shown a minor role for AA transfers between erythrocytes and tissues. For most AA, ILR and PrF responded linearly to intake but curvilinear responses were observed for phenylalanine, lysine, leucine, isoleucine and tyrosine. These differences were not due to hind-quarter metabolism and may involve the digestive tract and liver.  相似文献   

18.
Maternal high-protein supplements designed to increase birth weight have not been successful. We recently showed that maternal amino acid infusion into pregnant sheep resulted in competitive inhibition of amino acid transport across the placenta and did not increase fetal protein accretion rates. To bypass placental transport, singleton fetal sheep were intravenously infused with an amino acid mixture (AA, n = 8) or saline [control (Con), n = 10] for ~12 days during late gestation. Fetal leucine oxidation rate increased in the AA group (3.1 ± 0.5 vs. 1.4 ± 0.6 μmol·min(-1)·kg(-1), P < 0.05). Fetal protein accretion (2.6 ± 0.5 and 2.2 ± 0.6 μmol·min(-1)·kg(-1) in AA and Con, respectively), synthesis (6.2 ± 0.8 and 7.0 ± 0.9 μmol·min(-1)·kg(-1) in AA and Con, respectively), and degradation (3.6 ± 0.6 and 4.5 ± 1.0 μmol·min(-1)·kg(-1) in AA and Con, respectively) rates were similar between groups. Net fetal glucose uptake decreased in the AA group (2.8 ± 0.4 vs. 3.9 ± 0.1 mg·kg(-1)·min(-1), P < 0.05). The glucose-O(2) quotient also decreased over time in the AA group (P < 0.05). Fetal insulin and IGF-I concentrations did not change. Fetal glucagon increased in the AA group (119 ± 24 vs. 59 ± 9 pg/ml, P < 0.05), and norepinephrine (NE) also tended to increase in the AA group (785 ± 181 vs. 419 ± 76 pg/ml, P = 0.06). Net fetal glucose uptake rates were inversely proportional to fetal glucagon (r(2) = 0.38, P < 0.05), cortisol (r(2) = 0.31, P < 0.05), and NE (r(2) = 0.59, P < 0.05) concentrations. Expressions of components in the mammalian target of rapamycin signaling pathway in fetal skeletal muscle were similar between groups. In summary, prolonged infusion of amino acids directly into normally growing fetal sheep increased leucine oxidation. Amino acid-stimulated increases in fetal glucagon, cortisol, and NE may contribute to a shift in substrate oxidation by the fetus from glucose to amino acids.  相似文献   

19.
Dietary protein adjustments can reduce environmental impact and economic losses in production systems. However, we lack information regarding nitrogen (N) metabolism and protein requirements for maintenance of crossbred animals such as Red Norte breed, precluding a precise dietary management. The objective was to evaluate the effect of increasing dietary CP levels (9%, 11%, 13%, 15% and 17%) on intake, digestibility and N balance, as well as to estimate the metabolizable protein requirements for maintenance (MPm) of growing Red Norte bulls. Thirty five animals averaging 280 ± 4.0 kg BW were fed during 45 days in a 60 : 40 forage : concentrate ratio diet in which the last 5 days were used for the digestibility trial. Intakes of CP and non-fibrous carbohydrates (NFCs) and feed efficiency linearly increased (P < 0.05) as CP levels increased, while DM, NDF, nitrogen efficiency use and ether extract were not influenced by CP levels (P > 0.05). Digestibilities of DM, organic matter, ether extract, NFC and CP as well as metabolizable energy intake linearly increased (P < 0.05), and true digestibility of CP was not affected (P > 0.05) by treatments. Urinary N and retained N linearly increased (P < 0.05) with the increase in dietary N. The MPm were estimated as 4.46 g/BW0.75 and the efficiency of use of MPm was 0.673. In conclusion, obtained MPm requirements of growing Red Norte bulls are greater than the values reported in literature for Zebu cattle and dietary CP levels of 15% and 17% exhibited great responses for growing Red Norte cattle. However, a cost-benefit evaluation should be done before its use.  相似文献   

20.
Flax seed meal (FSM) is rich in various nutrients, especially CP and energy, and can be used as animal protein feed. In animal husbandry production, it is a long-term goal to replace soybean meal (SBM) in animal feed with other plant protein feed. However, studies on the effects of replacing SBM with FSM in fattening sheep are limited. The aim of this experiment was to study the effects of replacing a portion of SBM with FSM on nutrient digestibility, rumen microbial protein synthesis and growth performance in sheep. Thirty-six Dorper × Small Thin-Tailed crossbred rams (BW = 40.4 ± 1.73 kg, mean ± SD) were randomly assigned into four groups. The dietary treatments (forage/concentrate, 45 : 55) were isocaloric according to the nutrient requirements of rams. Soybean meal was replaced with FSM at different levels (DM basis): (1) 18% SBM (18SBM), (2) 12% SBM and 6% FSM (6FSM), (3) 6% SBM and 12% FSM (12FSM) and (4) 18% FSM (18FSM). The rams were fed in individual pens for 60 days, with the first 10 days for adaptation to diets, and then the digestibility of nutrients was determined. There was no significant difference in DM intake, but quadratic (P < 0.001) effects on the average daily gain and feed efficiency were detected, with the highest values in the 6FSM and 12FSM groups. For DM and NDF digestibility, quadratic effects were observed with the higher values in the 6FSM and 12FSM groups, but the digestibility of CP linearly decreased with the increase in FSM in the diet (P = 0.043). There was a quadratic (P < 0.001) effect of FSM inclusion rate on the estimated microbial CP yield. However, the values of intestinally absorbable dietary protein decreased linearly (P < 0.001). For the supply of metabolisable protein, both the linear (P = 0.001) and quadratic (P = 0.044) effects were observed with the lowest value in the 18FSM group. Overall, the results indicated that SBM can be effectively replaced by FSM in the diets of fattening sheep and the optimal proportion was 12.0% under the conditions of this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号