首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungi causes most plant disease. When fruits are stored at suboptimal conditions, fungi grows, and some produce mycotoxin which can be dangerous for human consumption. Studies have shown that the Penicillium and Monilinia species commonly cause spoilage of fruits, especially apples. Several other genera and species were reported to grow to spoil fruits. This study was conducted to isolate and identify fruit spoilage by fungi on apples collected in Riyadh, Saudi Arabia and conduct a molecular identification of the fungal isolates. Thus, we collected 30 samples of red delicious and Granny Smith apples with obvious spoilage from different supermarkets between February and March of 2012 in Riyadh, Saudi Arabia. Each apple was placed in a sterile plastic bag in room temperature (25–30 °C) for six days or until fungal growth was evident all over the sample. Growth of fungal colonies on PDA was counted and sent for molecular confirmation by PCR. Six fruit spoilage fungi were isolated, including Penicillium chrysogenum, Penicillium adametzii, Penicillium chrysogenum, Penicillium steckii, Penicillium chrysogenum, and Aspergillus oryzae. P. chrysogenum was the most frequent isolate which was seen in 14 of a total of 34 isolates (41.2%), followed by P. adametzii and A. oryzae with seven isolates each (20.6%) and the least was P. steckii with six isolates (17.6%). Penicillium species comprised 27 of the total 34 (79.4%) isolates. Sequence analysis of the ITS regions of the nuclear encoded rDNA showed significant alignments for P. chrysogenum, P. adametzii and A. oryzae. Most of these fungal isolates are useful and are rarely pathogenic; however they can still produce severe illness in immune-compromised individuals, and sometimes otherwise healthy people may also become infected. It is therefore necessary to evaluate the possible production of mycotoxins by these fungi to determine a potential danger and to establish its epidemiology in order to develop adequate methods of control.  相似文献   

2.
Action of some fungal antagonists in the rhizosphere of resistant and susceptible tomato plants in the greenhouse The quantitative presence of the rhizospheric mycoflora fungi: Aspergillus alutaceus, Paecilomyces lilacinus, Penicillium herquei, P. nigricans and Trichoderma viride known for its antagonistic action to many pathogens is essentially differentiated in the two cultivars – the sensitive ‘Early pack’ and the resistant to tracheomycosis ‘GC 204′. It seems that the presence of the cultivar ‘GC 204’ favours the growth of these fungi. The first establishment of the fungi Penicillium chrysogenum and P. funiculosum, which are isolated from both cultivars, in the ‘Early pack’ rhizosphere might facilitate the colonization of this zone by the above mentioned antagonist which is not favoured by the sensitive cultivar. Such a changein the rhizospheric mycoflora of the sensitive cultivar may introduce some resistant to soil borne fungi diseases and open new perspectives of the biological control of these diseases.  相似文献   

3.
Microbial extracts continue to be a productive source of new molecules with biotechnological importance. Fungi of the genus Penicillium are known to produce biologically active secondary metabolites. The goal of this work is verify the production of antimicrobial metabolites by Penicillium chrysogenum IFL1 using agro-industrial residues. P. chrysogenum IFL1 produced active metabolites growing on the agro-industrial residues, grape waste and cheese whey. The 7-day cultures showed antimicrobial activities against bacteria, fungi and amoebae. The filtrate of the cheese whey culture inhibited the growth of the bacteria Staphylococcus aureus, Bacillus cereus and Pseudomonas aeruginosa, the fungus Fusarium oxysporum and the amoeba Acanthamoeba polyphaga. Due to the greater antimicrobial activity of the cheese whey culture, a footprinting profile was carried out using the ESI-MS and ESI-MS/MS techniques. The presence of penicillin G and other metabolites that have antimicrobial activity such as penicillin V and rugulosin can be suggested. P. chrysogenum IFL1 was able to produce a wide variety of antimicrobial compounds on agro-industrial residues, which makes the process ecologically friendly.  相似文献   

4.
The presence of fungi on liquorice could contaminate the crop and result in elevated levels of mycotoxin. In this study, the mycobiota associated with fresh and dry liquorice was investigated in 3 producing regions of China. Potential toxigenic fungi were tested for ochratoxin A (OTA) and aflatoxin B1 (AFB1) production using liquid chromatography/mass spectrometry/mass spectrometry. Based on a polyphasic approach using morphological characters, β-tubulin and RNA polymerase II second largest subunit gene phylogeny, a total of 9 genera consisting of 22 fungal species were identified, including two new Penicillium species (Penicillium glycyrrhizacola sp. nov. and Penicillium xingjiangense sp. nov.). The similarity of fungal communities associated with fresh and dry liquorice was low. Nineteen species belonging to 8 genera were detected from fresh liquorice with populations affiliated with P. glycyrrhizacola, P. chrysogenum and Aspergillus insuetus comprising the majority (78.74%, 33.33% and 47.06% of total) of the community from Gansu, Ningxia and Xinjiang samples, respectively. In contrast, ten species belonging to 4 genera were detected from dry liquorice with populations affiliated with P. chrysogenum, P. crustosum and Aspergillus terreus comprising the majority (64.00%, 52.38% and 90.91% of total) of the community from Gansu, Ningxia and Xinjiang samples, respectively. Subsequent LC/MS/MS analysis indicated that 5 fungal species were able to synthesize OTA in vitro including P. chrysogenum, P. glycyrrhizacola, P. polonicum, Aspergillus ochraceus and A. westerdijkiae, the OTA concentration varied from 12.99 to 39.03 µg/kg. AFB1 was absent in all tested strains. These results demonstrate the presence of OTA producing fungi on fresh liquorice and suggest that these fungi could survive on dry liquorice after traditional sun drying. Penicillium chrysogenum derived from surrounding environments is likely to be a stable contributor to high OTA level in liquorice. The harvesting and processing procedure needs to be monitored in order to keep liquorice free of toxigenic fungi.  相似文献   

5.
6.
A fungal strain, Penicillium chrysogenum A096, was isolated from an Arctic sediment sample. Its culture supernatant inhibited mycelial growth of some plant pathogenic fungi. After saturation of P. chrysogenum A096 culture supernatant with ammonium sulfate and ion exchange chromatography, a novel antifungal protein (Pc-Arctin) was purified and identified by matrix assisted laser desorption ionization-time of flight-time of flight-mass spectrometry (MALDI-TOF-TOF-MS). The gene encoding for Pc-Arctin consisting of 195 nucleotides was cloned from P. chrysogenum A096 to confirm the mass spectrometry result. Pc-Arctin displays antifungal activity against Paecilomyces variotii, Alternaria longipes, and Trichoderma viride at minimum inhibitory concentrations (MIC) of 24, 48, and 192 ng/disc, respectively. Pc-Arctin was most sensitive to proteinase K and then to trypsin but insensitive to papain. Pc-Arctin possesses high thermostability and cannot be antagonized by common surfactants, except for sodium dodecyl sulfate (SDS). Divalent ions, such as Mn2+, Mg2+, and Zn2+, inhibited the antifungal activity of Pc-Arctin. Hemagglutination assays showed that Pc-Arctin had no hemagglutinating or hemolytic activity against red blood cells (RBC) from rabbits, rats, and guinea pigs. Therefore, Pc-Arctin from Arctic P. chrysogenum may represent a novel antifungal protein with potential for application in controlling plant pathogenic fungal infection.  相似文献   

7.
Diverse fungal assemblages colonize the fine feeder roots of woody plants, including mycorrhizal fungi, fungal root endophytes and soil saprotrophs. The fungi co-inhabiting Cenococcum geophilum ectomycorrhizae (ECM) of Abies balsamea, Betula papyrifera and Picea glauca were studied at two boreal forest sites in Eastern Canada by direct PCR of ITS rDNA. 50 non-Cenococcum fungal sequence types were detected, including several potentially mycorrhizal species as well as fungal root endophytes. Non-melanized ascomycetes dominated, in contrast to the dark septate endophytes (DSE) reported in most culture dependent studies. The results demonstrate significant differences in root associated fungal assemblages among the host species studied. Fungal diversity was also host dependent, with P. glauca roots supporting a more diverse community than A. balsamea. Differences in root associated fungal communities may well influence ecological interactions among host plant species.  相似文献   

8.
9.
The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% ± 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment.  相似文献   

10.
Fungi produce various mixtures of gas-phase, carbon-based compounds called volatile organic compounds (VOCs) that due to their small size are able to diffuse through the atmosphere and soils. Despite some methodological and technological constraints, researchers have detected and characterized approximately 250 fungal VOCs, many of which have characteristic odors and are produced during primary and secondary metabolism. Fungal VOCs may contribute to a controversial medical diagnosis called “sick building syndrome” and may also be important in the success of some biocontrol species of Trichoderma. VOCs also play important signaling roles for fungi in their natural environments. Many ecological interactions are mediated by VOCs, including those between fungi and plants, arthropods, bacteria, and other fungi. The diverse functions of fungal VOCs can be developed for use in biotechnological applications for biofuel, biocontrol, and mycofumigation. Volatiles represent a new frontier in bioprospecting, and the study of these gas-phase compounds promises the discovery of new products for human exploitation and will generate new hypotheses in fundamental biology.  相似文献   

11.
Few studies have addressed the diversity of cultivable fungi from marine sediments, especially those from Antarctica. In the present study, we evaluated the presence and distribution of cultivable fungi in marine core sediments obtained from 100, 500, 700 and 1,100 m below the Antarctic Ocean surface. Fifty-two fungal isolates were identified as Penicillium solitum by their physiological and morphological characteristics, and the identity of 12 representative isolates was further confirmed by sequencing of the ITS1-5.8S-ITS2 and β-tubulin genes. P. solitum displayed high sequence similarity to Penicillium taxa that have been described from other marine habitats. Conidial germination of P. solitum occurred at low temperatures and high salinities. In addition, P. solitum displayed extracellular amylasic and esterasic activities. The isolation of P. solitum from marine sediments in Antarctica and its survival at low temperatures and high salt concentrations suggest that it is adapted to the cold and halophilic environment of the Antarctic oceans. Because P. solitum produces extracellular enzymes, it is an interesting eukaryotic model for the study of structure–function relationships during enzymatic biocatalysis and biotransformation under extreme conditions. Marine sediments from Antarctica may represent a unique source for obtaining extremophilic fungi. New studies using different culture media, temperatures ranges and pressure conditions as well as metagenomic techniques can assist in understanding the extremophilic fungal communities in marine sediments across the Antarctic Ocean.  相似文献   

12.
13.
The coastal marine ecosystems of Vietnam are one of the global biodiversity hotspots, but the biodiversity of marine fungi is not well known. To fill this major gap of knowledge, we assessed the genetic diversity (ITS sequence) of 75 fungal strains isolated from 11 surface coastal marine and deeper waters in Nha Trang Bay and Van Phong Bay using a culture-dependent approach and 5 OTUs (Operational Taxonomic Units) of fungi in three representative sampling sites using next-generation sequencing. The results from both approaches shared similar fungal taxonomy to the most abundant phylum (Ascomycota), genera (Candida and Aspergillus) and species (Candida blankii) but were different at less common taxa. Culturable fungal strains in this study belong to 3 phyla, 5 subdivisions, 7 classes, 12 orders, 17 families, 22 genera and at least 40 species, of which 29 species have been identified and several species are likely novel. Among identified species, 12 and 28 are new records in global and Vietnamese marine areas, respectively. The analysis of enzyme activity and the checklist of trophic mode and guild assignment provided valuable additional biological information and suggested the ecological function of planktonic fungi in the marine food web. This is the largest dataset of marine fungal biodiversity on morphology, phylogeny and enzyme activity in the tropical coastal ecosystems of Vietnam and Southeast Asia. Biogeographic aspects, ecological factors and human impact may structure mycoplankton communities in such aquatic habitats.  相似文献   

14.
Mycobiota growing on food is often beneficial for the ripening and development of the specific flavor characteristics of the product, but it can also be harmful due to the production of undesirable compounds such as mycotoxins or antibiotics. Some of the fungi most frequently isolated from fermented and cured meat products such as Penicillium chrysogenum and Penicillium nalgiovense are known penicillin producers; the latter has been shown to be able to produce penicillin when growing on the surface of meat products and secrete it to the medium. The presence of penicillin in food must be avoided, since it can lead to allergic reactions and the arising of penicillin resistance in human-pathogenic bacteria. In this article we describe a study of the penicillin production ability among fungi of the genus Penicillium that are used as starters for cheese and meat products or that are frequently isolated from food products. Penicillium griseofulvum was found to be a new penicillin producer and to have a penicillin gene cluster similar to that of Penicillium chrysogenum. No other species among the studied fungi were found to produce penicillin or to possess the penicillin biosynthetic genes, except P. verrucosum, which contains the pcbAB gene (as shown by hybridization and PCR cloning of fragments of the gene) but lacks pcbC and penDE. Antibacterial activities due to the production of secondary metabolites other than penicillin were observed in some fungi.  相似文献   

15.
Pointing SB  Hyde KD 《Biofouling》2000,15(1-3):221-229
Evidence for lignocellulose-degrading ability among marine fungi is reviewed. Enzyme production, mass loss and micromorphological data suggest that most strains capable of decay activity are likely to be soft-rot fungi, with relatively few capable of white-rot decay. This probably reflects the relatively high number of ascomycete genera compared to basidiomycetes described to date. The ecological and biotechnological importance of marine fungal lignocellulolytic enzymes is discussed.  相似文献   

16.
Posidonia oceanica is the most common, widespread and important monocotyledon seagrass in the Mediterranean Basin, and hosts a large biodiversity of species, including microorganisms with key roles in the marine environment. In this study, we ascertain the presence of a fungal endophyte in the roots of P. oceanica growing on different substrata (rock, sand and matte) in two Sicilian marine meadows. Staining techniques on root fragments and sections, in combination with microscope observations, were used to visualise the fungal presence and determine the percentage of fungal colonisation (FC) in this tissue. In root fragments, statistical analysis of the FC showed a higher mean in roots anchored on rock than on matte and sand. In root sections, an inter‐ and intracellular septate mycelium, producing intracellular microsclerotia, was detected from the rhizodermis to the vascular cylinder. Using isolation techniques, we obtained, from both sampling sites, sterile, slow‐growing fungal colonies, dark in colour, with septate mycelium, belonging to the dark septate endophytes (DSEs). DNA sequencing of the internal transcribed spacer (ITS) region identified these colonies as Lulwoana sp. To our knowledge, this is the first report of Lulwoana sp. as DSE in roots of P. oceanica. Moreover, the highest fungal colonisation, detected in P. oceanica roots growing on rock, suggests that the presence of the DSE may help the host in several ways, particularly in capturing mineral nutrients through lytic activity.  相似文献   

17.
Filamentous fungi are widely used in the production of biotechnological compounds. Since their morphology is strongly linked to productivity, it is a key parameter in industrial biotechnology. However, identifying the morphological properties of filamentous fungi is challenging. Owing to a lack of appropriate methods, the detailed three-dimensional morphology of filamentous pellets remains unexplored. In the present study, we used state-of-the-art X-ray microtomography (µCT) to develop a new method for detailed characterization of fungal pellets. µCT measurements were performed using freeze-dried pellets obtained from submerged cultivations. Three-dimensional images were generated and analyzed to locate and quantify hyphal material, tips, and branches. As a result, morphological properties including hyphal length, tip number, branch number, hyphal growth unit, porosity, and hyphal average diameter were ascertained. To validate the potential of the new method, two fungal pellets were studied—one from Aspergillus niger and the other from Penicillium chrysogenum. We show here that µCT analysis is a promising tool to study the three-dimensional structure of pellet-forming filamentous microorganisms in utmost detail. The knowledge gained can be used to understand and thus optimize pellet structures by means of appropriate process or genetic control in biotechnological applications.  相似文献   

18.
Due its innate ability to produce extracellular enzymes which can provide eco‐friendly solutions for a variety of biotechnological applications, Paecilomyces variotii is a potential source of industrial bioproducts. In this review, we report biotechnological records on the biochemistry of different enzymes produced by the fermentation of the P. variotii fungus, including tannases, phytases, cellulases, xylanases, chitinases, amylases and pectinases. Additionally, the main physicochemical properties which can affect the enzymatic reactions of the enzymes involved in the conversion of a huge number of substrates to high‐value bioproducts are described. Despite all the background information compiled in this review, more research is required to consolidate the catalytic efficiency of P. variotii, which must be optimized so that it is more accurate and reproducible on a large scale.  相似文献   

19.
Submicronic particles released from fungal cultures have been suggested to be additional sources of personal exposure in mold-contaminated buildings. In vitro generation of these particles has been studied with particle counters, eventually supplemented by autofluorescence, that recognize fragments by size and discriminate biotic from abiotic particles. However, the fungal origin of submicronic particles remains unclear. In this study, submicronic fungal particles derived from Aspergillus fumigatus, A. versicolor, and Penicillium chrysogenum cultures grown on agar and gypsum board were aerosolized and enumerated using field emission scanning electron microscopy (FESEM). A novel bioaerosol generator and a fungal spores source strength tester were compared at 12 and 20 liters min−1 airflow. The overall median numbers of aerosolized submicronic particles were 2 × 105 cm−2, 2.6 × 103 cm−2, and 0.9 × 103 cm−2 for A. fumigatus, A. versicolor, and P. chrysogenum, respectively. A. fumigatus released significantly (P < 0.001) more particles than A. versicolor and P. chrysogenum. The ratios of submicronic fragments to larger particles, regardless of media type, were 1:3, 5:1, and 1:2 for A. fumigatus, A. versicolor, and P. chrysogenum, respectively. Spore fragments identified by the presence of rodlets amounted to 13%, 2%, and 0% of the submicronic particles released from A. fumigatus, A. versicolor, and P. chrysogenum, respectively. Submicronic particles with and without rodlets were also aerosolized from cultures grown on cellophane-covered media, indirectly confirming their fungal origin. Both hyphae and conidia could fragment into submicronic particles and aerosolize in vitro. These findings further highlight the potential contribution of fungal fragments to personal fungal exposure.  相似文献   

20.
Desert soils harbor fungi that have survived under highly stressed conditions of high temperature and little available moisture. This study was designed to survey the communities of cultivable fungi in the desert soils of the Arabian Peninsula and to screen the fungi for the potentially valuable antioxidants (flavonoids, phenols, saponins, steroids, tannins, terpenoids, and alkaloids) and enzymes (cellulase, laccase, lipase, protease, amylase, and chitinase). Desert soil was sampled at 30 localities representing different areas of Saudi Arabia and studied for physico-chemical soil properties. Five types of soil texture (sand, loamy sand, sandy loam, silty loam, and sandy clay loam) were observed. A total of 25 saprotrophic species was identified molecularly from 68 isolates. Our survey revealed 13 culturable fungal species that have not been reported previously from Arabian desert soils and six more species not reported from Saudi Arabian desert soils. The most commonly recorded genera were Aspergillus (isolated from 20 localities) and Penicillium (6 localities). The measurements of biochemicals revealed that antioxidants were produced by 49 and enzymes by 52 isolates; only six isolates did not produce any biochemicals. The highest biochemical activity was observed for the isolates Fusarium brachygibbosum and A. phoenicis. Other active isolates were A. proliferans and P. chrysogenum. The same species, for instance, A. niger had isolates of both high and low biochemical activities. Principal component analysis gave a tentative indication of a relationship between the biochemical activity of fungi isolated from soil and soil texture variables namely the content of silt, clay and sand. However, any generalizable relation between soil properties and fungal biochemical activities cannot be suggested. Each fungal isolate is probable to produce several antioxidants and enzymes, as shown by the correlation within the compound groups. Desert soil warrants further research as a promising source of biochemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号