首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

In both humans and rodents, glucose homeostasis is controlled by micro-organs called islets of Langerhans composed of beta cells, associated with other endocrine cell types. Most of our understanding of islet cell differentiation and morphogenesis is derived from rodent developmental studies. However, little is known about human islet formation. The lack of adequate experimental models has restricted the study of human pancreatic development to the histological analysis of different stages of pancreatic development. Our objective was to develop a new experimental model to (i) transfer genes into developing human pancreatic cells and (ii) validate gene transfer by defining the clonality of developing human islets.

Methods and Findings

In this study, a unique model was developed combining ex vivo organogenesis from human fetal pancreatic tissue and cell type-specific lentivirus-mediated gene transfer. Human pancreatic progenitors were transduced with lentiviruses expressing GFP under the control of an insulin promoter and grafted to severe combined immunodeficient mice, allowing human beta cell differentiation and islet morphogenesis. By performing gene transfer at low multiplicity of infection, we created a chimeric graft with a subpopulation of human beta cells expressing GFP and found both GFP-positive and GFP-negative beta cells within single islets.

Conclusion

The detection of both labeled and unlabeled beta cells in single islets demonstrates that beta cells present in a human islet are derived from multiple progenitors thus providing the first dynamic analysis of human islet formation during development. This human transgenic-like tool can be widely used to elucidate dynamic genetic processes in human tissue formation.  相似文献   

2.
《Endocrine practice》2008,14(9):1075-1083
ObjectiveTo identify triggers for islet neogenesis in humans that may lead to new treatments that address the underlying mechanism of disease for patients with type 1 or type 2 diabetes.MethodsIn an effort to identify bioactive human peptide sequences that might trigger islet neogenesis, we evaluated amino acid sequences within a variety of mammalian pancreas-specific REG genes. We evaluated GenBank, the Basic Local Alignment Search Tool algorithm, and all available proteomic databases and developed large-scale protein-to-protein interaction maps. Studies of peptides of interest were conducted in human pancreatic ductal tissue, followed by investigations in mice with streptozocin-induced diabetes.ResultsOur team has defined a 14-amino acid bioactive peptide encoded by a portion of the human REG3a gene we termed Human proIslet Peptide (HIP), which is well conserved among many mammals. Treatment of human pancreatic ductal tissue with HIP stimulated the production of insulin. In diabetic mice, administration of HIP improved glycemic control and significantly increased islet number. Bioinformatics analysis, coupled with biochemical interaction studies in a human pancreatic cell line, identified the human exostoses-like protein 3 (EXTL3) as a HIP-binding protein. HIP enhanced EXTL3 translocation from the membrane to the nucleus, in support of a model whereby EXTL3 mediates HIP signaling for islet neogenesis.ConclusionOur data suggest that HIP may be a potential stimulus for islet neogenesis and that the differentiation of new islets is a process distinct from beta cell proliferation within existing islets. Human clinical trials are soon to commence to determine the effect of HIP on generating new islets from one’s own pancreatic progenitor cells. (Endocr Pract. 2008;14:1075-1083)  相似文献   

3.
4.
5.
6.
The insulin receptor substrate 2 (Irs2) branch of the insulin/insulin-like growth factor-signaling cascade prevents diabetes in mice because it promotes beta cell replication, function, and survival, especially during metabolic stress. Because exendin-4 (Ex4), a long acting glucagon-like peptide 1 receptor agonist, has similar effects upon beta cells in rodents and humans, we investigated whether Irs2 signaling was required for Ex4 action in isolated beta cells and in Irs2(-/-) mice. Ex4 increased cAMP levels in human islets and Min6 cells, which promoted Irs2 expression and stimulated Akt phosphorylation. In wild type mice Ex4 administered continuously for 28 days increased beta cell mass 2-fold. By contrast, Ex4 failed to arrest the progressive beta cell loss in Irs2(-/-) mice, which culminated in fatal diabetes; however, Ex4 delayed the progression of diabetes by 3 weeks by promoting insulin secretion from the remaining islets. We conclude that some short term therapeutic effects of glucagon-like peptide 1 receptor agonists can be independent of Irs2, but its long term effects upon beta cell growth and survival are mediated by the Irs2 branch of the insulin/insulin-like growth factor signaling cascade.  相似文献   

7.
There has been great interest in understanding how human islets differ from rodent islets. Three major issues about human islet morphology have remained controversial over recent decades: 1) the proportion of the islet made up of β-cells; 2) whether islet cell types have a non-random mantle-core pattern, as seen in rodents, or are randomly scattered throughout the islet; 3) the relation of the different cell types to the blood vessels within the islet, which has implications for intraislet function. We re-examined these issues on immunostained sections of non-diabetic adult human pancreas. The composition of the islets can vary by the analysis method (number vs volume) and by the sampling of islets by size. The majority of adult human islets have clear, non-random clustering of β-cells and blood vessels that penetrate into the β-cell cores. We conclude that although there is far more variability in islet composition both within each human pancreas and among different human pancreas than in rodent pancreas, the islet architecture is not so different between the species. The intrapancreatic variability raises important questions about how islets evolve and function throughout life and how this might relate to the pathogenesis of diabetes.  相似文献   

8.
Regenerative medicine using human or porcine β‐cells or islets has an excellent potential to become a clinically relevant method for the treatment of type‐1 diabetes. High‐resolution imaging of the function and faith of transplanted porcine pancreatic islets and human stem cell–derived beta cells in large animals and patients for testing advanced therapy medicinal products (ATMPs) is a currently unmet need for pre‐clinical/clinical trials. The iNanoBIT EU H2020 project is developing novel highly sensitive nanotechnology‐based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole‐body distribution of the cellular transplants in a porcine diabetes model with excellent translational potential to humans. We develop and validate the application of single‐photon emission computed tomography (SPECT) and optoacoustic imaging technologies in a transgenic insulin‐deficient pig model to observe transplanted porcine xeno‐islets and in vitro differentiated human beta cells. We are progressing in generating new transgenic reporter pigs and human‐induced pluripotent cell (iPSC) lines for optoacoustic imaging and testing them in transplantable bioartificial islet devices. Novel multifunctional nanoparticles have been generated and are being tested for nuclear imaging of islets and beta cells using a new, high‐resolution SPECT imaging device. Overall, the combined multidisciplinary expertise of the project partners allows progress towards creating much needed technological toolboxes for the xenotransplantation and ATMP field, and thus reinforces the European healthcare supply chain for regenerative medicinal products.  相似文献   

9.
《Gene》1997,188(2):207-213
The β3-adrenergic receptor (ADRβ3) is a seven-membrane spanning, G-protein linked receptor expressed in brown adipose tissue in rodents, and visceral adipose tissue in humans. Stimulation of the receptor by norepinephrine leads to lipolysis and thermogenesis. In rodent models of obesity and diabetes, administration of β3-agonists results in weight loss and improved glucose tolerance. Studies indicate that the pharmacological properties of the ADRβ3 differ markedly between rodents and humans, making generalizations of rodent studies to humans difficult. We hypothesized that the obesity and diabetes prone rhesus monkey (Macaca mulatta) would provide an excellent animal model to study the role of the ADRβ3 in the development of obesity and diabetes as well as for assessment of the therapeutic efficacy of β3-agonists. We sequenced the entire coding region of the rhesus ADRβ3 gene. Like humans, the rhesus ADRβ3 has two exons. There is 89% amino acid (aa) identity between human and rhesus compared to 82% aa identity between human and mouse. A single base deletion results in divergence of the intracellular carboxy terminus accounting for 26 of the 45 aa changes and 10 additional aa. Of the 15 rhesus monkeys studied, all were homozygous for Arg64. In humans, Arg64 (rather than Trp) is associated with increased body mass index, insulin resistance, and an earlier onset of type II diabetes mellitus. We conclude that the rhesus ADRβ3 is more similar to the human ADRβ3 than to the rodent ADRβ3 suggesting that this primate model may be more appropriate for physiologic and therapeutic studies of the ADRβ3 axis, and that Arg64 may influence susceptibility in this species to obesity, insulin resistance, and type II diabetes.  相似文献   

10.
《Endocrine practice》2008,14(6):782-790
ObjectiveTo review the renal handling of glucose and the role of inhibition of a sodium-glucose transporter (SGLT2) in the treatment of type 2 diabetes mellitus (T2DM).MethodsWe review the published data about (1) the filtration and reabsorption of glucose by the kidneys in normal subjects and patients with diabetes; (2) the deleterious effects of long-term elevation of plasma glucose levels on muscle and hepatic insulin sensitivity and beta cell function (that is, glucotoxicity); (3) the effect of inhibiting the SGLT2 transporter on the induction of glycosuria, glycemic control, insulin resistance, and beta cell dysfunction in animals and humans with diabetes; and (4) the safety of SGLT2 inhibition as a therapeutic modality to treat human T2DM.ResultsStudies in animal models of diabetes document the efficacy of the SGLT2 inhibitors in inducing glycosuria, decreasing both fasting and postprandial glucose levels, augmenting beta cell function, and enhancing hepatic and muscle insulin sensitivity. In human T2DM, short-term studies with dapagliflozin (12 weeks) and sergliflozin (2 weeks) have confirmed the efficacy of these agents in improving glycemic control. Excessive urinary electrolyte or water loss, plasma electrolyte disturbances, and hypoglycemia were not observed.ConclusionSGLT2 inhibitors represent a promising approach to the treatment of T2DM. They have the potential to be used as monotherapy, as well as in combination with all approved antidiabetic agents. Because their mechanism of action is independent of the severity of beta cell dysfunction or insulin resistance, efficacy should not decline with progressive beta cell failure or in the presence of severe insulin resistance. (Endocr Pract. 2008;14:782-790)  相似文献   

11.
Understanding autoimmune diabetes: insights from mouse models.   总被引:6,自引:0,他引:6  
Type 1 or insulin-dependent diabetes is an autoimmune disease that causes the selective destruction of insulin-secreting beta cells in the pancreatic islets. Although this is a polygenic disease, with at least 20 genes implicated, the dominant susceptibility locus maps to the major histocompatibility complex (MHC), both in humans and in rodent models. However, in spite of progress on several fronts, the molecular pathology of autoimmune diabetes remains incompletely defined. Major areas of research include environmental trigger factors, the identification and role of beta-cell antigens in inducing and maintaining the autoimmune response, and the nature of the pathogenic and protective lymphocytes involved. In this review, we will focus on these areas to highlight recent advances in understanding the pathogenesis of autoimmune diabetes, drawing extensively on insights gained by studying the non-obese diabetic (NOD) mouse.  相似文献   

12.
Blood glucose concentrations are maintained by insulin secreted from beta-cells located in the islets of Langerhans. There are approximately 2000 beta-cells per islet, and approximately one million islets of Langerhans scattered throughout the pancreas. The islet in type 2 diabetes mellitus (T2D) has deficient beta-cell mass due to increased beta-cell apoptosis and islet amyloid derived from islet amyloid polypeptide (IAPP). Accumulating evidence implicates toxic IAPP oligomers in the mediation of beta-cell apoptosis in T2D. Humans, monkeys, and cats express an amyloidogenic toxic form of IAPP and spontaneously develop diabetes characterized by islet amyloid deposits. However, longitudinal studies of islet pathology in humans are impossible, and studies in nonhuman primates and cats are costly and impractical. Rodent IAPP is not amyloidogenic, thus commonly used rodent models of diabetes do not recapitulate islet pathology in humans. To investigate the diabetogenic role of human IAPP (h-IAPP), several mouse models and, more recently, a rat model transgenic for h-IAPP have been developed. Studies in these models have revealed that the toxic effect of h-IAPP on beta-cell apoptosis demonstrates a threshold-dependent effect. Specifically, increasing h-IAPP transgene expression by breeding or induction of insulin resistance leads to increased beta-cell apoptosis and diabetes. These transgenic rodent models for h-IAPP provide an opportunity to elucidate the mechanisms responsible for h-IAPP-induced beta-cell apoptosis further and to test novel approaches to the prevention and treatment of T2D.  相似文献   

13.
14.
Background aimsThe success of islet transplantation for diabetes depends on the availability of an adequate number of allogeneic or autologous islets. Postnatal stem cells are now considered for the generation of physiologically competent, insulin-producing cells. Our group showed earlier that it is possible to generate functional islets from human dental pulp stem cells by using a serum-free cocktail in a three-step protocol.MethodsWe compared the yield of generated islet-like cell clusters (ICCs) from stem cells from pulps of human exfoliated deciduous teeth (SHED) and dental pulp stem cells from permanent teeth (DPSCs). ICCs derived from SHED were packed in immuno-isolatory biocompatible macro-capsules and transplanted into streptozotocin (STZ)-induced diabetic mice. Non-diabetic and diabetic controls were transplanted with macro-capsules with or without islets.ResultsSHED were superior to DPSCs. STZ diabetic mice alone and mice transplanted with empty macro-capsules exhibited hyperglycemia throughout the experiment, whereas mice transplanted with macro-capsules containing ICCs were restored to normoglycemia within 3–4 weeks, which persisted for >60 days.ConclusionsOur results demonstrate for the first time that ICCs derived from SHED reverse STZ diabetes in mice without immunosuppression and offer an autologous and non-controversial source of human tissue that could be used for stem cell therapy in diabetes.  相似文献   

15.
Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80-90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60-75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20-30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. β-Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.  相似文献   

16.
Nesfatin-1 is a novel anorexigenic regulatory peptide. The peptide is the N-terminal part of nucleobindin 2 (NUCB2) and is expressed in brain areas regulating feeding. Outside the brain, nesfatin-1 expression has been reported in adipocytes, gastric endocrine cells and islet cells. We studied NUCB2 expression in human and rodent islets using immunocytochemistry, in situ hybridization and western blot. Furthermore, we investigated the potential influence of nesfatin-1 on secretion of insulin and glucagon in vitro and in vivo in mice and in INS-1 (832/13) cells. The impact of type 2 diabetes (T2D) and glucolipotoxicity on NUCB2 gene expression in human islets and its relationship to insulin secretory capacity and islet gene expression was studied using microarray. Nesfatin-1 immunoreactivity (IR) was abundant in human and rodent beta cells but absent in alpha, delta, PP and ghrelin cells. Importantly, in situ hybridization showed that NUCB2 mRNA is expressed in human and rat islets. Western blot analysis showed that nesfatin-1 IR represented full length NUCB2 in rodent islets. Human islet NUCB2 mRNA was reduced in T2D subjects but upregulated after culture in glucolipotoxic conditions. Furthermore, a positive correlation between NUCB2 and glucagon and insulin gene expression, as well as insulin secretory capacity, was evident. Nesfatin-1 enhanced glucagon secretion but had no effect on insulin secretion from mouse islets or INS-1 (832/13) cells. On the other hand, nesfatin-1 caused a small increase in insulin secretion and reduced glucose during IVGTT in mice. We conclude that nesfatin-1 is a novel glucagon-stimulatory peptide expressed in the beta cell and that its expression is decreased in T2D islets.  相似文献   

17.
Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three‐dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100–150 μm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose‐responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re‐associated human islet cells showed an a‐typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C‐peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell–cell interactions between insuloma and/or primary islet cells.  相似文献   

18.
Glucose homeostasis is primarily controlled by the endocrine hormones insulin and glucagon, secreted from the pancreatic beta and alpha cells, respectively. Functional beta cell mass is determined by the anatomical beta cell mass as well as the ability of the beta cells to respond to a nutrient load. A loss of functional beta cell mass is central to both major forms of diabetes 1-3. Whereas the declining functional beta cell mass results from an autoimmune attack in type 1 diabetes, in type 2 diabetes, this decrement develops from both an inability of beta cells to secrete insulin appropriately and the destruction of beta cells from a cadre of mechanisms. Thus, efforts to restore functional beta cell mass are paramount to the better treatment of and potential cures for diabetes.Efforts are underway to identify molecular pathways that can be exploited to stimulate the replication and enhance the function of beta cells. Ideally, therapeutic targets would improve both beta cell growth and function. Perhaps more important though is to identify whether a strategy that stimulates beta cell growth comes at the cost of impairing beta cell function (such as with some oncogenes) and vice versa.By systematically suppressing or overexpressing the expression of target genes in isolated rat islets, one can identify potential therapeutic targets for increasing functional beta cell mass 4-6. Adenoviral vectors can be employed to efficiently overexpress or knockdown proteins in isolated rat islets 4,7-15. Here, we present a method to manipulate gene expression utilizing adenoviral transduction and assess islet replication and beta cell function in isolated rat islets (Figure 1). This method has been used previously to identify novel targets that modulate beta cell replication or function 5,6,8,9,16,17.  相似文献   

19.
Type 1 diabetes is an autoimmune disease with a strong inflammatory component. The cytokines interleukin-1β and interferon-γ contribute to beta cell apoptosis in type 1 diabetes. These cytokines induce endoplasmic reticulum stress and the unfolded protein response (UPR), contributing to the loss of beta cells. IRE1α, one of the UPR mediators, triggers insulin degradation and inflammation in beta cells and is critical for the transition from “physiological” to “pathological” UPR. The mechanisms regulating inositol-requiring protein 1α (IRE1α) activation and its signaling for beta cell “adaptation,” “stress response,” or “apoptosis” remain to be clarified. To address these questions, we combined mammalian protein-protein interaction trap-based IRE1α interactome and functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines to identify novel cytokine-induced regulators of IRE1α. Based on this approach, we identified N-Myc interactor (NMI) as an IRE1α-interacting/modulator protein in rodent and human pancreatic beta cells. An increased expression of NMI was detected in islets from nonobese diabetic mice with insulitis and in rodent or human beta cells exposed in vitro to the pro-inflammatory cytokines interleukin-1β and interferon-γ. Detailed mechanistic studies demonstrated that NMI negatively modulates IRE1α-dependent activation of JNK and apoptosis in rodent and human pancreatic beta cells. In conclusion, by using a combined omics approach, we identified NMI induction as a novel negative feedback mechanism that decreases IRE1α-dependent activation of JNK and apoptosis in cytokine-exposed beta cells.  相似文献   

20.
The discovery of insulin more than 90 years ago introduced a life‐saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell‐derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号