共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
生长素信号调控植物生长发育的各个方面。该文综述了生长素信号在植物根尖的研究进展概况,从生长素在根尖的运输与分布、生长素信号对根尖细胞命运的影响及静止中心细胞的生长素信号研究三个方面进行了阐述,并对未来该领域的研究方向进行了展望。 相似文献
4.
5.
6.
7.
长期的研究表明,生长素在调节植物生长发育的各种生理活动中起关键作用,但对它如何调控这些生理活动却缺乏系统和深入的了解。最近,细胞核内生长素信号途径的发现为揭示其作用机制带来了曙光。乙烯参与果实成熟及植物对逆境的反应等生理活动,其信号途径也已得到部分阐明。越来越多的证据表明,乙烯的作用与生长素对植物生长发育的调控之间有密切的联系。该文概述了生长素与乙烯信号途径的研究进展及其相互关系,讨论了生长素在植物三重反应中的作用;并对生长素与乙烯相互关系研究中存在的问题及研究前景进行了探讨。 相似文献
8.
SlARF4, an Auxin Response Factor Involved in the Control of Sugar Metabolism during Tomato Fruit Development 总被引:1,自引:0,他引:1
Maha Sagar Christian Chervin Isabelle Mila Yanwei Hao Jean-Paul Roustan Mohamed Benichou Yves Gibon Beno?t Biais Pierre Maury Alain Latché Jean-Claude Pech Mondher Bouzayen Mohamed Zouine 《Plant physiology》2013,161(3):1362-1374
9.
It has been hypothesized that faunal activity in the rhizosphere influences root growth via an auxin-dependent pathway. In this study, two methods were used to adjust nematode and bacterial populations within experimental soils. One is “exclusion”, where soil mixed with pig manure was placed in two bags with different mesh sizes (1mm and 5μm diameter), and then surrounded by an outer layer of unamended soil resulting in soil with a greater populations of bacterial-feeding nematodes (1mm) and a control treatment (5μm). The second method is “inoculation”, whereby autoclaved soil was inoculated with bacteria (E. coli and Pseudomonas) and Nematodes (Cephalobus and C. elegans). In order to detect the changes in the rice’s perception of auxin under different nutrient and auxin conditions in the presence of soil bacterial-feeding nematodes, responses of soil chemistry (NH4+, NO3- and indole acetic acid (IAA)), rice root growth and the expression of an auxin responsive gene GH3-2 were measured. Results showed that, under low soil nutrient conditions (exclusion), low NO3- correlated with increased root branching and IAA correlated with increased root elongation and GH3-2 expression. However, under high soil nutrient conditions (inoculation), a high NH4+ to NO3- ratio promoted an increase in root surface area and there was an additional influence of NH4+ and NO3- on GH3-2 expression. Thus it was concluded that soil bacterial-feeding nematodes influenced soil nutritional status and soil IAA content, promoting root growth via an auxin dependent pathway that was offset by soil nitrogen status. 相似文献
10.
Huakun Zheng Suiuan Li Bo Ren Jian Zhang Masahiko Ichii Shin Taketa Yuezhi Tao Jianru Zuo Hua Wang 《植物生理与分子生物学学报》2013,(5):1719-1721
Dear Editor, Cyclophilins (CYP) are a class of highly conserved pepti- dyl-prolyl cis-trans isomerases (PPlases) that play important roles in various biological processes in eukaryotes (reviewed in Romano et al. (2004)). In higher plants, a conserved sin- gle domain cyclophilin has been identified as a novel com- ponent of the auxin signaling pathway by analyzing the tomato diageotropica (dgt) mutant (Ivanchenko et al., 2006; Oh et al., 2006). The dgt mutant displays a lateral-rootless and auxin-resistant phenotype (Ivanchenko et aL, 2006). Further studies revealed that mutations in the DGT-like genes of Physcomitrella patens also exhibited an auxin-resistant phenotype, suggesting a conserved role of DGT-like proteins in auxin signaling. Moreover, 相似文献
11.
生长素极性运输在水稻根发育中的作用 总被引:4,自引:0,他引:4
生长素极性运输(PAT)在植物生长发育尤其是极性发育和模式建成中起重要作用。采用2种PAT抑制剂TIBA(2,3,5-triiodobenzoic acid)和HFCA(9-hydroxyfluorene-9-carboxylic acid)处理水稻(Oryza sativa 1.cv.Zhonghua)幼苗,结果表明:PAT影响水稻根发育包括主根的伸长、侧根的起始和伸长以及不定根的发育。PAT的抑制导致主根变短、侧根和不定根数目减少。外源附加生长素(NAA)可以部分恢复不定根的形成但不能恢复侧根的形成,表明在侧根和不定根的形成上可能具有不同的机制。切片结果表明,30μmol/L TIBA处理后并不完全抑制侧根原基的形成,进一步研究表明生长素由胚芽鞘向基部的运输在水稻不定根的起始和伸长中起关键作用。 相似文献
12.
Karen J. Halliday Jaime F. Mart��nez-Garc��a Eve-Marie Josse 《Cold Spring Harbor perspectives in biology》2009,1(6)
Light is vital for plant growth and development: It provides energy for photosynthesis, but also reliable information on seasonal timing and local habitat conditions. Light sensing is therefore of paramount importance for plants. Thus, plants have evolved sophisticated light receptors and signaling networks that detect and respond to changes in light intensity, duration, and spectral quality. Environmental light signals can drive developmental transitions such as germination and flowering, but they also continuously shape development to allow adaptation to the local habitat and microclimate. The ability to respond to a changing and sometimes unfavorable environment underlies the huge success of plants. Much of this growth and developmental plasticity is achieved by light modulation of auxin signaling systems. In this article, we examine the connections between light and auxin that elicit local responses, long distance signaling, and coordinated growth between the shoot and root. 相似文献
13.
14.
15.
16.
17.
Since the existence of root promoting substances that consist of a complex between auxin and another molecule has been suggested, we have examined the role of auxin conversion products in root regeneration by Pinus lambertiana embryo cuttings. Auxin conversion products were detected using radioactive forms of the auxins IAA (indoIe-3-acetic acid), NAA (a-napthaleneacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid). 10?7M NAA was more effective than 10?6M IAA at promoting rooting, yet it formed conversion products much less rapidly. Also continuous exposure to IAA was necessary for optimum root formation. Based on these and other findings, we conclude that free auxin, and not the conversion products we detected, is essential to root meristem formation. 相似文献
18.
Genetic and Chemical Reductions in Protein Phosphatase Activity Alter Auxin Transport, Gravity Response, and Lateral Root Growth 总被引:16,自引:0,他引:16
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated. 相似文献
19.
Plants adjust their development in relation to the availability of nutrient sources. This necessitates signaling between root and shoot. Aside from the well-known systemic signaling processes mediated by auxin, cytokinin, and sugars, new pathways involving carotenoid-derived hormones have recently been identified. The auxin-responsive MAX pathway controls shoot branching through the biosynthesis of strigolactone in the roots. The BYPASS1 gene affects the production of an as-yet unknown carotenoid-derived substance in roots that promotes shoot development. Novel local and systemic mechanisms that control adaptive root development in response to nitrogen and phosphorus starvation were recently discovered. Notably, the ability of the NITRATE TRANSPORTER 1.1 to transport auxin drew for the first time a functional link between auxin, root development, and nitrate availability in soil. The study of plant response to phosphorus starvation allowed the identification of a systemic mobile miRNA. Deciphering and integrating these signaling pathways at the whole-plant level provide a new perspective for understanding how plants regulate their development in response to environmental cues. 相似文献